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Abstract: The belief rule-based classification system (BRBCS) is a promising technique for addressing
different types of uncertainty in complex classification problems, by introducing the belief function
theory into the classical fuzzy rule-based classification system. However, in the BRBCS, high numbers
of instances and features generally induce a belief rule base (BRB) with large size, which degrades
the interpretability of the classification model for big data sets. In this paper, a BRB learning method
based on the evidential C-means clustering (ECM) algorithm is proposed to efficiently design a
compact belief rule-based classification system (CBRBCS). First, a supervised version of the ECM
algorithm is designed by means of weighted product-space clustering to partition the training set
with the goals of obtaining both good inter-cluster separability and inner-cluster pureness. Then,
a systematic method is developed to construct belief rules based on the obtained credal partitions.
Finally, an evidential partition entropy-based optimization procedure is designed to get a compact
BRB with a better trade-off between accuracy and interpretability. The key benefit of the proposed
CBRBCS is that it can provide a more interpretable classification model on the premise of comparative
accuracy. Experiments based on synthetic and real data sets have been conducted to evaluate the
classification accuracy and interpretability of the proposal.

Keywords: rule-based classification; belief function theory; evidential C-means; evidential
partition entropy

1. Introduction

Pattern classification is a popular research field in artificial intelligence. The main purpose of
classification is to assign the objects, represented by feature vectors to predefined group of classes
[1]. In the past five decades, a variety of classification techniques, such as K-nearest neighbors
(K-NN) [2], decision trees (DT) [3], support vector machines (SVM) [4], rule-based classification
(RBC) [5], have been proposed. Among these methods, the RBC not only obtains the advantage in
classification result interpreting, but also can be easily enhanced by adding new rules from experts’
domain knowledge. As one of the most representative RBC methods, a fuzzy rule-based classification
system (FRBCS) [5,6] has been developed by incorporating fuzzy sets [7]. The FRBCS is widely used
because it can build a linguistic model interpretable to users. It has been successfully applied to
many classification tasks where model interpretability is important, such as terrain classification [8],
intrusion detection [9], fault prediction [10], disease diagnosis [11], and target recognition [12].

However, in real-world complex systems, different types of uncertainty (such as fuzziness,
imprecision and incompleteness) may coexist. The FRBCS, which is based on fuzzy set theory,
cannot model those imprecise or incomplete information effectively. The belief function theory,
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proposed by Dempster [13] and Shafer [14] et al., provides a powerful framework for uncertain
modeling and reasoning. As fuzzy set theory and belief function theory are suited to dealing with
different types of uncertainty, some researchers have investigated the relationship between them and
suggested different integrating ways [15–18]. Among them, in [18], a belief rule-based classification
system (BRBCS) was developed by extending the FRBCS within the framework of belief function
theory to address imprecise or incomplete information in complex classification problems. In contrast
to the traditional fuzzy rule, the new belief rule assigns the consequent part with a belief distribution
structure, so that different kinds of uncertain information existing in the training set can be well
characterized. Besides, to reduce the risk of misclassification in noisy conditions, the classification of a
query pattern is made by combining all the activated belief rules. In many situations, this method is
found experimentally to yield better classification accuracy and robustness than the FRBCS using the
same information.

Rule learning is the most important issue in developing the BRBCS. In [18], a heuristic belief rule
base (BRB) learning method was developed by defining belief rules based on fuzzy-grid partitions
of the feature space and individuals of the training patterns, and the resulting BRB can provide
an accurate mapping between the feature space and the class space. However, with this method,
higher numbers of instances and features generally induce a BRB with larger size. This may lead
to a large rule base for big data set, which degrades the interpretability of the classification model.
Motivated by the above consideration, in this paper, a compact belief rule-based classification system
(CBRBCS) is developed for a better trade-off between accuracy and interpretability (A preliminary
version of some of the ideas introduced here was presented in [19,20]. The present paper is a deeply
revised and extended version of this work, with several new results.). We propose to learn a compact
BRB based on partitions of the training set realized with clustering techniques. The evidential C-mean
(ECM) algorithm [21], which extended the fuzzy C-mean (FCM) algorithm [22] within the framework
of belief functions, is used for its capability to address imprecise and partial information existing
in the observed data. As belief rules are constructed based on credal partitions of the training set,
this method can reduce the number of generated rules greatly. The main contributions of this paper
are as follows:

1. A supervised version of the ECM algorithm is designed by means of weighted product-space
clustering to take into account the class labels, which can obtain credal partitions with both good
inter-cluster separability and inner-cluster pureness.

2. A systematic method is developed to construct belief rules (composed of the antecedent part,
the consequent class, and the rule weight) based on credal partitions of the training set.

3. A two-objective optimization procedure based on both the mean squared error and the evidential
partition entropy is designed to get a compact BRB with a better trade-off between accuracy
and interpretability.

Two types of experiments using both synthetic and real data sets have been developed to evaluate
the performance of the proposed CBRBCS. In the synthetic data test, a two-dimensional four-class
synthetic data set was designed to illustrate the interest of the compact BRB learning under different
parameter settings. In the real data test, 20 data sets varying greatly in the number of instances,
features, and classes were selected from the UCI Machine Learning Repository [23] for evaluation.
The comparison methods cover the traditional BRBCS, as well as some of the most representative
classifiers, including K-NN, C4.5, SVM, and FRBCS. The reported results show that the proposed
CBRBCS can obtain competitive performance compared with those representative classifiers for a
variety of real tasks involving different data conditions, and get a better trade-off between accuracy
and interpretability than the traditional BRBCS. Therefore, it provides a better choice of classification
technique for those problems where both high accuracy and interpretability are needed.

The rest of the paper is organized as follows. In Section 2, some preliminaries of the related
theories and methods are reviewed. The compact BRB learning with ECM is developed in Section 3.
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The experiments to evaluate the performance of the proposed method are reported in Section 4. At last,
Section 5 concludes the paper.

2. Background

In this section, we provide some preliminaries of the related theories and methods. We first
introduce some basic concepts of the belief function theory in Section 2.1. After that, we give overviews
of the BRBCS classification method and the ECM clustering method in Sections 2.2 and 2.3, respectively.
The used symbols and their definitions are listed in Table 1 to facilitate reading.

Table 1. List of symbols and definitions.

Symbol Definitions

AE aggregated entropy
BRB belief rule base

BRBCS belief rule-based classification system
BRM belief reasoning method

CBRBCS compact belief rule-based classification system
ECM evidential C-means
EPE evidential partition entropy
FCM fuzzy C-means
FPE fuzzy partition entropy

FRBCS fuzzy rule-based classification system
K-NN K-nearest neighbor
MSE mean squared error
RBC rule-based classification
SVM support vector machines

Aj antecedent part of belief rule Rj

C set of classes
c class label
C number of clusters
dij distance between object xi and set Aj
M credal partition matrix
np number of partitions for p-th feature
Rj j-th belief rule in the rule base
T training data set
V cluster center matrix
W weight of class labels in clustering process
x input feature vector
α weighting exponent for cardinality in ECM
β weighting exponent for fuzziness in ECM
δ distance to the empty set in ECM
θ j weight of belief rule Rj

λ weight of classification accuracy
σ2

p variance of p-th feature values
σ2

c variance of class values
Ω frame of discernment

2.1. Basics of the Belief Function Theory

In belief function theory [13,14], a problem domain is represented by a finite set Ω =

{ω1, ω2, · · · , ωC} called the frame of discernment. A mass function expressing the belief committed
to the elements of 2Ω by a given source of evidence is a mapping function m: 2Ω → [0, 1], such that

∑
A∈2Ω

m(A) = 1. (1)

Elements A ⊆ Ω with m(A) > 0 are called the focal sets of the mass function m. The mass function m
has several special cases, which represent different types of information. A mass function is said to be
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• normal, if m(∅) = 0. Otherwise, it is subnormal, and m(∅) is interpreted as a mass of belief given
to the hypothesis that ω might not lie in Ω.

• Bayesian, if all its focal sets are singletons. In this case, the mass function reduces to the precise
probability distribution;

• certain, if the whole mass is allocated to a unique singleton. This corresponds to a situation of
complete knowledge;

• vacuous, if the whole mass is allocated to Ω. This situation corresponds to complete ignorance.

After representing the available pieces of evidence as mass functions, one often needs to combine
several mass functions into a single one. Dempster’s rule is the most popular way to combine several
distinct pieces of evidence. The Dempster’s rule of combination of two normal mass functions m1 and
m2 defined on the same frame of discernment Ω is given by

m1 ⊕m2(A) =


0, A = ∅

∑
B∩C=A

m1(B)m2(C)

1− ∑
B∩C=∅

m1(B)m2(C)
, A ∈ 2Ω \∅.

(2)

Dempster’s rule of combination is both commutative and associative.

2.2. Belief Rule-Based Classification System (BRBCS)

The BRBCS is composed of two components, the BRB and the belief reasoning method (BRM) [18].
The BRB is first constructed to establishes a mapping between the feature space and the class space,
and then the BRM is used to classify a query pattern based on the constructed BRB.

For an M-class (denoted as C = {c1, c2, · · · , cM}) classification problem with P features, the BRB
consists of a collection of belief rules defined as follows:

Rj : If x1 is Aj
1 and x2 is Aj

2 and · · · and xP is Aj
P, then class is Cj =

{
(c1, β

j
1), · · · , (cM, β

j
M)
}

,

with rule weight θ j, j = 1, 2, · · · ,

where x1, x2, · · · , xP represent the antecedent features and Aj = (Aj
1, Aj

2, · · · , Aj
P) is the antecedent

part of the belief rule Rj with each Aj
p belonging to fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np} associated

with p-th feature, p = 1, · · · , P. β
j
k is the belief degree that input data x = (x1, x2, · · · , xP) belongs to

ck, k = 1, · · · , M. In the belief structure, the consequence may be incomplete, i.e., ∑M
k=1 β

j
k ≤ 1, and the

left belief 1−∑M
k=1 β

j
k denotes the degree of global ignorance about the consequence. The rule weight

θ j with 0 ≤ θ j ≤ 1, characterizes the certainty grade of the belief rule Rj.
The BRB can be learned from training data or derived from expert knowledge [24]. In [18],

a heuristic BRB learning method was developed based on fuzzy-grid partitions of the feature space.
To generate the BRB, this method uses the following steps:

Step 1: Partition of the feature space.
A fuzzy-grid-based method is used to divide the P-dimensional feature space into ∏P

p=1 np fuzzy
regions, with np being the number of partitions for p-th feature.

Step 2: Generation of the consequent class for each fuzzy region.
Each training pattern is assigned to the fuzzy region with the greatest matching degree, and those
patterns assigned to the same fuzzy region are fused to get the consequent class.

Step 3: Generation of the rule weights.
The rule weights are determined by two measures called confidence and support jointly.

Once the BRB is generated, the BRM is used to classify a query pattern by combining the
consequent parts of all the activated belief rules (refer to [18] for details of this reasoning method).
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2.3. Evidential C-Means (ECM)

In [21], an ECM algorithm was proposed to derive credal partitions from object data. In this
algorithm the class membership of an object xi is represented by a mass function mi defined on the
power set of a given frame of discernment Ω = {ω1, ω2, · · · , ωC}. The credal partitions of N observed
data {x1, x2, · · · , xN} ∈ RP are then defined as the N-tuple M = (m1, m2, · · · , mN). It can be seen as a
general model of partitioning, where:

• when each mi is a certain mass function, then M defines the conventional, crisp partitions of the
set of objects;

• when each mi is a Bayesian mass function, then M specifies the fuzzy partitions, as defined by
Bezdek [22].

For each object xi, the quantities mij = mi(Aj)(Aj ⊆ Ω, Aj 6= ∅) are determined in such a way
that the mass of belief mij is low (high) when the distance dij between object xi and set Aj is high (low).
The distance between object xi and set Aj is calculated by dij = ‖xi − vj‖, where vj is the barycenter of
the centers associated with the classes composing Aj. Denoting vk the center of the single cluster ωk,
the barycenter vj is calculated as

vj =
1
|Aj|

C

∑
k=1

skjvk with skj =

{
1, if ωk ∈ Aj
0, otherwise

. (3)

Finally, the objective function used to derive the credal partition matrix M of size 2C × N and the
cluster center matrix V of size C× P, is given by

JECM(M, V) =
N

∑
i=1

∑
{j/Aj⊆Ω,Aj 6=∅}

|Aj|αmβ
ijd

2
ij +

N

∑
i=1

δ2mβ
i∅, (4)

subject to

∑
{j/Aj⊆Ω,Aj 6=∅}

mij + mi∅ = 1, ∀i = 1, · · · , N, (5)

where β > 1 is a weighting exponent to control the fuzziness of the partition, α ≥ 0 is a weighting
exponent to control the degree of penalization for the subsets in Ω of high cardinality, δ > 0 is a
distance to control the amount of data considered to be outliers, and mi∅ denotes mi(∅), the mass
that the class of object xi does not lie in Ω. This objective function is minimized using an iterative
algorithm, which alternatively optimizes the credal partition matrix M and the cluster center matrix V.

3. Compact BRB Learning with ECM

As reviewed in Section 2.2, in the traditional BRB learning method, belief rules are defined based
on fuzzy-grid partitions of the feature space and individuals of the training instances. This may lead
to a large rule base for big data set with large numbers of instances and features, which degrades the
interpretability of the classification model. In this section, we propose to learn a compact BRB based
on partitions of the training set realized with clustering techniques. The ECM algorithm is used here
to incorporate the additional degrees of freedom and information obtained from the derived credal
partitions, in the BRBCS. The flow diagram of the proposed compact BRB learning with ECM is shown
in Figure 1. First, the ECM algorithm operates in a supervised way in Section 3.1 by means of weighted
product-space clustering with the goals of obtaining credal partitions with both good inter-cluster
separability and inner-cluster pureness. Then, Section 3.2 shows how to construct belief rules based
on credal partitions of the training set. Finally, a two-objective optimization procedure is designed in
Section 3.3 to get a compact BRB with a better trade-off between accuracy and interpretability.
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Credal Partition with Supervised ECM

Belief Rule Base Construction

Antecedent

 Parts

Consequent 

Classes

Rule 
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Parameter Optimization for Trade-off 

between Accuracy and Interpretability

Compact

Belief Rule Base

Training

Data

Figure 1. Flow diagram of the compact BRB learning with ECM.

3.1. Credal Partition with Supervised ECM

In typical classification problems, a set of N labeled patterns T = {(x1, c(1)), (x2, c(2))},
· · · , (xN , c(N))} with input vectors xi ∈ RP and class labels c(i) ∈ {c1, c2, · · · , cM} are available,
and the problem is to classify a query pattern y based on the training set T . In contrast to unsupervised
clustering problems which only consider the inter-cluster separability, a good partition of labeled
patterns should also take into account the inner-cluster pureness. For this purpose, we cluster the N
labeled patterns in the following weighted product space

z = (x×Wc), (6)

where W ≥ 0 controls the weight of class labels in clustering process. If W = 0, it just reduces to the
unsupervised clustering, and as W → ∞, the resulting clusters are the same with those obtained by
dividing the training set only based on the class labels directly. A suggested choice of W for balancing
the effects of feature values and class values is

W =

√
∑P

p=1 σ2
p

σ2
c

, (7)

where σ2
p is the variance of p-th feature values, p = 1, 2, · · · , P, and σ2

c is the variance of class values.
With given weight W and number of clusters C, the ECM clustering algorithm operates in the

above supervised way to discover credal partitions of the training set T in the weighted product space.
Two practical issues concerning the credal partitions are further considered to be follows.

• Limiting the number of credal partitions. By minimizing the objective function displayed as
Equation (4), a maximum number of 2C credal partitions can be obtained. However, those credal
partitions composed of many classes are quite difficult to interpret and are usually also less
important in practice. Therefore, in order to learn a compact BRB, we constrain the focal sets to be
either Ω, or to be composed of at most two classes, thereby reducing the maximum number of
credal partitions from 2C to (C2 + C)/2 + 2 , F(C).

• Discarding the outlier cluster. In ECM, the training patterns assigned to empty set are considered to
be outliers, which are adverse to classification. Thus, we only construct belief rules based on the
left F(C)− 1 credal partitions associated with non-empty focal sets.
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3.2. Belief Rule Base Construction

As shown in Section 2.2, each belief rule is composed of three components, namely the antecedent
part, the consequent class, and the rule weight. In the following part, we will show how to construct
belief rules from these three aspects based on credal partitions of the training set obtained previously.

3.2.1. Antecedent Parts Generation

From the obtained credal partition matrix M, whose ij-th element mij → [0, 1] is the membership
degree of the data xi in partition j, it is possible to extract the fuzzy sets in the antecedent parts of the
belief rules. One-dimensional antecedent fuzzy sets Aj

p are obtained from the multidimensional credal
partition M by point-wise projection [25] onto the space of the antecedent features xp, p = 1, 2, · · · , P:

µ
Aj

p
(xip) = projp(mij). (8)

With the above point-wise defined membership, a continuous membership function µ
Aj

p
(x) for fuzzy

sets Aj
p can be approximated. Several types of functions such as triangular, trapezoidal, or Gaussian,

can be used. In this work we choose the Gaussian membership function of the form

µ
Aj

p
(x) = f (x; vjp, σjp) = e

(
−

(x−vjp)
2

2σ2
jp

)
, (9)

where vjp is the mean value calculated as Equation (3), and σjp is the standard variance to be estimated.

In this way, for each credal partition j, j = 1, 2, · · · , F(C)− 1, a series of fuzzy sets Aj
1, Aj

2, · · · , Aj
P

can be defined on the antecedent features with Gaussian membership functions, which finally constitute
the antecedent part of belief rule Rj.

3.2.2. Consequent Classes Generation

Based on the credal partition matrix M, the training set T can be divided into F(C)− 1 groups by
assigning each pattern to the partition with highest mass:

T j = {(xi, c(i))|mij = max
k

mik, i = 1, · · · , N}, j = 1, 2, · · · , F(C)− 1. (10)

The training subsets T j for j = 1, 2, · · · , F(C)− 1 define a hard credal partition [21] of the training
set T . In the following, we will derive the consequent class of belief rule Rj by combining the class
information of patterns in subset T j, j = 1, 2, · · · , F(C)− 1.

First, for any pattern xi ∈ T j, we calculate the matching degree with antecedent part of belief rule
Rj using the geometric mean operator as

µAj(xi) =
P

√√√√ P

∏
p=1

µ
Aj

p
(xip), (11)

where µ
Aj

p
is the membership function of the fuzzy set Aj

p defined in Equation (9).

Then, assume the class label of pattern xi is ck, which takes value in class set C. This can be
regarded as a piece of evidence that supports the consequent class belonging to ck. However, this piece
of evidence is not full certainty. In belief function theory, this can be expressed by saying that only some
part of the belief (measured by the matching degree µAj(xi)) is committed to ck. Because Class(xi) = ck
does not point to any other particular class, the rest of the belief should be assigned to the frame of



Entropy 2019, 21, 443 8 of 16

discernment C representing global ignorance. Therefore, this item of evidence can be represented by a
mass function mj(·|xi) verifying:

mj({ck}|xi) = µAj(xi)

mj(C|xi) = 1− µAj(xi)

mj(A|xi) = 0, ∀A ∈ 2C \ {C, {ck}}
. (12)

Finally, the mass functions derived from all the patterns in T j are combined to obtain the
consequent class of belief rule Rj. As the items of evidence from different labeled patterns are
collected independently, the Dempster’s rule of combination is used in this work to synthesize the
final consequent class membership as

mj =
⊕

xi∈T j

mj(·|xi). (13)

Noting that all the pieces of evidence have only one focal set except the global set C, the computation
of Dempster’s rule is quite efficient. The belief degrees of the consequent class of rule Rj are then
obtained as β

j
k = mj({ck}), k = 1, 2, · · · , M.

3.2.3. Rule Weights Generation

As in [18], the rule weights can be derived based on two concepts called confidence and support,
which are often used for evaluating association rules in data mining fields. The confidence is a measure
of the validity of one rule, which is defined for belief rule as

c(Rj) = 1− K j, (14)

where 0 ≤ K j ≤ 1 is the average conflict factor, which measures the conflict among those pieces of
evidence used for building the consequent class of rule Rj:

K j =


0, if |T j| = 1,

1
|T j |(|T j |−1) ∑

xp ,xq∈T j ;

c(p) 6=c(q)

µAj(xp)µAj(xq), otherwise. (15)

with |T j| donating the number of training patterns in j-th hard credal partition.
On the other hand, the support indicates the grade of the coverage by one rule, which is defined

as the ratio of the number of covered patterns to the total pattern number:

s(Rj) =
|T j|
N

. (16)

Based on the above two measures, the rule weights are finally derived as

θ j =
c(Rj)s(Rj)

max
j
{c(Rj)s(Rj), j = 1, · · · , F(C)− 1}

, j = 1, 2, · · · , F(C)− 1. (17)

3.3. Parameter Optimization for Trade-Off between Accuracy and Interpretability

In the above BRB learning process, the number of clusters C plays a key role in determining the
accuracy and the interpretability of the learned classification model. Many clusters means many rules,
which usually leads to high classification accuracy, but degrades the model’s interpretability. Therefore,
we need to search for an optimal number of clusters to get the desired trade-off between accuracy
and interpretability.
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On the one hand, to obtain a model with high accuracy, the following leave-one-out test
(mean squared) error MSE should be minimized:

MSE =
1
N

N

∑
i=1

M

∑
j=1

(P(i)({ωj})− t(i)j )2, (18)

where P(i)({ωj}), j = 1, · · · , M, are the output of the belief reasoning method for training pattern x(i),

and t(i)j , j = 1, · · · , M, are binary indicator variables defined by t(i)j = 1, if the real label of training

pattern x(i) is ωj and t(i)j = 0, otherwise.
On the other hand, to obtain a model with high interpretability, the number of rules or,

equivalently, the number of clusters should be minimized. However, the number of clusters should
not be too small to ensure the cluster validity. To assess the quality of fuzzy partitions, a great number
of validity indexes have been proposed in the literature [26–29]. One of the representatives is the fuzzy
partition entropy FPE [30] defined by

FPE =
1

N log2(C)

N

∑
i=1

C

∑
j=1

µij log2

(
1

µij

)
, (19)

where µij is the membership degree of i-th pattern in j-th cluster. The optimal number of clusters C is
obtained by minimizing FPE with respect to C = 2, 3, · · · , Cmax.

The above fuzzy entropy-based validity index has inspired us to use similar definitions of entropy
in belief function framework to assessing the quality of evidential partitions. The definition of
entropy in belief function framework has been a hot research subject in the past few years [31–33].
A representative one is the aggregated entropy AE introduced by Pal et al. [34], which satisfies natural
requirements and has interesting properties. It is defined for a normal mass function m as

AE(m) = ∑
A∈F (m)

m(A) log2

(
|A|

m(A)

)
, (20)

where F (m) denotes the set of focal sets of m. This entropy measure can be further decomposed as the
sum of two terms:

AE(m) = ∑
A∈F (m)

m(A) log2 |A|+ ∑
A∈F (m)

m(A) log2

(
1

m(A)

)
. (21)

The first term is the nonspecificity measure, which reflects the degree of imprecision of m, whereas the
second term reflects the inconsistency in m and can be seen as a measure of conflict. Therefore, AE(m)

tends to be small when the mass is assigned to few focal sets, with small cardinality.
Though the above AE measure was defined for normal mass functions (i.e., m with m(∅) = 0),

it can be easily extended to subnormal mass functions considered in the paper by defining the cardinality
of the empty set as C (This extension is justified by the fact that the mass given to the empty set
corresponds to a situation of maximal uncertainty, just like the mass given to Ω [35].). The evidential
partition entropy EPE is then defined as the average AE as

EPE =
1

N log2(C)

N

∑
i=1

∑
A∈F (mi)

mi(A) log2

(
|A|

mi(A)

)
. (22)

When all the patterns are assigned to singleton sets ∅, ω1, ω2, · · · , ωC, EPE gets the lower bound value
0. The maximum value of EPE is attained for mi such that mi(A) ∝ |A|, for all A ∈ F (mi). It should
also be noted that the fuzzy partition entropy FPE defined in Equation (19) is a special case of our
defined evidential partition entropy EPE when each mi is a Bayesian mass function.
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Finally, a single scalar objective function for the number of clusters C is then defined based on the
above two objectives MSE and EPE as

J(C) = λ ·MSE + (1− λ) · EPE, (23)

where λ ∈ [0, 1] is the weight characterizing the user’s preference for classification accuracy.
When λ = 1, the classification accuracy is the only objective, whereas when λ = 0, only the cluster
validity is guaranteed. With given weight λ, by minimizing the above objective function, an optimal
number of clusters C can be obtained for a better trade-off between accuracy and interpretability.

4. Experiments

The performance of the proposed CBRBCS was assessed by two different types of experiments.
In the first experiment, a synthetic data set was used to show the behavior of the proposal in controlled
settings. In the second one, 20 real data sets from the UCI Machine Learning Repository [23] were
considered, with the aim to show that the proposed technique is adequate for a variety of real tasks.

4.1. Synthetic Data Set Test

A two-dimensional four-class synthetic data set was designed to illustrate the interest of the
compact BRB learning method in CBRBCS. The following normal class-conditional distributions
were assumed:

Class ω1: µ1 = (0, 0)T , Σ1 = 2I; Class ω2: µ2 = (5, 0)T , Σ2 = 2I;
Class ω3: µ3 = (2, 5)T , Σ3 = 2I; Class ω4: µ4 = (3, 5)T , Σ4 = 2I.
A set of 400 samples was generated from the above distributions using equal prior probabilities.

This data set is displayed in Figure 2. The proposed method was used to learn BRBs from this data set.
The default values of open parameters in ECM were used and different values of the accuracy weight
λ were considered for comparison.
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Figure 2. Synthetic data set ( ‘©’ for class ω1, ‘�’ for class ω2, ‘5’ for class ω3 and ‘♦’ for class ω4).

Figure 3 shows the objective values J(C) of the learned BRBs under different numbers of clusters
(C = 2, 3, 4, 5, 6). When the accuracy weight λ = 1, the objective function J(C) just reduces to the MSE
measure. It can be seen that as the increasement of the number of clusters (or, equivalently, the number
of rules), the MSE decreases gradually. By minimizing the MSE, a large BRB is obtained with high
classification accuracy. By contrast, when the accuracy weight λ = 0, the EPE measure is recovered.
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We see that the EPE reaches its minimal value when the number of clusters equals to 3, and after
that it increases as the increasement of the number of clusters. In the same way of minimizing the
EPE, we can get a small BRB with higher model interpretability, but relatively lower classification
accuracy. Finally, when the accuracy weight 0 < λ < 1, the objective value J(C) provides a trade-off
between the MSE and the EPE. Please note that the three considered weights (λ = 0.2, 0.5, and 0.8)
give the same decision for the optimal number of clusters as C = 4, in which case, a total number of
(C2 + C)/2 + 1 = 11 belief rules are learned with classification accuracy of 83.55%.
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Figure 3. Objective values J(C) of the learned BRBs under different numbers of clusters C.

4.2. Real Data Set Test

In this experiment, 20 representative real data sets from UCI Machine Learning Repository were
selected to evaluate the performance of the proposed CBRBCS. The main characteristics of the 20 data
sets are summarized in Table 2. It can be seen that the selected data sets vary greatly in the number
of instances (from 80 to 12,690), the number of features (from 4 to 60), and the number of classes
(from 2 to 11).

Table 2. Statistics of the real data sets used in the experiment.

Data Set # Instances # Features # Classes

Australian 690 14 2
Balance 625 4 3

Car 1278 6 4
Contraceptive 1473 9 3
Dermatology 358 34 6

Ecoli 336 7 8
Glass 214 9 6

Hepatitis 80 19 2
Ionosphere 351 33 2

Iris 150 4 3
Lymphography 148 18 4

Nursery 12,690 8 5
Page-blocks 5472 10 5

Sonar 208 60 2
Thyroid 7200 21 3
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Zoo 101 16 7
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To develop the experiment, we consider the B-Fold Cross-Validation (B-CV) model. Each data
set is divided into B blocks, with B− 1 blocks as a training set and the remaining block as a test set.
Therefore, each block is used exactly once as a test set. We use the 10-CV model here, i.e., ten random
partitions of the original data set, with nine of them (90%) as the training set and the remainder (10%)
as the test set. For each data set, we consider the average results of the ten partitions.

The performance of the proposed classifier is compared with the traditional BRBCS [18] as well as
several other representative classifiers, including K-NN (instance-based classifier) [2], C4.5 (decision
tree-based classifier) [3], SVM (statistical classifier) [4], and FRBCS (rule-based classifier) [5]. Settings of
these comparison methods are summarized in Table 3.

Table 3. Settings of the comparison methods.

Method Parameter Value

K-NN number of neighbors K 3
distance metric Euclidean

C4.5 pruned? TRUE
confidence level c 0.25

minimal instances per leaf i 2

SVM kernel type RBF
penalty coefficient C 100
kernel parameter γ 0.01

FRBCS number of partitions per feature n 5
membership function type triangular

reasoning method single winner

BRBCS number of partitions per feature n 5
membership function type triangular

reasoning method belief reasoning

CBRBCS weighting exponent for cardinality α 2
weighting exponent for fuzziness β 2

accuracy weight λ 0.5

Table 4 shows the classification accuracy rates of different methods for real data sets. The numbers
in brackets represent the ranks of the classification accuracy for each method and the last row shows
the average ranks of all the methods over the 20 data sets. It can be seen that the performance
of the two belief rule-base classifiers, i.e., BRBCS and CBRBCS, is comparable with those classical
methods. To compare the classification results statistically, we carry out nonparametric tests [36,37]
for multiple comparisons based on the average accuracy ranks obtained over the considered data
sets. First, we use the Iman-Davenport test to determine whether significant differences exist among
different methods. The Iman-Davenport statistic (distributed according to the F-distribution with
k− 1 = 5 and (k− 1)(N − 1) = 95 degrees of freedom, where k is the number of compared methods
and N is the number of data sets) is 4.99 for average ranks and the corresponding critical value is
2.29 for a significance level of α = 0.05. Given that the Iman-Davenport statistic is clearly greater
than the critical value, the test rejects the null hypothesis, and therefore, it can be said that there
are significant differences among the accuracy results of the considered methods. Then, we apply
the post hoc Bonferroni-Dunn test to compare the control method (i.e., the proposed CBRBCS) with
the remaining ones. Figure 4 shows the test result of the average accuracy ranks with a significance
level of α = 0.05, in which case the calculated critical difference is 1.52. The critical difference value
is represented as a thicker horizontal line, and those values that exceed this line are methods with
significantly different results from the control method. It can be seen that the proposed CBRBCS
performs significantly better than the FRBCS, and obtains similar classification accuracy with the
traditional BRBCS. Compared with other non-rule-based classifiers including SVM, C4.5 and K-NN,
although the classification accuracy differences among them are not very significant, the proposed
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CBRBCS is preferable as it can provide a more interpretable classification model on the premise of
comparative accuracy.

Table 4. Classification accuracy rates (in %) for real data sets.

Data set K-NN C4.5 SVM FRBCS BRBCS CBRBCS

Australian 88.78 (1) 85.22 (2) 75.51 (6) 79.86 (5) 82.74 (4) 83.90 (3)
Balance 83.37 (5) 76.80 (6) 95.51 (1) 89.60 (4) 92.66 (3) 93.20 (2)

Car 92.31 (6) 92.55 (5) 94.33 (2) 92.78 (4) 95.23 (1) 93.12 (3)
Contraceptive 44.95 (5) 52.68 (2) 55.95 (1) 39.86 (6) 49.15 (3) 48.20 (4)
Dermatology 96.90 (1) 94.42 (2) 94.34 (3) 72.29 (6) 85.12 (5) 93.35 (4)

Ecoli 80.67 (3) 79.47 (4) 81.96 (2) 76.02 (6) 78.34 (5) 82.62 (1)
Glass 70.11 (1) 67.44 (5) 70.00 (2) 66.04 (6) 69.04 (3) 68.15 (4)

Hepatitis 82.51 (3) 84.00 (1) 82.18 (4) 74.41 (6) 76.28 (5) 83.68 (2)
Ionosphere 85.18 (6) 90.90 (3) 92.60 (1) 86.55 (5) 89.11 (4) 91.66 (2)

Iris 94.00 (4) 96.00 (3) 97.33 (1) 93.67 (5) 96.67 (2) 93.33 (6)
Lymphography 77.39 (4) 74.30 (5) 81.27 (1) 72.27 (6) 79.20 (2) 77.90 (3)

Nursery 92.54 (6) 97.30 (1) 93.18 (5) 94.02 (4) 96.05 (2) 94.65 (3)
Page-blocks 95.91 (2) 96.97 (1) 92.36 (5) 91.92 (6) 95.10 (4) 95.28 (3)

Sonar 83.07 (1) 70.07 (5) 78.71 (2) 59.60 (6) 74.80 (3) 73.33 (4)
Thyroid 93.89 (5) 99.63 (1) 93.49 (6) 94.03 (4) 95.04 (2) 94.39 (3)
Vehicle 71.75 (3) 74.69 (1) 52.95 (6) 60.77 (5) 71.95 (2) 70.54 (4)
Vowel 97.78 (1) 81.52 (5) 95.76 (2) 79.90 (6) 93.28 (3) 92.10 (4)
Wine 95.49 (3) 94.90 (4) 89.74 (6) 95.82 (2) 96.14 (1) 94.48 (5)
Yeast 53.17 (5) 55.53 (2) 58.09 (1) 48.51 (6) 54.66 (4) 55.08 (3)
Zoo 92.81 (4) 93.64 (3) 96.50 (1) 85.06 (6) 90.55 (5) 95.30 (2)

Average rank 3.45 3.05 2.90 5.20 3.15 3.25

1 2 3 4 5 6

SVM

C4.5

BRBCS

CBRBCS

K-NN

FRBCS

Figure 4. Bonferroni-Dunn test result of the average accuracy ranks.

To evaluate the interpretability of the classification models, Table 5 displays the numbers of
generated rules for the two belief rule-based methods, i.e., BRBCS and CBRBCS. It can be seen that for
all the evaluated data sets, much smaller number of rules are generated for the proposed CBRBCS.
To show the rule reduction performance more clearly, we also provide the rule reduction rate (defined
as (#RuleBRBCS − #RuleCBRBCS)/#RuleBRBCS) in the last column. We can notice that for those data sets
with large numbers of train instances and features, but small number of classes (like Australian, Car,
Contraceptive, Ionosphere, Nursery, Sonar, Thyroid, Vehicle), the proposed CBRBCS achieves more
significant rule reduction performance (with rule reduction rate >90%). The reason is that in the
traditional BRBCS, the rules are generated based on fuzzy-grid method, in which case, the number of
generated rules is positive correlated with both the numbers of train instances and features. However,
the number of generated rules for the clustering-based learning method used in CBRBCS is only
determined by the underling structure of the data, which is closely related to the number of classes.
Therefore, compared with the traditional BRBCS, the proposed CBRBCS obtains a better trade-off
between accuracy and interpretability (similar classification accuracy is obtained with much smaller
number of rules).
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Table 5. Numbers of generated rules of BRBCS and CBRBCS for real data sets.

# Rules
Data Set # Train Instances # Features # Classes

BRBCS CBRBCS Reduction Rate

Australian 621 14 2 317 16 94.95%
Balance 552 4 3 66 11 83.33%

Car 1150 6 4 682 22 96.77%
Contraceptive 1326 9 3 233 22 90.56%
Dermatology 322 34 6 315 37 88.25%

Ecoli 302 7 8 45 37 17.78%
Glass 192 9 6 40 22 45.00%

Hepatitis 72 19 2 67 7 89.55%
Ionosphere 316 33 2 227 11 95.15%

Iris 135 4 3 14 11 21.43%
Lymphography 133 18 4 129 22 82.95%

Nursery 11,421 8 5 4238 37 99.13%
Page-blocks 4925 10 5 55 22 60.00%

Sonar 187 60 2 187 16 91.44%
Thyroid 6480 21 3 460 22 95.22%
Vehicle 761 18 4 230 16 93.04%
Vowel 891 13 11 141 67 52.48%
Wine 160 13 3 122 16 86.89%
Yeast 1336 8 10 96 56 41.67%
Zoo 91 16 7 55 29 47.27%

5. Conclusions

In this paper, a compact belief rule-based classification system with ECM clustering has been
proposed to overcome the limitations of the traditional BRBCS in large data set conditions. Instead
of defining belief rules for individuals of the training patterns, belief rules are constructed based on
credal partitions of the training set. The two-objective optimization procedure based on both the
mean squared error and the evidential partition entropy can successfully find an optimal number of
clusters. This method can discover the underlying data structure, which can be successfully translated
into belief rules. From the results reported in the last section, we can conclude that the proposed
technique can obtain a better trade-off between accuracy and interpretability than the traditional
one. Furthermore, compared with other non-rule-based classifiers, the proposed technique can obtain
competitive classification performance in accuracy. Therefore, this technique is be a better choice for
those classification problems where both high accuracy and interpretability are needed.
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