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Abstract: The current work will describe the entropy generation in an unsteady magnetohydrodynamic
(MHD) flow with a combined influence of mass and heat transfer through a porous medium. It will
consider the flow in the XY plane and the plate with isothermal and ramped wall temperature. The wall
shear stress is also considered. The influences of different pertinent parameters on velocity, the Bejan
number and on the total entropy generation number are reported graphically. Entropy generation in the
fluid is controlled and reduced on the boundary by using wall shear stress. It is observed in this paper
that by taking suitable values of pertinent parameters, the energy losses in the system can be minimized.
These parameters are the Schmitt number, mass diffusion parameter, Prandtl number, Grashof number,
magnetic parameter and modified Grashof number. These results will play an important role in the heat
flow of uncertainty and must, therefore, be controlled and managed effectively.

Keywords: entropy generation; Bejan number; heat transfer; wall shear stress; ramped wall;
porous medium

1. Introduction

In compound responses the heat transfer procedure is dependably joined by the mass transfer
progression. Perhaps it was expected that the investigation of joined heat and mass transfer is
supportive to obtaining the best comprehension of various nominal transfer procedures. In a porous
medium the convective heat transfer over a plate has numerous uses, for example, for nuclear reactors,
oil production, thermal insulation systems and in separation processes in chemical engineering.
Ranganathan and Viskanta [1] researched the boundary layer mixed convective fluid inserted in a
porous medium over a vertical plate. They guaranteed that the viscus impacts are important and
cannot be dismissed. The effect of thermal radiation and chemical reaction on the fluid with external
heat source over a stretching surface was talked about by Mohan Krishna et al. [2], who observed
that the chemical reaction parameter became important when the mass transfer rate was growing.
Recently Gupta et al. [3] investigated the heat transfer for incompressible nanofluid over an inclined
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stretching sheet with a chemical reaction and radiation with the effect of an MHD mixed convective.
Furthermore, Singh et al. [4] studied the computational approach for Jeffery–Hamel flow and
Kumar et al. [5] studied the fractional model of convective radial fins with temperature-dependent
thermal conductivity.

Scientists have been attempting to comprehend and diminish the challenges of industrial
procedures to accomplish higher effectiveness. In engineering systems, there are different causes
for entropy generation. In thermal systems, the primary source of entropy generation is mass transfer,
heat transfer, viscous dissipation, coupling among heat, electrical conduction, mass transfer and
chemical reaction, as examined in a pioneering series of publications by Bejan and co-workers [6,7].
At some exploratory examinations [8,9], the entropy growth standard has been used to decide the
effectiveness of types of apparatus in numerous functional circumstances, for example, condensation,
evaporation. The impact of magnetic field is seen again in a few human-made and natural streams.
Magnetic fields are regularly connected in manufacturing to levitate heat, pump and mix fluid metals.
There is the earthly magnetic field that is retained by fluid flow in the earth’s core, the sun powered
magnetic field which creates sunspots and sun based flares, and the galactic magnetic field which
is supposed to control the arrangement of stars from intergalactic mists. In recent times, significant
consideration has been centered around uses of heat transfer and MHD, for example metallurgical
handling, geothermal energy abstraction and MHD generators. The portent concerning MHD flow with
mass and heat transfer is significant because of its various uses in innovation and science. The specific
applications are set up in buoyancy-induced flows in the atmosphere, quasi-solid bodies and in forms
of water, for example, earth. MHD flow with heat and mass transfer has obtained much attention in
recent years because of their huge number of applications in engineering areas.

The handy utilization of the basics of heat and mass transfer in power system segments
covers an extensive variety of essential designing systems, which incorporate pumps, heaters,
turbines, compressors, cooling towers, heat transfer and so on. The utilization of the second law
of thermodynamics to dissect fluid flow and heat in designing systems and devices has turned out to
be progressively essential. The nonstop development of technology requires better cooling techniques
and requests than enhanced heat transfer attributes. The studies on heat and mass transfer problems
are also the hotspots in the heat transfer arena [10–12]. Bejan [13] studied the entropy generation
minimizations [14] for the problems of heat and mass transfer and showed the classic uses in the
intensive fields of thermal energy storage, heat transfer and mass transfer. Sahin reference [15]
has explored entropy generation and the pumping power essential for a viscous laminar flow in a
channel. Zhou et al. [16] additionally carried out optimization of a triangular SGR joint heat and
mass transfer, and found that for the same volume in triangular model, the entropy generation is low
than the rectangular generation. Recently Singh et al. [17] provided a numerical algorithm for the
fractional Drinfeld–Sokolov–Wilson equation. Furthermore, the analytical techniques for system of
time fractional nonlinear differential equations have been investigated by Choi et al. [18]. Furthermore,
Awed [19] investigated a new definition of the Bejan number. The Bejan number is quite useful, as one
can get evidence about the dominance of the magnetic field and fluid friction through heat transfer
entropy or vice versa. Furthermore, the extending form of the Bejan number to a general form is
investigated by Awad and Lage in reference [20]. Also the Hagen number versus Bejan number is
investigated by Awad in reference [21]. Furthermore, the alternative form of the Darcy equation
is studied in reference [22] and a review of entropy generation in micro channels is investigated in
reference [23] by Awad.

The analysis of present literature shows that under a second law perspective, no work has yet
been completed investigating flow over an infinite plate with wall shear stress and heat mass transfer.
This problem needed to be studied from a second law point of view to calculate the performance of
flows facing concentration difference, mass diffusion and loss in energy due to magnetic field and
fluid friction. Therefore, the current effort is supported to get a better understanding of the damage to
the handy energy faced in a conjugate flow together with wall shear stress, mass and heat transfer.
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2. Flow Analysis

Assume the unsteady unidirectional MHD free convectional flow of an incompressible viscous
fluid over a vertical unbounded plate. As shown in Figure 1, the x has been taken along the plate
and y axis is perpendicular to the plate correspondingly. At the start, the fluid and plate both are at
relaxation with TW (constant wall temperature). After a while, along the x axis the plate interrupts the
fluid by time dependent shear stress f (t). Equivalently the temperature of the fluid is decreased or
increased to T∞(TW + T∞) t

t0
when t ≤ t0 and afterwards for t > t0 is continued at TW . An unchanging

magnetic field of strength B0 is applied normal ally to the flow path. Considering the fluid is in the
y > 0 porous half space, the flow is laminar and ignoring the viscous dissipation by using Boussinesq’s
approximation, by Butt et al. [24] the governing equations of the flow are given. The continuity,
momentum, energy and concentration equations for the boundary layer flow are written as,

∂Φ
∂x

+
∂Φ
∂y

+
∂Φ
∂z

= 0, (1)

∂Φ
∂y

=
1
ρ

∂τ

∂y
+ gβT(T − T∞)− ν

K
Φ− δB◦2

ρ
Φ + gβC(C− C∞), (2)

∂τ

∂y
= µ

∂Φ
∂y

, (3)

∂C
∂t

= D
∂2C
∂y2 . (4)

First Law Analysis

ρcp
∂T
∂t

= κ
∂2T
∂y2 −

∂qr

∂y
. (5)

Second Law Analysis

SG =
κ

T2
∞
(

∂T
∂y

)
2
+

µ

T∞
(

∂Φ
∂y

)
2
+

µ

KT∞
Φ2 +

σB2
0

T∞
Φ2 +

RD
T∞

(
∂T
∂y

)(
∂C
∂y

) +
RD
C∞

(
∂C
∂y

)
2
. (6)

here Φ(y, t) in x direction is the fluid velocity, B0 the applied magnetic field, µ is the fluid viscosity, qr

is Radiative heat flux, K permeability of porous medium, T(y, t) is the fluid temperature, v kinematic
viscosity, βT coefficient of thermal expansion, g gravitational acceleration, non trivial shear stress is
τ(y, t), σ electric conductivity of the fluid, cp heat capacity at constant pressure, k thermal conductivity,
ρ constant density and SG volumetric rate of local entropy generation, C concentration, R the gas
constant and D mass diffusivity are defined by Bejan [25].
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Figure 1. Physical configuration of the problem. 
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The corresponding boundary and initial condition are as follows by assuming there are no slip
acts in the middle of plate and fluid so,

Φ(y, t) = 0, T(y, 0) = T∞, C(y, 0) = C∞; ∀y ≥ 0
T(0, t) = TW t0 ≥ 0 ∵ t0 = ν

Φ0
2

T(0, t) = T∞ + (TW − T∞); 0 < t < t0
∂Φ(0,t)

∂y = f (t)
µ , C(0, t) = CW ; t > 0,

Φ(∞, t) = 0, T(∞, t) = T∞, C(∞, t) = C∞; ∀t > 0.

(7)

Under the Rosseland approximation for optically thick fluid [26,27] the radiation heat flux is
given by,

qr =
Φ0σ∗

3KR

∂T4

∂y
. (8)

where σ∗ and KR are the Stefan-Boltzmann constant and the mean spectral absorption coefficient
respectively. Considering that the temperature variance in the flow stays necessarily minor, at that
point Equation (8) can be implemented by expanding to a linearized T4 into a Taylor series around T∞

and ignoring higher order terms, we then have,

T4 = 4T∞
3T − 3T∞

4. (9)

Using Equation (9) into Equation (8) and substituting the achieved aftermath in Equation (5)
we have,

Pr
∂T
∂t

= ν(1 + Nr)
∂2T
∂y2 ; y, t > 0 (10)

where Pr, v and Nr are defined by

Pr =
µcp

k
, Nr =

16σT∞
3

3kkR
, v =

µ

ρ
. (11)

By familiarizing the following dimensionless variables

y∗ = Φ0
ν y, Φ∗ = ν

Φ0
, t∗ = Φ0

2

ν t, C∗ = C−C∞
CW−C∞

f ∗(t∗) = ν
Φ0

2µ
f (t0t∗), T∗ = T−T∞

TW−T∞
, τ∗ = τ

ρV2

(12)

Into Equation (2), Equation (4) and Equation (10) also releasing the star notations, we get

∂Φ
∂t

=
∂2Φ
∂y2 −MΦ− KpΦ + GrT + GmC, (13)

Pre f f
∂T
∂t

=
∂2T
∂y2 , (14)

∂C
∂t

=
1
Sc

∂2C
∂y2 . (15)

where Pre f f =
Pr

1+Nr , is the effective prandlt number and

M = σνB0
ρΦ0

2 , t0 = ν
Φ0

2 , KP = ν2

KΦ0
2 , Gm = νgβC(CW−C∞)

Φ0
3 ,

Gr = νgβT(TW−T∞)
Φ0

3 , Sc = ν
D

Are the magnetic parameter, the characteristic time, for the porous medium the
inverse permeability parameter, modified Grashof number, the Grashof number and Schmidt
number, correspondingly.
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Equivalent dimensionless conditions are,

Φ(y, t) = 0, T(y, 0) = T∞, C(y, 0) = 0; ∀y ≥ 0
T(0; t) = 1; t> 1, T(0; t) =t ; 0 < t ≤ 1
∂Φ(0,t)

∂y = ν f (t)
Φ0

2µ
, C(0, t) = 1; t > 0,

Φ(∞, t) = 0, T(∞, t) = 0, C(∞, t) = 0; ∀t > 0.

(16)

3. Entropy Generation

For viscous fluid flow in a magnetic field the volumetric rate of local entropy generation SG.

SG =
κ

T2
∞
(

∂T
∂y

)
2

1

+
σB2

0
T∞

Φ2

2
+

RD
T∞

(
∂T
∂y

)(
dC
dy

) +
RD
C∞

(
dC
dy

)
2

3

+
µ

T∞
(

∂Φv
∂y

)
2
+

µ

KT∞
Φ2

4

(17)

where entropy generation due to heat transfer is 1, 2 is the entropy generation due to a magnetic field,
3 is entropy generation owed by mass transfer and 4 is entropy generation owed by fluid friction. Now
applying dimensionless variables in Equation (17), we have,

SG = (TW − T∞)2 Φ0
2κ

ν2T2
∞
( ∂T

∂y )
2
+

σ Φ0
2B2

0
T∞

Φ2 + RD
T∞

( ∂T
∂y )(

dC
dy )

+ RD
C∞

( ∂C
∂y )

2
+ Φ0

4µ

T∞ν2 (
∂Φ
∂y )

2
+ µΦ0

2

KT∞
Φ2

(18)

Similarly

NS =
SG
S0

. (19)

where S0 is characteristic entropy generation rate, its value is

S0 =
Φ0

2κ

T∞2ν2 (TW − T∞)2 (20)

Using the value of S0 in SG, we get

NS =

(
∂T
∂y

)2
+

Br

Ω

(
∂Φ
∂y

)2
+

BrKp

Ω
Φ2 +

Br M
Ω

Φ2 +
λMd

Ω2

(
dC
dy

)2
+ Md

(
∂T
∂y

)(
dC
dx

)
(21)

where λ is the concentration difference, Md is the mass diffusion parameter, Ω is the dimensionless
temperature difference and the brinkman number is denoted by Br, which are defined under,

Br =
µV2

κ(TW−T∞)
, Ω = TW−T∞

T∞
,

Md = RDT∞(CW−C∞)
κ(TW−T∞)

, λ = CW−C∞
C∞

.

4. Solution of the Problem

To solve Equation (13) to Equation (15) under the conditions (16), by applying Laplace transform
method and develop the below mentioned differential equations,

Φ′(y, s) =
∂2Φ′(y, s)

∂y2 + GrT′(y, s) + GmC′(y, s)− KpΦ′(y, s)−MΦ′(y, s), (22)

T′(y, s) =
1

Pre f f s
∂2T′(y, s)

∂y2 , (23)

C′(y, s) =
1

Scs
∂2C′(y, s)

∂y2 . (24)
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With boundary conditions,

T(0, s) =
1− e−s

s2 ,
∂Φ′(0, s)

∂y
= F(s), C(0, s) =

1
s

, Φ(∞, s) = 0, T(∞, s) = 0, C(∞, s) = 0. (25)

Using Equation (25) in Equation (23) we get,

T′(y, s) =
1
s2 e−y

√
sPre f f − e−s

s2 e
−y
√

sPre f f
. (26)

Its inverse Laplace transform is

T(y, t) = f (y, t)− f (y, t− 1)H(t− 1), (27)

Here

f (y, t) =

(
Pre f f y2

2
+ t

)
er f c


√

Pre f f y

2
√

t

−
√

Pre f f t
√

π
ye(

−Pre f f y2

4t ). (28)

Here erfc(.) is used for the complementary error function and erf (.) for error function of Gauss [15].

∂T(y, t)
∂y

|y=0 =
2
√

Pre f f
√

π

(√
t−
√

t− 1H(t− 1)
)

, (29)

Is the equivalent heat transfer rate called Nusselt number.
Now using Equation (25) in Equation (24) we get the solution in the form,

C(y, s) =
1
s

e−y
√

Sc s, (30)

its Laplace transform is in the form

C(y, t) = er f c

(
y
√

Sc
2
√

t

)
, (31)

And
∂C(y, t)

∂y
|y=0 = −

√
Sc√
πt

. (32)

Is the equivalent Sherwood number or mass transfer rate.
Using Equation (25) in Equation (22), we have,

Φ′(y, s) = a0
√

s
s2(s−a1)

√
s+H0

exp
(
−y
√

s + H0
)
− a0

√
s exp(−s)

s2(s−a1)
√

s+H0
exp

(
−y
√

s + H0
)

− F(s)√
s+H0

exp
(
−y
√

s + H0
)
− a2

s2(s−a1)
exp

(
−y
√

sPre f f

)
+

a2 exp(−s)
s2(s−a1)

exp
(
−y
√

sPre f f

)
+ a3

√
s

s(s−a4)
√

s+H0
exp

(
−y
√

s + H0
)

− a5
s(s−a4)

exp
(
−y
√

sSc
) (33)

Its corresponding Laplace inverse is,

Φ(y, t) = Φc(y, t) + Φm(y, t) (34)
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where

Φc(y, t) = a0
∫ t

0

(
exp(a1(t−q))er f

(√
a1(t−q)

)
(a1)

3
2

− 2
√

t−q√
πa1

)
exp

(
−H0q− y2

4q

)
√

πq dq

+

 a0
a1π

∫ t−1
0

(2
√

t−1−q) exp
(
−H0q− y2

4q

)
√

q dq

H(t− 1)

−

 a0

(a1)
3
2
√

π

∫ t−1
0

er f
(√

a1(t−1−q)
)

exp
(

a1(t−1−q)−H0q− y2
4q

)
√

q dq

H(t− 1)

+
a2 exp(a1(t−1)+y

√
Pre f f a1)

2a1
2 er f c

(
y
√

Pre f f

2
√

t−1
+
√a1(t−1)

)
H(t− 1)

+
a2 exp(a1(t−1)−y

√
Pre f f a1)

2a1
2 er f c

(
y
√

Pre f f

2
√

t−1
−√a1(t−1)

)
H(t− 1)

− a5 exp(a4t+y
√

a4Sc)
2a4

er f c
(

y
√

sc
2
√

t
+
√

a4t
)

− a5 exp(a4t−y
√

a4Sc)
2a4

er f c
(

y
√

sc
2
√

t
−
√

a4t
)

(35)

And

Φm(y, t) = − 1√
π

∫ t

0

f (t− q) exp
(
−H0q− y2

4q

)
√

q
dq (36)

are the corresponding convective and mechanical parts of velocity.
Since Equations (27) and (35) this is noted that T(y, t) is correct for all +ve values of Pre f f but for

Pre f f = 1, the convective part of velocity is not valid. Therefore, by putting Pre f f = 1 in Equation (14)
to get the convective part of velocity using same process we have the following result,

Φ(y, t) = − 2a13
π

∫ t
0

√
t−q exp

(
−H0q− y2

4q

)
√

q dq

+

 2a13
π

∫ t−1
0

√
t−1−q exp

(
−H0q− y2

4q

)
√

q dq


+a3

∫ t
0

(
exp(a4(t−q))er f

(√
a4(t−q)

)
√

a4
− 2
√

t−q√
πa1

)
exp

(
−H0q− y2

4q

)
√

πq dq

+a13

[(
t + y2

2

)
er f c

(
y

2
√

t

)
− y
√

t√
π

exp
(
−y2

4t

)]
− a5 exp(a4t−y

√
a4Sc)√

a4
er f c

(
y
√

Sc
2
√

t
−
√

a4t
)

−a13

[(
(t− 1) + y2

2

)
er f c

(
y

2
√

t−1

)
− y
√

t−1√
π

exp
(
−y2

4(t−1)

)]
H(t− 1)

+ a5
a4

er f c
(

y
√

Sc
2
√

t

)
− 1√

π

∫ t
0

f (t−q) exp
(
−H0q− y2

4q

)
√

q dq

− a5 exp(a4t+y
√

a4Sc)
2a4

er f c
(

y
√

Sc
2
√

t
+
√

a4t
)

.

(37)

Constant Temperature on the Plate

Near the isothermal plate, the velocity and rate of heat transfer can be show for the flow as,

T(y, t) = er f c


√

Pre f f y

2
√

t

 (38)

∂T(y, t)
∂y

|y=0 =

√
Pre f f
√

πt
(39)
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Φc(y, t) = a0√
πa1

∫ t
0

exp
(

a1(t−q)−H0q− y2
4q

)
er f
(√

a1(t−q)
)

√
q dq

+ a3√
πa4

∫ t
0

exp
(

a4(t−q)−H0q− y2
4q

)
er f
(√

a4(t−q)
)

√
q dq

− a2 exp(a1t+y
√

Pre f f a1)
2a1

er f c
(

y
√

Pre f f

2
√

t
+
√

a1t
)

− a2 exp(a1t−y
√

Pre f f a1)
2a1

er f c
(

y
√

Pre f f

2
√

t
−
√

a1t
)

+
a5 exp(a4t+y

√
a4Sc)

2a4
er f c

(
y
√

sc
2
√

t
+
√

a4t
)

−− a5 exp(a4t−y
√

a4Sc)
2a4

er f c
(

y
√

sc
2
√

t
−
√

a4t
)

+ a2
a1

er f c
(

y
√

Pre f f

2
√

t

)
+ a5

a4
er f c

(
y
√

Sc
2
√

t

)
,

(40)

Φm(y, t) = − 1√
π

∫ t

0

f (t− q) exp
(
−H0q− y2

4q

)
√

q
dq. (41)

Equation (40) is not effective for Pre f f = 1, thus by taking Pre f f = 1 in Equation (14) and assuming
a similar technique, we get:

Φ(y, t) = a13er f c
(

y
2
√

t

)
− a13√

π

∫ t
0

exp
(
−H0q− y2

4q

)
√

(t−q)q

+ a3√
πa4

∫ t
0

exp
(

a4(t−q)−H0q− y2
4q

)
er f
(√

a4(t−q)
)

√
q dq

+ a5
a4

er f c
(

y
√

Sc
2
√

t

)
− 1√

π

∫ t
0

f (t−q) exp
(
−H0q− y2

4q

)
√

q dq

− a5
2a4

exp
(
a4t + y

√
a4Sc

)
er f c

(
y
√

Sc
2
√

t
+
√

a4t
)

− a5
2a4

exp
(
a4t− y

√
a4Sc

)
er f c

(
y
√

Sc
2
√

t
−
√

a4t
)

(42)

a0 =
Gr
√

Pre f f
Pre f f−1 , a1 = H0

Pre f f−1 , a2 = Gr
Pre f f−1 ,

a3 = Gm
√

Sc
Sc−1 , a4 = H0

Sc−1 , a5 = Gm
Sc−1 , a6 = Gr

√
Pr

Pr−1 ,
a7 = H0

Pr−1 , a8 = Gr
Pr−1 , a9 =

Kp
Pre f f−1 , a10 =

Kp
Pre f f−1 ,

a11 = M
Pre f f−1 , a12 = M

Sc−1 , a13 = Gr
H0

, H0 = Kp + M.

(43)

5. Special Cases

There is a more general form of the velocity in Section 4. Therefore, to distinguish the physical
understanding of the problem, we will show some special cases for its solutions with limiting solutions.
Therefore, we discuss some special cases for ramped and isothermal plate, as in the literature its
technical applicability is well known. As discussed in several books and articles, initially shear stress is
produced due to friction between fluid particles and due to fluid viscosity. Indeed, fluids at rest cannot
resist a shear stress; i.e., when a shear stress is applied to the static fluid, the fluid will not remain at rest,
but will move because of the shear stress. This idea of shear stress and in particular for the accelerating
and arbitrary shear stresses as discussed in the following two cases, where the traditional shear failure always
occurs. Particularly, in high temperature in a high grade asphalt pavement, accelerating or arbitrary
shear stress is needed.

5.1. Case-1

Here we consider f (t) = f tb(b > 0) where the plate put on an accelerating shear stress to the
fluid and so the mechanical part becomes,
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Φm(y, t) = − f√
π

∫ t

0

(t− q)b exp
(
−H0q− y2

4q

)
√

q
dq. (44)

For M = 0 the equivalent result is,

Φm(y, t) = − f√
π

∫ t

0

(t− q)b exp
(
−Kpq− y2

4q

)
√

q
dq. (45)

Which is the same as with Corina et al. [19] (Equation (32).
Furthermore, when Kp = 0, Equation (45) gives

Φm(y, t) = − f√
π

∫ t

0

(t− q)b exp
(
− y2

4q

)
√

q
dq. (46)

5.2. Case-2

Here we taking the arbitrary function f (t) = f H(t), where H(.) is used for unit step function and
f is a dimensionless constant. The shear stress is applied to the fluid after some time. The convective
mechanical part of the velocity becomes as follows

Φm(y, t) = − f√
π

∫ t

0

exp
(
−H0q− y2

4q

)
√

q
dq, (47)

For Kp 6= 0, M 6= 0 equivalently

Φm(y, t) = − f√
H0

exp
(
−y
√

H0

)
+

2 f√
π

∫ ∞
√

t
exp

(
−H0z2 − y2

4z2

)
dz. (48)

Moreover, if we put M = 0 in Equation (47) we have

Φm(y, t) = − f√
Kp

exp
(
−y
√

Kp
)
+

2 f√
π

∫ ∞
√

t
exp

(
−Kpz2 − y2

4z2

)
dz. (49)

Which is quite the same as Corina et al. [28] (Equation (28)) with the modification of
√

Kp

Now if we take both Kp = 0 and M = 0, Equation (47) has the form

Φm(y, t) = − f√
π

∫ t

0

exp
(
− y2

4q

)
√

q
dq. (50)

6. Results and Discussion

To analyze the physical understanding and the flow behavior of the results taken from
dimensionless velocity, temperature and the corresponding irreversibility analysis, a chain of numerical
calculation has taken out for several values of embedded parameters.

6.1. The Effects on Velocity

In Figure 2, it has perceived that the velocity profile is reducing with increasing M in both ramped
and isothermal wall temperature situations. Actually, it is because of an increase in magnetic field M
which leads the frictional force to decrease and causes it to resist the flow of the fluid, therefore velocity
decreases. The effect of Kp inverse permeability parameter over isothermal and ramped walls have
been seen in Figure 3. It is noticed from the graph that velocity is decreasing with an increase in Kp.
This effect occurs due to the porous medium, which is an increasing Kp that strengthens the resistance
and consequently decreases the velocity. The influence of shear stress f is showed in Figure 4 where
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we noticed that when the value of f decreases, the velocity of fluid increases. In Figure 5 it is shown
that when the value of effective prandlt number Pre f f is decreased, the velocity increases for both
isothermal and ramped walls. The influence of Grashof number Gr on the velocity is shown in Figure 6,
where it has observed that velocity increase with increasing Gr. The influence of modified Grashof
number Gm on the velocity is also increasing, it increases the velocity more rapidly than Gr showed in
Figure 7. The effect of Schmidt number Sc is shown in Figure 8. It is detected that by increasing the
value of Sc, the velocity decreases.
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6.2. Mechanism of NS by Different Parameters

Properties of embedded parameters on NS are highlighted in Figures 9–18. The effect of Grashof
number Gr is shown in Figure 9. It is seen that NS increases with the increasing value of Gr.
The influence of wall shear stress f is presented in Figure 10, where it is noticed that NS decreases
with increasing f , therefore the rate of entropy generation can be reduced by increasing the value of
f . In Figure 11, it is noticed that NS decreases after increasing the value of Pre f f . The effect of group
parameter Br/Ω over NS is highlighted in Figure 12, where it is observed that NS is the increasing
function of group parameter Br/Ω. The graphical result shows that group parameter has an important
ability to control NS. The Brinkman group parameter Br/Ω regulates significance of viscous effects
and it is also noticed that this parameter is associated with the fluid viscosity term. The brinkman
group parameter Br/Ω appears directly proportional to the square of the velocity and an increase in
it evidently accelerates flow and as a result entropy will increase. The effect of inverse permeability
parameter Kp is shown in Figure 13. It is seen that a decrease in NS occurs with an increase in Kp

for both ramped and isothermal walls temperature. The reason behind this fact is that the entropy
generation is an increasing function of dissipative forces. Further, the impact of Kp is more prominent at
the stretching boundary whereas the effects die out in the region away from the boundary. In Figure 14,
the value of magnetic parameter M is increased with the increasing NS. The increasing graph of Gm is
shown in Figure 15. A rapid increase in NS occurs with the increasing value of Gm. The effect of the
Schmit number Sc over the local entropy generation rate NS is highlighted in Figure 16. It is observed
that NS increases with increasing value of Sc. The effect of mass diffusion parameter Md is shown in
Figure 17. It is detected that when Md increased NS is also improved. In Figure 18, the influence of
group parameter λ/Ω2 over NS is shown, which an increasing function of the group parameter.
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6.3. Influences of Embedded Parameters on Bejan Number

The Bejan number is quite useful, as one can get evidence about dominancy of magnetic field
and fluid friction through heat transfer entropy or vice versa. The influence of f on the Bejan number
is shown in Figure 19. The magnetic field leads to increasing the fluid friction and entropy with a
decreasing value of f . The heat transfer reunification comes to be dominant in the region near to the
plate with an increasing value of Gr, shown in Figure 20, while far away from the plate the friction
of the fluid’s irreversibility become powerful and hence the Bejan number is strengthened. Figure 21
showed that the fluid friction entropy and the magnetic field are improved with an increase in the
group consideration Br/Ω. Figure 22 explains that the Bejan number because of the magnetic field and
the fluid friction becomes minor with an increase in the Kp nearby plate. In Figure 23 it is showed that
the fluid friction entropy and magnetic field increased with a rise in the value of M, for individually
ramped and isothermal plates. Figure 24 showed an increase in the Bejan number with a decrease
in Pre f f . The effect of the Schmit number Sc is showed in Figure 25, where it is observed that the
Bejan number is decreasing with an increasing value of Sc. The effect of group parameter λ/Ω2 over
the Bejan number is showed in Figure 26. It is noted that Be decreases with an increase in λ/Ω2.
In Figure 27 the influence of Gm is shown and it is observed that Be decreases with an increase in Gm.
The effect of Md is exposed in Figure 28, where it is seen that the Bejan number decreases with an
increasing value of Md.
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7. Assumptions and Deductions 

The effect of entropy generation for conjugate MHD unsteady flow through a porous medium 
near a vertical plate is deliberated. The exact solution for velocity profile is found by using the Laplace 
transform method. The Bejan number 𝐵𝑒 and number of local entropy generation 𝑁𝑠 are discussed 
for various parameters. The effects are displayed for different embedded parameters. The main 
conclusions are: 

• Rises in, /rB Ω , 𝑆𝑐 , 𝐺𝑚 , 2/λ Ω  𝑀𝑑  and M leads to decreases of the Bejan number for 
isothermal and ramped wall temperature individually. 

• The Entropy generation in the fluid can be controlled and reduced by the 𝑓 constant wall shear 
stress. 

• Rises in /rB Ω ,  𝑆𝑐, dM , 𝑃𝑟, 𝐺𝑟,  𝑀, pK   and 𝐺𝑚 increase Ns. 
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7. Assumptions and Deductions

The effect of entropy generation for conjugate MHD unsteady flow through a porous medium
near a vertical plate is deliberated. The exact solution for velocity profile is found by using the Laplace
transform method. The Bejan number Be and number of local entropy generation Ns are discussed
for various parameters. The effects are displayed for different embedded parameters. The main
conclusions are:

• Rises in, Br/Ω, Sc, Gm, λ/Ω2 Md and M leads to decreases of the Bejan number for isothermal
and ramped wall temperature individually.

• The Entropy generation in the fluid can be controlled and reduced by the f constant wall
shear stress.

• Rises in Br/Ω, Sc, Md, Pr, Gr, M, Kp and Gm increase Ns.
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