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Abstract: Intercellular communication and its coordination allow cells to exhibit multistability as
a form of adaptation. This conveys information processing from intracellular signaling networks
enabling self-organization between other cells, typically involving mechanisms associated with
cognitive systems. How information is integrated in a functional manner and its relationship with the
different cell fates is still unclear. In parallel, drawn originally from studies on neuroscience, integrated
information proposes an approach to quantify the balance between integration and differentiation in
the causal dynamics among the elements in any interacting system. In this work, such an approach
is considered to study the dynamical complexity in a genetic network of repressilators coupled by
quorum sensing. Several attractors under different conditions are identified and related to proposed
measures of integrated information to have an insight into the collective interaction and functional
differentiation in cells. This research particularly accounts for the open question about the coding
and information transmission in genetic systems.

Keywords: integrated information; complex dynamics; synthetic biology; genetic regulatory
networks; repressilator; cell differentiation; synchronization; clustering

1. Introduction

Information-processing in living systems spans different degrees of biological complexity.
From neural networks, where we find integration of information from different segregated modules in
the nervous system, to the gene regulation and cell differentiation, whose structural mechanisms allow
integration of signal transduction processes for survival and adaptation. Growing evidence shows
that this degree of integration of stimuli is a required step to exhibit consciousness in the human brain
where the information one receives is segregated and stored and later integrated and displayed.

These underlying mechanisms of information-processing in complex vertebrates can also be
observed in simpler organisms such as unicellular organisms. As reviewed by [1], bacteria hold
the ability for receiving, processing, and encoding information from the environment. This is done
through inputs from different biochemical entities sensed from several signaling pathways. Later,
this information is encoded for decision-making. This process can involve causal dependencies such
as allocating previous information for calibration of responses or behavior, and even anticipation of
stimuli. Thus, it is not surprise that several researchers have stressed the role of unicellular organisms as
part of an evolutionary process for the development of the human brain [2—4]. Multiple microbiologists
suggest that bacteria exhibit cognitive capacities that draw parallels in functionality as well as in the
molecular mechanisms, ecology and evolution [1].
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In cells, there is a functional integration of information channels coming from a vast repertoire of
signaling pathways in which memory, learning, and decision-making take place under a changing
environment. At the intracellular level, cells process information through gene regulatory networks,
in which each gene influences the behavior of the other. The mechanisms found here serve to transduce
the information sensed from the surroundings and the individual demands, including population
density, individual cellular stress, stress induced from neighboring cells and the memory of previous
individual and multicellular states [5-7]. At multicellular level, there is a recursive communication
with the surrounding through signaling architectures, which include sensory mechanisms such as cell
population density to brain-like electrical signaling. Such an interplay among the different levels of
complexity allows processes such as cell differentiation, metabolism and DNA repair [8].

Still, an agreed definition of cognition and its boundaries across living systems remains elusive,
and typically the term is weighted against the human case. To date, some authors describe cognition
as a set of mechanisms such as information acquisition and coding from the environment [9] that allow
biological entities act in a specific way to satisfy a viability constraint [10], or as a complex of sensory
and information-processing derived by the structural and causal bidirectional interaction between
organism and environment [1,5,11]. These interactions allow coding and processing of information to
satisfy the requirements in living systems and provide the ability of acquiring, retaining, and using
information from the environment to sensing, learning, and decision-making for adaptation of behavior
and physiology for survival and growth. Despite these insights, the biological mechanisms at the
cellular level remain unclear. Further investigation is needed to have a better understanding of its
capabilities and identify its link with higher organisms.

The question that concerns this discussion is to what extent does the whole regulatory system in
genetics have a balance between integration (coherence among the components of the system) and
segregation (components dynamically independent) or to what extent is the whole system generating
more information than the sum of its parts, allowing emergent behavior related to correlated spatial
and temporal structures [12-14]. As seen, this integration provides the needed structure for more
complex organisms [15-19].

The integrated information theory (IIT) provides the mathematical framework using
information-theoretic principles in which it is attempted to measure the degree of interconnection of the
parts of a system in terms of information exchange [20-23], where the information typically arises from
causal interactions. Originally IIT is related to the conscious experience and its different mathematical
descriptions have been adopted also as quantitative measure for complex dynamics [14,21,24-27].

To the best of our knowledge there is a lack of literature following this approach in genetic
systems. Existing studies using information theory include the application of methods such as entropy
and mutual information for network reconstruction [28-30]. These measures are also applied for
research focused on the architecture and function of gene networks, where the network functionality is
computed through the channel capacity and rate of signal transmission between regulatory signals
and effector proteins [31]. In signaling systems this includes the determination of the amount of
information transfer and reliability of signal transduction [32]. Some other applications include
complex identification and resilience of network in protein-protein interactions [33] as well as reverse
engineering and structure-dynamics identification in metabolic networks [34].

The proposed study based on IIT measures is of interest as it provides a practical application
of sophisticated methods to quantify integration of information, which is fundamental for cell
communication. Beyond neural systems, signal transduction holds mechanisms that integrate stimuli
to achieve functionality in cells. Using computational modelling based on gene regulation we
could account for mechanisms of intracellular and extracellular organization including multistability,
stochastic gene expression, oscillations, pattern formation, among others. This is also of interest to
understand emergent phenomena and optimization in the process of information exchange, and it
could be also extended to design principles to more standard synthetic construction processes.
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We address this question by studying an ensemble of existing synthetic repressilators.
The repressilator network is an example of an engineered genetic system with predictive properties
through modeling of its transcriptional regulation [35]. As a single cell, it is inferred that the
protein concentrations oscillate over time. This has been observed experimentally with spontaneous
oscillations with a period less than the division cycle. However, in realistic living systems cells
do not act in isolation, but through cooperative interactions using signaling networks [36]. Thus,
the intercellular communication enables the system to exhibit a rich repertoire of dynamical solutions
reflecting phenotypic states, which may account for adaptation and differentiation [5,37]. In previous
research, to understand cell-cell interaction the repressilator was coupled with other genetic oscillators
through signaling molecules (acylated homoserine lactone) largely dependent on the population
density. It was found that increasing the coupling among cells with different periods allowed them to
reach phase-locking synchronization. The same system could be rewired using a different signaling
pathway [38] in such a way that coupling exhibits for increasing coupling phase-repulsive ending with
oscillation death. At the same time, multistable regimes appear with the possibility of different cluster
distributions and emergence of chaos [38—41]. All these dynamical regimes could be interpreted as
diversification of phenotypic states. This implies the coexistence of different communities in which the
oscillators exhibit similar behavior, whose grouping ability is influenced by the degree of chaos.

In this paper, we compute integrated information (II) using the repressilator circuit coupled
via quorum sensing. We use three different measures of II, namely, decoder-based integrated
information [13], stochastic interaction [12,14] and whole-minus-sum integrated information [42,43].
This is particularly insightful as there are many candidate measures and still it is missing a consensus
about their applicability and relationship in dynamical systems. Thus, we show the different levels
of complexity that appear in terms of the signaling architecture and cell coupling. First, in the
phase-attractive coupling scheme we calculate II in the transition to synchronization as a function of
the cell density in a noisy population of genetic oscillators. It is found that the considered measures of
II can detect order-disorder transitions exhibiting maximal susceptibility at self-organized criticality.
In the case of phase-repulsive coupling, Il is calculated for cells that exhibit different oscillatory clusters
that change its distribution over time in terms of the degree of chaos. We explore the properties of
standard measures of II and compare their behavior across these dynamical regimes. Our results give
insights to understanding their applicability and to which extent each one reflects some degree of
dynamical complexity.

1.1. Coupled Repressilators

Introduced from the seminal work [44], the repressilator is an artificial genetic network formed
of three genes interacting through a negative feedback loop. This is, the activity of each gene is
repressed in a cyclic manner: gene tetR encodes the TetR protein, which in turn, represses the
transcription of protein CI produced from gene cl. Finally, CI binds to 1aCl to inhibit gene Lacl.
As mentioned previously, as a single cell, the repressilator network can produce oscillations, but here
we are interested in including the coupling to understand the dynamics of multicellular systems.
This can be modelled using a quorum sensing module using bacterium vibrio fischeri composed of
two proteins LuxI and LuxR as suggested initially in [17,35]. Protein LuxI synthesizes an autoinducer
(AI) that encodes the coupling among the neighboring cells. Al molecules diffuse throughout the
extracellular space, and forms the complex LuxR-Al that binds to lacl, which in turn inhibits the
expression of gene tetR. Under this general mechanism, different architectures are possible in terms
of the gene from the repressilator circuit that regulates the concentration of LuxI. This enables the
multicellular system to exhibit different dynamics that would not be observed in an isolated cell. In this
work we concentrate on two coupling schemes, in particular, the phase-attractive and phase-repulsive
coupling. Both descriptions are illustrated in Figure 1.
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Figure 1. Diagram of the repressilator circuit including the quorum sensing mechanism. Left: the phase-
attractive coupling. Right: the phase-repulsive coupling.

1.2. Phase-Attractive Coupled Repressilators

Consider a multicellular system in which each cell contains a repressilator network. Following the
description from above, the repressilator is coupled through a quorum sensing mechanism in which Al
molecules diffuse from the cellular membrane to other cells inducing the activity of a second plasmid
lacl. In this way, the mRNA dynamics can be described by the following set of equations
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where g;, b; and c; denote the mRNA concentrations in cell i = 1, ..., N for genes tetR, cI, and laClI,
respectively. Each mRNA transcripts proteins with concentration levels denoted by A;, B; and C;.
The concentration of the Al in cell i is denoted by S;. Here mRNA and protein concentrations have
been rescaled by their degradation rate (assumed equal for the three genes). The cooperativity number
is denoted by the Hill coefficient 1, and the maximum transcription rate is denoted by «. Finally,
x describes the maximum transcription amount of lacl by saturated concentration of Al
The protein concentration in cell i evolves according to
dA;
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where B, . denotes the ratio between mRNA and protein lifetimes for each respective gene, tetR, cl,
and lacl, respectively.

Observe that the architecture in the multicellular system is provided by the coupling scheme.
To get phase synchronization we assume that the production of LuxR is governed by the expression
of lacl. Thus, there is a reinforcement in the concentration of Lacl as we increase the production of
Al molecules.

Using this condition, the evolution for the Al is expressed by

ds;
7; =kgoS; + ks A; — 77(51 — Sg) 3)
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here we assume a first order degradation, synthesis and intercellular diffusion encoded by the
parameters, kg, k51 and 7, respectively. The diffusion rate of Al through the cell membrane 7 can be
expressed as 1 = 0/ V., where V. is the cell volume and J encodes the membrane permeability and
surface area. The amount S, represents the extracellular concentration of Al, which in the quasi-state
regime the mean field approximation can be written as S, = QS, where § = Z}il Si/N denotes the
average Al concentration over all cells in the system. The coupling Q is linearly dependent of the cell
density N/ V,y; in the system through the expression Q = SN/ Vext/ (kse + N/ Vext), where N is the
number of cells, V,y; the extracellular volume and k. the Al degradation rate.

Figure 2a—c shows the transition to the phase-locking state as we increase the cell density through
the coupling parameter Q.
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Figure 2. Time series of protein levels B; for different coupling Q. (a—c) phase-attractive coupling
with N = 100 and « = 20. Cell variability is in terms of lifetime ratios f,;.~N(1,0.003);
(d—f) phase-repulsive coupling with N = 4 cells, x = 25, B, = 0.85, B, = 0.1; (a,d) Q = 0.4,
(b,e) Q = 0.57 and (c,f) 0.8. Other parameters are « = 216, n = 2.6, § = 2.0, k9 = 1 and ky; = 0.01.
(a—c) describe the transition to synchronization by increasing the coupling Q, (d-f) show the transition
from stable clusters of regular oscillations to a chaotic behavior. Each color line represents the protein
dynamics of each cell in the network.

1.3. Phase-Repulsive Coupled Repressilators

If we rewire the quorum sensing pathway by setting the gene luxl repressed by the activity of
protein TetR we obtain phase-repulsive coupling. This is a consequence of the competition between
the induced negative feedback created by tetR and lacl and the repressilator circuit. In addition,
the repression of CI favors the production of luxI. Then, by including these observations (3) can be
modified as follows

ds;

ﬁ = ksosl' + kslBi — 17(51 — Sg) (4)

In systems where N > 2 it has been identified several attractors that include phase-shifted
oscillations, clustering and chaos (Figure 2d—f, respectively) for increasing cell density. Thus,
by defining the architecture for cell signaling there are implications in the emergence of cooperative
behavior with different phase relations. If we relate this behavior with actual cellular states,
understanding the different solutions is of crucial importance to get an insight into cell differentiation
between different fates, its variability and robustness. In this work, we follow the discussion provided
by [39,40] by tuning the cell density through the coupling Q. In particular, we focus on a dynamical
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regime that encompasses clustering, i.e., synchronized oscillation in subgroups, followed by chaos
between two torus bifurcations.

1.4. Information-Theoretic Measures

We explore the spatio-temporal interactions of genetic oscillators that communicate through
quorum sensing. The concentrations of mRNAs and proteins oscillate with a specified period and
amplitude exhibiting different configurations in terms of the signaling architecture and biological
parameters. In this work we choose the protein B to encode the dynamic state of each cell (due to the
model symmetry this has minor effects in the results). In turn, oscillations from individual cells are
binarized using as a threshold the mean of its instantaneous amplitude from the Hilbert transform.
In other words, the absolute value of the analytical signal Ly [B] defined as

Lyy[B] = B(t) + iHp(t) = Lp(t)e"" 3)

where . 5
Hy(t) = —PV. / %dr ©)

is the Hilbert transform (P.V. denotes the Cauchy principal value). Thus, we can write

X(t) = { L B(t) > (Ly(t)) -

0, otherwise

where X(t) denotes the binarized state of B(t).

This is useful to the general picture of gene activation in regulatory networks, in which every
gene switches between a high or low state in terms of the interplay of activation and inhibition of the
chemical signals of the other genes in the network. Therefore, this procedure naturally can be applied
to other kind of gene dynamics in which a transition between states is considered. This approach
for binarization has been followed for recent work in neuroscience [45]. In this paper, we integrate
numerically the set of equations that defines the time evolution of the system and then by binarizing
each channel from the solution we obtain a dataset where at each time step the state consists of a bit
array of length equal to the number of channels.

Formally, let X to be a multidimensional stationary time series composed of binary information
channels X;, wherei =1, ..., N with M observations (time steps) each. Then each state x is a bit array
of N bits. Consider Y, the lagged signal of process by T units of time. The current state of X is denoted
by Xt and Y by Y; = X; 4. The time-delayed mutual information (TDMI) is defined as

I[(XY) = H(X) + H(Y) — H(XY) ®)

where XY denotes a joint event, expressed as the concatenation of two-bit arrays X and Y. The Shannon
entropy H(X) = — Y, p(x) log p(x) quantifies the average number of bits needed to encode a state of
the system [46]. Observe that H is time-independent because of the stationarity assumption. TDMI
provides a measure about causal correlations of a many-body system. This is given in terms of the
reduction of uncertainty of state at t + T given the evolution up to ¢ steps, i.e., it provides the uncertainty
reduction about the future state by knowing the present states (or vice versa). In this way, TDMI
quantifies the predictability in the evolution of the entire system. This complexity alone has proven
to be useful in as a flexible tool, from identifying nonlinear correlations and phase transitions to
network inference in genetic networks [30]. TDMI implies that we decompose the system X in two
signals, which represent the evolution of same process, but are separated by a time lag. In this way,
spatio-temporal interactions X — Y are lost, and we measure the degree of causal correlations between
them. We are also interested in considering the interaction between the components of the system.
Then we now partition the system into subsystems containing a defined number of channels in each
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one, and measure how tightly interconnected the subsystems are in terms of information exchange.
In our case using binary time series the full set of N bits can be now divided into non-overlapping
non-empty subsets of bits. Such a splitting is commonly a bipartition I = AB such that X = X4 X3,
due to computational tractability. Other partition scheme is the atomic partition, in which every
subsystem contains one channel only. This latter one provides an upper bound for the measure
of integration in a system, because we neglect the interactions of every X;, fori = 1,..., N. Thus,
this scheme provides the maximum information loss.

IIT has proposed different versions to measure integration of information, in which the
fundamental idea is to quantify the loss of information by assuming the whole system partitioned in its
components [13,20-22]. Different complexities have been suggested as potential measures of integrated
information expressed as the distance between the probability distribution of the actual system and the
product of probability distributions associated with its parts, provided some theoretical constraints [14].
Several measures have been derived following this approach although the empirical calculation is
not plausible in some cases due to theoretical conditions and computational demands. In this paper,
we examine three different measures which allow practical computations from experimental data
using empirical distribution probabilities.

The first measure we use is the whole-minus-sum integrated information introduced by Barrett
and Seth @y 5 [42,47], defined as

Qpyms(XY) == Pwms(XY; MIB) )
where @y )5 denotes the effective information
Pyms(XY; AB) := I(XY) — (I(XaYa) + I(XpYp)) (10)

MIB € AB is the bipartition with the minimum information loss quantified by the mutual information
between groups of channels.

This measure can be interpreted as the amount of integration of the components of a system
through the creation of information when the system acts as a whole as compared with the information
generated by its parts. However, it has been criticized since it does not satisfy the positivity requirement
of IIT which makes it difficult for interpretation. Still, we find it plausible for discussion with more
sophisticated approaches since it determines, from an information-theoretical point of view, the degree
of synergetic or redundant influences of the whole system in its evolution. Thus, giving a practical
insight to the global integration of causal interactions.

Another measure is the decoder-based integrated information ®* proposed in [13]. As in (10),
this quantity aims to measure global integrations through the difference of mutual information between
the actual system and a partitioned one, where the parts are assumed independent, and satisfies the
theoretical postulates of IIT. Thus, ®* quantifies the extent of information loss when connections in the
system are neglected through a mismatched probability distribution. This can be written as follows,

@*(XY;MIB) := I(XY) — I*(XY; MIB) (11)
I*(XY;MIB) = max 1(xY;B)

where I denotes the mismatched decoding through the expression
I(XY; B, MIB) Zp logZp g(X|Y)P (12)

+ Z p(XY)logg(X|Y)P
XY
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where B is a parameter obtained from a gradient descent approach, and ¢(X|Y) denotes the mismatched
decoding probability distribution defined for bipartitions AB as

q(X[Y) = p(XalYa)p(Xp|Ys) (13)
Finally, the stochastic interaction ® introduced in [12] is defined as
®(XY; AB) = H(Y|Xa) + H(Y3|Xp) — H(Y[X) (14)

It quantifies the global stochastic interaction in the system dynamics measured through the total
uncertainty reduction of each of its parts during a transition to future states, where it is assumed
that each part at each time step has knowledge of its own state and its complementary. It can also be
interpreted as the extent of how tightly all parts of a system are in its dynamics in terms of information
exchange more than the sum of its parts.

It can be shown that (14) can be written as

O(XY; AB) = ®pyps(XY; AB) + I(Y4Y3) (15)

In this way, the stochastic interaction encodes the spatial correlation I(Y4Yg) measured through
the mutual information between halves of the system and the net synergy.

For this work, we use the protein concentration of a chosen gene of the repressilator circuit from
each cell to encode the global dynamics in the network. Thus, for each time step, the global state
will be defined as a binary segment of length N, where each digit represents the binarized state from
an individual cell using the binarization scheme previously explained (7). Each state has been assigned
with a probability of occurrence, and 2N is the maximum number of possible states for time step.
Finally, for the integrated information measures were computed using the 'Practical PHI toolbox” and
we apply the Queyranne algorithm [13,14,48,49] for the MIB search.

1.5. Synchronization Properties

The coupled repressilators with quorum sensing exhibit several oscillator configurations:
from in-phase behavior, splay-states, chaos, and clustering. We consider the generalized order
parameters [50-52]

R(t) = (), j=1,.,N,keN (16)

where 0;(t) is obtained from (5). Thus, it is possible to quantify the degree of k—cluster synchronization
and asymmetries. In addition, the fluctuations in the order parameter can be computed through

its variance
o?(Ry) = var;Ry(t) (17)

2. Results

We show the plots of the measures of integrated information described above from which we
contrast their differences for the specific genetic repressilator architectures. For each coupling scheme
we show the qualitative trends for each measure in terms of the cell density encoded in the coupling
and system size and compare the results with the underlying dynamics assessed by other standard
approaches. The analysis will be split according to the different types of coupling.

In each case, the time series are generated from Equations (1) and (2), where S, is determined
from (3) (phase-attractive coupling) or (4) (phase-repulsive coupling). A fourth order Runge-Kutta
method with randomized initial conditions is used for integration. We select a step size of 0.05 and
1.5 x 10° steps from which we remove d 5 x 10° time steps to avoid transient effects. Probabilities are
computed from the frequency counted empirically from where we get all the information-theoretic
measures in bits.
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The results presented in the following sections consider the bipartition scheme unless it is stated
otherwise. Due to explanatory purposes when we discuss the integrated information as a function of
the system size we will use the atomic partition. The reason comes from the intractability of computing
in a reasonable time any candidate measure of integrated information for larger values of N. However,
from the simulations in this paper we find that the qualitative trends are the same for intermediate
sizes N, being just slightly higher than the bipartition scheme. This is because the atomic partition
allows to maximize the informational loss as the system is split completely [13,53]. In these terms
we can regard this measurement as an upper bound for the integrated information using any other
partition scheme. Moreover, cell populations appear as interacting elements in large scale. Thus, it is
worth understanding the influence of the size in the balance of segregation and integration of the
system dynamics, which can be computed through the assumption of a split system in all its parts.

2.1. Phase Synchronization

In realistic conditions the population of repressilators exhibits important diversity in its oscillatory
behavior as a consequence of cell diversity. Following [35], the lifetime ratio B plays a key role
in defining the period length. Thus, we encode this diversity within the community by assuming
B non-uniformly distributed. In particular, we choose a normal distribution with mean 1.0 and
standard deviation AB. What we observe is a set of oscillations with a broad distribution of uncoupled
phases. For increasing coupling there is a transition to phase synchronization, such that the larger
is the variation in p the larger Q we need to reach the phase-locking state. In Figure 3c we show as
complexity measure the variance of the order parameter R; defined in (17) averaged over 10° oscillators
for different Q and AB? = 0.005. The system has negligible fluctuations for small coupling which are
maintained constant as intercell effects are not strong enough. As cell density increases, there is a partial
phase-locking which increases suddenly to complete synchrony. At the same time, the fluctuations in
R; span abruptly from zero to its maximum value around the transition regime at Q ~ 0.68. This range
of transition agrees with the Garcia-Ojalvo’s order parameter reported with the original model.

2.1.1. Integration and Synchronization

Next, we take N = 4 cells to exemplify to which extent the synchronization process is captured by
the measures of integrated information. In Figure 3a we see the measures drawn from Equations (9)—(15)
using T = 300 time steps, corresponding to approximately the mean period of oscillation of the cell
population. As observed, the measures ®py s and &* monotonically increase from zero reaching its
peak as the transition point is approached and drop sharply with similar behavior after the critical
point. Then, the whole-minus-sum measure ®yy ;5 reaches negative values while the decoder-based
integration drops to zero. The stochastic interaction ® follows the same trend as the other ® measures
before the transition regime but increases as the system synchronizes.

Thus, both ®wpys and @* indicate that at the transition point to phase synchronization,
the system is responsive to its own states more than the aggregation of the individual responses.
After reaching synchronization there is high integration and segregation is negligible. As a consequence,
these measures show a drop to lower values. This is not the case for ®, which seems to increase
as the system integrates more. It is worth understanding the influence of the spatial segregation
and integration in the dynamics, to relate it with our previous results. We quantify the mean
mutual information between all possible halves of the system for increasing coupling denoted as
Iap = I(X4Xpg), Equation (8) (Figure 3a). As expected, for small values of coupling, there is small
correlation which is enhanced during the phase transition with a step-like trend. Next, it reaches
a plateau in the strong coupling regime. Thus, we see that ® is dominated by the behavior of the
spatial correlation in the process X;, @y s interprets the high correlation of the synchronized system
as redundancy, and ®* vanishes due to high synchronization between cells.
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Figure 3. (a) Mutual information [4p and integrated information measures ®p15,P* and o for
increasing coupling Q. (b) Mutual information I(X;, X;1-) and ®* for increasing T and Q = 0.5.
(c) Order parameter Ry and its variance for increasing Q. Other parameters are the same as in Figure 2
for the phase-attractive coupling.

The trends described above depend on the lag T under consideration. In particular, we observe
two main cases: for T where the TDMI is maximum, the measures @y 5 and ®* are maximized at
criticality, while for T where the TDMI is minimum, the is a general tendency of &y s and ®* to
decrease towards the super-critical regime. Meanwhile, ® keeps the same behavior already described
for any lag.

Figure 4 shows the transition depicted by @5, * and ® in terms of Q and T for A /32 = 0.005.
When considering the relationship with the mutual information I(X;, X¢r) we observe that the
integrated information measures are maximized when the TDMI is minimized, i.e., when X; and X;;
have the least redundancy. This is the situation where X; and X;; are out-of-phase. In a similar way,
the integrated information measures are minimized when X; and X; ¢ are in-phase. This holds true
for all values of Q for ®yy s and .

Py ars(Xe, Xivr)

7 0.32

0.16
0.24

0.12
0.16

0.08
0.04 0.08
0.00 0.00

T T T

Figure 4. Measures of integrated information for increasing Q and 7. Lifetime ratio f~N(1,0.005).
Other parameters are the same as in Figure 2 for the phase-attractive coupling.

In the case of ®*, the aforementioned feature is satisfied before synchronization, but after the
phase transition it vanishes for all T. Thus, from the perspective of @5 and &* the whole system
has more information about its current state given its past than its individual components when X;
and X are sufficiently independent but still preserving some degree of correlation.

2.1.2. Integration and Scaling Behavior

In general, the qualitative trends shown in Figure 4 hold regardless of the system size. However,
it is worth discussing the influence of the TDMI and spatial correlation in the measures of integrated
information. In Figure 5a,b we show the whole-minus-sum integration and the normalized stochastic
interaction across different sizes N and lags T. As discussed previously, it is observed that regardless
of the system size the integration measures are symmetric with respect to the TDMI. In particular,
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when the TMDI is minimized, ®w s grows with a concave downward trend for increasing N while
for lags T in which the TDMI is maximized, ®yy ;s becomes increasingly negative. In contrast, ® keeps
a linear growth independent of T for large N with fixed coupling. This means that if X;, ; encodes the
most possible information of X}, the integrated information will be maximized, reaching a plateau for
increasing system size. Meanwhile, if X; and X;, . are highly correlated, the components of the system
will hold more information about their own state than the system.

20(3) - T
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Figure 5. (a) Whole-minus-sum integration ®yyss and (b) stochastic interaction @ for increasing
7 for different system sizes N. (c¢) Mutual information I(X;, X;++) and total correlation C(X;) for
increasing size N. (d) Integration measures ®yp5, P* and & for increasing coupling Q. For comparison
we include C(X;). For (a—c) we use Q = 0.5 and (c,d) we use T = 60 units with f~N(1,0.005).
Other parameters are the same as in Figure 2 for the phase-attractive coupling.

Next, we study how the different measures change for increasing Q using the first lag that
minimizes the TDMI, T = 60 to maximize the amount of influence between X; and X; . Figure 5d
shows different complexities, including the integrated information measures and the total correlation
defined as C(X) = YN, H(X;) — H(X) for an intermediate size N = 15 (observe that C(X) replaces
(X4 Xp) in Equation (14) when we consider the atomic partition). As it is shown, for coupling Q
before the transition to synchronization ®yys and ®* remain steady followed by a drop to a low value
of integrated information just right after the cutoff point for synchronization. Thus, at the transition
point, both measures are maximally sensitive and decrease in the super-critical regime where the
system loses segregation.

Interestingly, the decoder-based integration has a negligible integrated information when
compared with the whole-minus-sum integration despite showing a similar trend. The dependency
between them is not entirely clear, but one can infer that the mismatched decoding is assuming that
as the system grows, the patterns in the sub-critical region are noise driven due to the uncoupling
between cells (high segregation) followed by a transition to a high correlated regime (high integration).
This is out of the scope of this paper and further investigation is needed.

Meanwhile, ® remains steady for Q spanning from zero to just before criticality, then it dips
around the transition point, and stabilizes and remains constant at a higher value of integrated
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information with respect to the unsynchronized state. In comparison with @y 15 and $*, this measure
is dominated by C for large N, which scales linearly, Figure 5c. On the other hand, ® dips
because of the contribution from Py s is reduced while the total correlation C increases due to
the phase synchronization.

From a biological perspective these results suggest that the coupling at the transition point to
synchronization would be favored to keep a balance between integration and differentiation of the
regulatory dynamics in a coherent way. High integration leads the system to exhibit split dynamics
while some degree of segregation provides evolutionary advantage to the whole system to act to
internal and external demands.

2.2. Phase-Repulsive Coupling

2.2.1. Irregular Self-Oscillations

In Figure 6a we show the numerical simulations of the bifurcation plot for N = 4 cells for the
model (4). It is observed regular oscillations which are completely out-of-phase up to around Q = 0.49
followed by the stable formation of subgroups of synchronized cells (clustering). As we reach the
first torus bifurcation TRy around Q* = 0.58 there is emergence of chaos reflected in oscillations
of amplitude with increasing irregularity [40]. This behavior is maintained just before the second
bifurcation point TR; around Q = 1.13 in which regular oscillations are recovered. This behavior is
observed across different number of cells for N > 4 for this analysis.

(a) (b)

‘ ‘ ‘ ‘ ‘ ‘ LOf==_ i ‘ b —
60} : [ R .
. Ry

40}

B,
order parameter

20+

0.6 07 08 09 10 11
Q

Figure 6. (a) Numerical bifurcation plot for the full amplitude oscillations and (b) order parameter R; »
for different values of coupling Q.

As a proof of concept, we characterize the cluster distributions through the 1,2-cluster
synchronization (16) and relate it with the measures of integrated information. From previous results
about clustering of coupled repressilators [40], clusters are defined in terms of the absolute difference
of the concentration levels of the signaling molecule S;(t). Here, the cluster ordering is measured
from R; » using the phase of protein oscillations B;(t). However, the main feature about the cluster
dynamics is equivalent to that described by the [40]. This is the enhanced switching from one cluster
distribution to another for increasing degree of chaos, as we describe below.

Figure 6b shows R » order parameters for increasing Q. Each data point indicates the degree of
1,2-cluster synchronization averaged in time. As discussed previously in [41], clusters can be either
stable and therefore not changing its composition along the time, or transient, which implies the
formation of an initial cluster that is later decomposed after some time steps in another arrangement
and so forth. The full history of formation and decomposition of clusters is uniquely determined by
the initial state. In addition, the lifetime of one cluster before switching to another arrangement will
depend on its degree of stability. Consequently, we get multiple branches for increasing Q with each
branch corresponding to a basin of attraction. Hence, provided some initial conditions the oscillators
settle down to different cluster distributions with a defined degree of order.
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Now, following R, (Figure 6b) we observe that one group displays fully synchronous behavior,
corresponding to a 2:2 cluster as N = 4, while other keeps its phase unsynchronized. The lower
branch slowly rises at Q* followed by the appearance of two new groups at Q = 0.64. Meanwhile,
there is a sudden decrease of the upper branch. Later, these clusters are broken in multiple branches
between Q = 0.67 and Q = 0.75. Up to this point we see that the stability of the arrangement between
oscillators is continuously reduced for increasing Q as a response of the enhanced formation and
decomposition of clusters in some time span, so the temporal average synchronization is reduced
for phase-locked 2:2 clusters. This trend is maximized at Q = 0.75 since right after this value we
observe a sequence of points which defines a very disperse and irregular branch just before Q = 0.95.
This region corresponds to the fully developed chaos, in which there is a continuous formation and
decompositions between cluster groups for an initial distribution of oscillators. As chaos increases
the lifetime of such clusters is severely shortened [40] followed by the switch to new distribution
throughout the time. This grouping ability losses stability to become more sensitive to initial conditions
implying an irregular shape. Around Q = 0.95 there is a peak to complete 2-cluster phase-locking,
which suggests a narrow window in which chaos reverts to its periodic motion as a 2:2 cluster. Finally,
there appear again multiple branches leading to the transition towards the initial regular oscillations.
On the other hand, order parameter R; provides the degree of nonuniform distribution of oscillators
in different clusters. As in the case of R, we see the emergence of branches leading to a unique group
with high asymmetry as chaos is increased. In contrast, lower values of R; are attained in the stable
region outside of both torus bifurcation points reflecting larger symmetry in the cluster oscillations.

Finally, if we run simulations for larger system sizes the cluster distributions clearly increase their
allowed arrangements as the system size grows. Consequently, the degree of cluster synchrony and
asymmetry can follow a very disperse trend instead of well-defined branches even in the stable region,
although we point out that the behavior for strong chaos keeps very similar. This fact is reflected in the
measures of integrated information as discussed below.

2.2.2. Chaos and Integration

Next, we relate the previous description with the trends followed by the integrated information
measures. In Figure 7 we show @y s, ® and @* for increasing coupling Q and lag 7 for N = 4.

Compared to Figure 6b one can observe that the integration measures appear to track the broken
symmetry due to the formation of new branches for increasing Q. First, in the clustering regime Py ;s
and ® hold a periodic trend for increasing T as a consequence of the regular oscillations of the cluster
formations. Within this regime oscillations are highly correlated, so that the stochastic interaction
is greater in comparison with the other measures. Meanwhile, ®* represents this regime with null
integrated information, as the degree of complexity is minimum during synchronization.

Next, during the onset of chaos, all measures detect the irregular oscillations following a similar
trend when we vary 7. However, they differ as the coupling Q increases (Figure 8). Both ®yy15 and &*
start with a lower value which is increased non-uniformly along Q with the appearance of weak chaos.
In turn, there is a drop as the chaotic behavior is enhanced. Meanwhile, ® goes from high values of
integration due to the stable cluster formation and decreases slightly at Q*, followed by a second drop
as the spatial interaction collapses to its minimum value.

During the strong chaotic regime all complexity measures decay to zero with an oscillatory trend
in the limit T — oo, since X; and X}, (and the individual system components X;; and X; ;. ;) are no
longer correlated, so the TDMI vanishes. Meanwhile, for the stochastic interaction, the remaining
interaction is the spatial correlation encoded in C, which seems to be decreased within this regime as
shown. Nevertheless, @ peaks around Q = 0.95 while ®yyss becomes more negative and ®* vanishes.
This suggests a periodic window given that the system becomes highly correlated in the view of ®
and @W MS-
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Figure 7. Whole-minus-sum integration ®y s, stochastic interaction ® and decoder-based integration
®* for different values of coupling Q and lag 7 for N = 4 cells. Other parameters are the same as in
Figure 2 for the phase-repulsive coupling.
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Figure 8. (a) whole-minus-sum integration @ s, (b) decoder-based integration ®* and (c) stochastic
interaction ® for different values of coupling Q and different number of cells N. We use T = 220 time
steps. Other parameters are the same as in Figure 2 for the case of phase-repulsive coupling.

Finally, just before Q = 1.1 the maximum amplitudes of the bifurcation plot seem to group in three
different regions as observed in Figure 6a, implying an increasing stability ending with the recovery
of the periodic behavior after TR;. As a result, ®yp15 and &* increase qualitatively similar during the
formation of such groups followed by a drop after the torus bifurcation. In particular, @y 5 reaches
negative values while ®* keeps negligible due to the regular clustering synchronizations. In contrast,
@ increases progressively reaching high values of integrated information at the torus bifurcation point
and stabilizes at a similar value attained just before TR;.

2.2.3. Temporal Mixing Increases Integrated Information

As suggested in the past section, the system size plays an important role in defining the degree
of dynamical complexity. Again, we make use of the atomic partition to describe the integrated
information. Figure 8 shows ®pypg, P* and ® for increasing Q at different N. In particular, we choose
a lag T = 220 time steps, as it keeps close to the first minimum of the TDMI for the range of Q
considered, so that it reduces as much as possible the redundancy between X; and X;+, although both
processes are not entirely independent.

Just before TR we see that for increasing N the measure ®yys has a highly disperse arrangement
with multiple values of integrated information. This is a result of having several stable cluster
distributions as the system grows, each with a certain degree of complexity. Next, after Q*, and before
Q = 0.75, the value s is no longer spread and grows smoothly with N. In contrast, for fully
developed chaos, @y s starts with small values increasing with N and defines a peak between Q = 0.8
and Q = 0.95. This is precisely the range in which the chaotic behavior is maximized according to [40].

As discussed in the section about phase-attractive coupling, the increasing of ®w s and d*
during chaos could be associated with the patterns accessible to the system. The formation and
decomposition of clusters favor the accessible states encoded as binary arrays that scale with the
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system size, but keep upper bounded by the TDMI. Therefore, we also find a saturation of complexity
as the system grows as evidenced in Figure 9a. Nevertheless, observe that in all the cases @y s
attributes higher integrated information to the system than ®*, which means that the information loss
due to the mismatch decoding I* from ®* is greater. Still, both measures reflect the same properties in
the system. This suggests that the multistability provided by the switching of cellular fates increases
the balance of segregation and integrations of the causal dynamics of whole system in comparison
with the one of its single components leading to the emergence of integrated information. Moreover,
this balance has a limiting amount provided by the asymptotic trend of TDMI as the system becomes
larger. Next, the whole-minus-sum integration ®yyy;s starts decreasing as the oscillation amplitudes in
the bifurcation plot are less spread. In particular, we observe that @y ;s drops during the formation
of clustered amplitudes in three groups (Figure 6a) followed by a second drop to negative values
after TR».

(b)

200
150

100

complexities

0 2 10 60 80 100 Y06 07 08 09 10 11

N Q
Figure 9. (a) Total correlation C(X;) and TDMI I (X}, X;+) for increasing system size N and Q = 0.7
(weak chaotic regime) (b) Mean mutual information between all possible halves of the system (X4, Xp)
for increasing coupling Q. We use T = 220 time steps. Other parameters are the same as in Figure 2 for
the case of phase-repulsive coupling.

On the other hand, observe that the stochastic interaction ® decreases as the number of branches
increases. In these conditions the cluster lifetime is shortened implying a decrease of spatial correlations.
This effect is quantified by the mutual information between halves (X4, Xp). As observed the
qualitative trend is clearly similar to ®, so the stochastic information is just reflecting spatial correlation
(integration) but not segregation due to the formation of patterns. In addition, as shown in Figure 9a
the contribution of the spatial correlation becomes stronger for larger N since C scales linearly after
N = 50 cells. Then, from the perspective of the stochastic interaction this rapid switching in the system
could avoid synergistic influences on its future states more than the independent oscillators.

3. Conclusions

In this work, we assess the degree of integrated information using whole-minus-sum integration,
decoder-based integration and stochastic interaction using a model of genetic oscillators coupled by
quorum sensing. This work includes two coupling architectures leading to different dynamical regimes
representing cellular fates. The phase-attractive coupling allows phase synchronization for increasing
cell density, and the phase-repulsive coupling favors cluster formation with increased switching and
asymmetry with the degree of chaos.

Our findings suggest that these measures can proxy the transition between dynamical regimes
encoded as binary patterns. The whole-minus-sum integration and decoder-based integration are
observed to drop in the transition to phase synchronization of cells. In particular, whole-minus-sum
integration becomes negative for highly correlated causal interactions between the current and past
states. Meanwhile, decoder-based integration vanishes when the system becomes more synchronized.
This is because high integration with no segregation implies a low value of integrated information.
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Thus, these measures have maximal susceptibility near criticality. Also, both measures are increased
when there is a balance between the segregation and integration of oscillations due to the transient
stability of cellular fates i.e., frequent switching of synchronized clusters, a typical mechanism for
decision-making genetic regulatory networks. Both observations suggest that in terms of integration
of information, it is evolutionary stable for cells to maintain at criticality prior full synchronization to
allow available responses from the cells to intrinsic and extrinsic demands and keeping some degree of
integration. In a similar way, the diversity and switching between different attractors not just provide
an adaptive advantage to the system but according to our results also maximizes the integration of
independent cell dynamics in a coherent way.

Meanwhile, the stochastic interaction, is mainly driven by the spatial correlation and it is not
sensitive to the diversity of available states as the other measures considered in this paper. During the
transition to synchronization it dips around the critical point due to a combined effect of the decrease
of segregation, but it is later enhanced as the system synchronizes favoring full integration. Also, in the
chaotic regime, it seems that lower cluster lifetime between switching to new distributions decreases
its value, while a larger one favors it. As an overall, for this analysis this measure did not provide
better insight than the mutual information between subsystems could.

In all cases, the integrated information measures are symmetric with respect to the TDMI of the
whole system. This implies that the balance of segregation and integration of the causal dynamics is
favored when the current state of the system shares the less possible information with the past states,
but still with some degree of correlation.

Therefore, this suggests that cells, as a system of interacting genetic networks, show enough
complexity to exhibit cause-effect power as a whole above and beyond its parts, a required step
to develop consciousness according to IIT. However, as we believe, consciousness has not been
evolutionarily developed on the genetic level, probably due to the slow communication speed based on
diffusion. Further research is required to have a better understanding of the evolutionary mechanisms
for higher cognitive processes.
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