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Abstract: Based on density evolution analysis of the existing belief propagation (BP) algorithm, the
Turbo Decoding Message Passing (TDMP) algorithm was analyzed from the perspective of density
evolution and Gaussian approximation, and the theoretical analysis process of TDMP algorithm was
given. When calculating the prior message of each layer of the TDMP algorithm, the check message of
the previous iteration should be subtracted. Therefore, the result will not be convergent, if the TDMP
algorithm is directly analyzed based on density evolution and Gaussian approximation. We researched
the TDMP algorithm based on the symmetry conditions to obtain the convergent result. When using
density evolution (DE) and Gaussian approximation to analyze the decoding convergence of the
TDMP algorithm, we can provide a theoretical basis for proving the superiority of the algorithm. Then,
based on the DE theory, we calculated the probability density function (PDF) of the check-to-variable
information of TDMP and its simplified algorithm, and then gave it a calculation based on the process
of the normalization factor. Simulation results show that the decoding convergence speed of the
TDMP algorithm was faster and the iterations were smaller compared to the BP algorithm under the
same conditions.

Keywords: density evolution; Gaussian approximation; BP algorithm; TDMP algorithm; convergence
speed

1. Introduction

Low-density parity-check (LDPC) codes were first proposed by Gallager [1] in 1962. In 1996,
MacKay and Neal [2] re-researched LDPC codes and discovered that irregular LDPC performs better
than regular LDPC [3,4], the irregular LDPC codes can perform close to the Shannon limit error
performance. Based on this, Vibha [5] proposed an extended method to convert the regular LDPC codes
into the irregular LDPC codes. On the basis of the Slepian–Wolf coding problem, a coding theorem of
finite-substitution linear coding was proposed. The research shows that there exist a series of linear
coders for any set of finite-correlation discrete memoryless sources [6]. In Reference [7], rate-compatible
LDPC coding was implemented by graphics expansion to ensure coding performance and to simplify
the structure of the encoder. Based on the probabilistic iterative decoding algorithm, MacKay [8]
proposed the belief propagation (BP) algorithm, which is currently of great academic interest. In BP
algorithm decoding, information is passed along the edge of Tanner graph until the decoding end [9].
The BP decoding schedules are designed according to the reliability of check nodes, which can improve
the error-correcting performance of BP decoding [10]. In addition, only one subset of check nodes is
updated in each iteration, which reduces the resource consumption in the decoding process.
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Based on Gallager’s [1] thought, Richardson [11] introduced the concept of density evolution,
which can calculate the capacity of LDPC codes under message-passing decoding. The density
evolution algorithm is also applied to the multi-edge type framework of LDPC [12]. Michael used
the density evolution to analyze the convergence of BP iterative decoding and proposed an iterative
decoding threshold analysis method for LDPC convolutional codes [13]. In the 5G communication
standard [14], Yanming Hao uses the density evolution algorithm to analyze LDPC codes of a sparse-code
multiple-access [15] system and designs a multi-user de-noising algorithm. For the binary-input additive
white Gaussian noise (BIAWGN) channel, we can replace density evolution (DE) with Gaussian
approximation [16] to simplify the analysis of the decoding algorithm. In the performance analysis
of low-density parity check-bit interleaved coded modulation system in [17], the probability density
function (PDF) of the log–likelihood ratio (LLR) messages transmitted between variables and check
nodes is calculated using a Gaussian mixture approximation method for reducing the complexity of the
density evolution process. Francesca analyzed the function φ(x) involved in Gaussian approximation
on the basis in Reference [16] and obtained a new approximation function [18]. The threshold of the new
approximation function is closer to that of density evolution compared with the approximation function
in Reference [16]. Though the BP algorithm, which is the basic algorithm of LDPC codes, can obtain
near Shannon limit error performance, the check nodes need to deal with many non-linear operations,
the complexity of the BP algorithm is higher. With further research on the decoding algorithm, Mansour
and Shanbhag proposed the Turbo Decoding Message Passing (TDMP) algorithm [19,20], which can
obtain high throughput, and at the same time increase the convergence speed of iterative decoding.
Under ideal conditions (in an ideal situation), the number of iterations of the TDMP algorithm is half of
that of the BP algorithm.

Sachini analyzed the PDF calculation of the Tanner graph edge transfer [21]. Hossein used an
Extrinsic Information Transfer Chart (EXIT) to analyze the irregular LDPC codes and proved that there
was a similar relationship between regular LDPC and irregular LDPC’s EXIT [22]. In Reference [23], the
mixed method of density evolution initialization node and Gaussian approximation calculation could
reduce the amount of calculation and facilitate code design. Existing literature on density evolution
analysis of LDPC codes are all BP algorithm or derivative algorithms of the BP algorithm, such as the
Normalized Min Sum (NMS) algorithm and the Offset Min Sum (OMS) algorithm in References [18,24,25].
Nevertheless, in this paper we present density evolution and Gaussian approximation of the TDMP
algorithm based on the BP algorithm, and analyze the decoding convergence of the TDMP algorithm
from the perspective of density evolution and Gaussian approximation. Thus, we can provide a more
theoretical basis for proving the superiority of the TDMP algorithm. Meanwhile, we simulated six
code rates of LDPC codes under the IEEE 802.16 standard and obtained performance curves of the
BP algorithm and the TDMP algorithm based on density evolution and Gaussian approximation,
respectively. Thereby, we can verify that the convergence speed of the TDMP algorithm was faster.
Under the degree distribution of 1/2 code rate, the two algorithms were further compared under the
802.16 and Digital Television Terrestrial Multimedia (DTMB) standards. Then, based on the DE theory,
the calculation of the normalized factor is given according to the PDF of the check node information of
TDMP and simplified TDMP algorithm, and simulation results are explained.

2. The Density Evolution and Gaussian Approximation of the BP Algorithm

2.1. The Density Evolution of the BP Algorithm

A regular LDPC code can be represented by (dv, dc), where dv and dc is the degree of variable and
check nodes, respectively. The iteration expression of the check messages and the variable messages
are as follows [11]

tanh
u(l)

j

2
=

dc−1∏
i=1

tanh
v(l−1)

i
2

, (1)
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v(l)i = v(0)i +
dv−1∑
j=1

u(l)
j , (2)

v(0)i represents the initial message of channel received by i-th variable node. Assuming that P(l)(v)

and Q(l)(u) are the probability densities of v(l)i and u(l)
j , respectively. We can obtain the result of density

evolution from the check messages to the variable messages as [11]

P(l)(v) = P(0)
⊗Q(l)⊗(dv−1), (3)

⊗ represents the convolution operation. We can transform the convolution operation in Equation (3)
to the multiplication operation based on the Fourier transform [11]

P(l)(v) = F−1
(
F
(
P(0)

)
· F

(
Q(l)

)dv−1
)
, (4)

The process of density evolution from the variable messages to the check messages was introduced
by Richardson in detail in Reference [11]. Thus, we can calculate the bit error rate (BER) as

P(l)
e =

∫ 0

−∞

P(l)(v)dv, (5)

For irregular LDPC codes, the degree distributions of the variable nodes and the check nodes

are λ(x) =
dv∑

i=2
λixi−1 and ρ(x) =

dc∑
i=2

ρixi−1, respectively. We must consider the degree distribution to

update probability density of the variable messages and the check messages [11]. The BER of irregular
LDPC codes is also calculated by Equation (5).

2.2. The Gaussian Approximation of the BP Algorithm

For detailed analysis of BP algorithm one can refer to Reference [16]. According to Reference [16],
we can get

m(l)
v = m0 + (dv− 1)m(l)

u , (6)

m(l)
v and m(l)

u are the means of v(l)i and u(l)
j , respectively, and m0 is the mean of channel initial

messages. Defining φ(x) in Reference [16] and take the expectation of Equation (1) to get Equation (7),
where φ(x) is shown in Equation (8).

m(l)
u = φ−1[1− (1−φ(m0 + (dv− 1)m(l−1)

u ))
dc−1

] (7)

φ(x) =
 √

π
x (1−

10
7x )e

−
x
4 , x ≥ 10

e(−0.4527x0.86+0.0218), 0 < x < 10
(8)

The BER of LDPC codes can be calculated as [21]

Pe =

∫ 0

−∞

1
√

4πmv
· exp

− (x−mv)
2

4mv

dx. (9)

3. The Analysis of Density Evolution and Gaussian Approximation of the TDMP Algorithm

3.1. The Decoding Procedure of the TDMP Algorithm

Before discussing density evolution and Gaussian approximation of the TDMP algorithm, firstly,
we simply review the decoding procedure of the TDMP algorithm [26,27]. Check matrix H with m
rows and n columns is composed of c check sub-matrices in series, and each sub-matrix has k rows,
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then m = c× k. Meanwhile, each sub-matrix can be regarded as a horizontal layer, and the main idea
of the TDMP algorithm is to decode each layer successively.

In iteration decoding, we first update the check messages in the first layer, and then update the
variable messages in this layer immediately. After that, we use the updated variable messages to
calculate the prior messages which will be sent to the next layer for updating the check messages until
the last layer. Then the updated prior messages are the outputs of iteration decoding. The TDMP
algorithm directly uses the updated information of the previous layer when updating the current
layer information, thereby speeding up the convergence speed of the decoding. The message passing
scheme of the TDMP algorithm is shown in Figure 1.
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Decoding the convergence speed can be increased by utilizing the prior messages of the previous
layer directly to update the check messages of the current layer. Meanwhile, the essence of layered
decoding is optimizing the procedure of message passing but not changing the implementation of
the check messages update in each layer. The BP algorithm can also use layered decoding, and the
analysis of density evolution and Gaussian approximation of the TDMP algorithm is based on the BP
algorithm. Thus, the procedure of the check messages update in each layer of the TDMP algorithm is
the same as that of the BP algorithm which is introduced in Section 2. Therefore, in the next section,
the major work is to illustrate the variable messages updated in each layer.

3.2. The Analysis of Density Evolution of the TDMP Algorithm

The variable messages updated [28,29] in each layer is shown in Equation (10), then prior messages
updated in the next layer [30] is shown in Equation (11).

v(l)j = λc + u(l)
j , (10)

γ
(l)
j+1 = v(l)j − u(l−1)

j = λc + u(l)
j − u(l−1)

j , (11)

l represents the number of iterations, and j represents the current number of layers. λc is the
channel initial message which initializes the variable message before decoding.

According to the symmetry condition of density evolution [24], we can get Equation (12).

γ
(l)
j+1 = λc + u(l)

j + u(l−1)
j , (12)

When updating to the last layer, the posterior messageγ(l) is an output of the l-th iteration decoding.
According to the knowledge related to probability, the probability density of the sum of the two

statistically independent variables X and Y is convolution of probability density of X and Y. Since the
variables in Equations (10) and (12) satisfy the condition of statistically independent distribution, we
can obtain
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P
(
v(l)j

)
= P(λc) ⊗ P

(
u(l)

j

)
, (13)

P
(
γ
(l)
j+1

)
= P(λc) ⊗ P

(
u(l)

j

)
⊗ P

(
u(l−1)

j

)
, (14)

Use the Fourier transform to convert the convolution operation in Equations (13) and (14) into a
multiplication operation, as shown in Equations (15) and (16)

P
(
v(l)j

)
= F−1

(
F[P(λc)] · F

[
P
(
u(l)

j

)])
, (15)

P
(
γ
(l)
j+1

)
= F−1

(
F[P(λc)] · F

[
P
(
u(l)

j

)]
· F

[
P
(
u(l−1)

j

)])
, (16)

When updating to the last layer, the probability density P
(
γ(l)

)
of the posterior message γ(l) is the

final output probability density at the l-th iteration decoding. Thus, we can calculate BER based on
Equation (5).

3.3. The Analysis of Gaussian Approximation of TDMP Algorithm

According to Section 3.2, we derived Equation (12). By taking expectation of Equations (10)
and (12), we can obtain

m(l)
v j

= m0 + m(l)
u j

, (17)

m(l)
γ j+1

= m0 + m(l)
u j

+ m(l−1)
u j

. (18)

We can calculate BER based on Equation (9).

4. Calculation of TDMP Normalization Factor Based on Density Evolution

When calculating the check node information, the TDMP algorithm uses the same nonlinear
function as BP, which makes the hardware implementation difficult. The simplified algorithm in
Reference [31] simplifies the nonlinear function and provides a possibility for hardware implementation.
On the basis of the previous analysis, this paper presents the calculation process of the normalized
factor of the simplified TDMP algorithm in Reference [31] based on the density evolution theory.
The detailed process is as follows.

4.1. The Initialization

Under the BIAWGN channel and Binary Phase Shift Keying (BPSK) modulation, code words ci are
mapped to xi = (−1)ci ,i = 1, 2, · · ·n. The received code words are yi = xi + ni, ni is independent and
identically distributed Gaussian random variable and bilateral power spectral density is n0

2 . Hence, yi
is a Gauss variable with a mean value of 1 and variance of σ2 [18].

Assuming that the average energy of the signal bit transmitted by the channel is Eb, N0 is the
power spectral density of noise and the code rate is r. The relationship between the signal–noise ratio
(SNR) and noise variance is σ2 = 1

2r(Eb/N0) .
Suppose that the information is an equal probability distribution [21], where Pr(x i = +1) = Pr(x i =

−1) = 1
2 . The initial information is:

Pr(ci = 1|yi) = Pr(xi = −1|yi) =
1

1+e2yi/σ
2

Pr(ci = 0|yi) = Pr(xi = +1|yi) =
1

1+e−2yi/σ
2

(19)

The log–likelihood ratio message is:

L(x|y) = ln(
Pr(xi = +1|yi)

Pr(xi = −1|yi)
) =

2y
σ2 , (20)
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At this time, the initial information of the LLR is Gaussian random variable [21], whose mean
value is 2

σ2 and variance is 4
σ2 , that is, it satisfies LLR ∼ N(µ, 2µ), where µ = 2

σ2 .
According to the Gaussian distribution of LLR and relevant knowledge of probability theory, its

probability density is f (x) = 1√
4πµ
· exp(− (x−µ)2

4µ ).

Introduction of the function Q(x) =
∫
∞

x q(t)dt, where q(t) = 1
√

2π
e−t2/2. Since q(t) is the probability

density function of the standard Gaussian distribution, the relationship between q(t) and f (x) is:
1√
2µ
· q(t) = f (x), where t = (x−µ)

√
2µ

.

4.2. Normalization Factor Calculation

A TDMP simplification algorithm without non-linear functions is given in Reference [30], which
can be expressed as

u =
dc−1∏
j=1

sgn(v j) × ( min
j=1,2···dc−1

|v j|+ r(|v j|)), (21)

where r|v j| = ln(1 + e−|v j |) ≈ ln 2− 0.5|v j|.
The update of the check node information can be simplified to

u =
dc−1∏
j=1

sgn(v j) × ( min
j=1,2···dc−1

|v j|+ ln 2− 0.5 · |v j|), (22)

In order to improve the decoding performance of the TDMP simplification algorithm, the
normalization factorα is used for improving the calculation of the check node information. Its calculation
formula is as shown in Equation (23). The following is the calculation of the normalization factor α
based on density evolution [24].

u =
dc−1∏
j=1

sgn(v j)×α( min
j=1,2···dc−1

|v j|+ ln 2− 0.5 · |v j|), (23)

L =
dc−1∏
J=1

sgn(v j) × ( min
j=1,2···dc−1

|v j|+ (ln 2− 0.5 · |v j|))

E(L) = E( min
j=1,2···dc−1

|v j|+ (ln 2− 0.5|v j|)) = E(L1) + E(L2)
(24)

To facilitate calculation and illustration, variables L1 and L2 are introduced to represent min
j=1,2,...dc−1

|v j|,

and ln 2− 0.5|v j|, respectively.
E(L1) = E( min

j=1,2···dc−1
|v j|), (25)

E(L2) = E(ln 2− 0.5 · |v j|), (26)

E(L3) = E(|u|) = 2tanh−1(
dc−1∏
j=1

tanh
|v j|

2
), (27)

α =
E(L3)

E(L1) + E(L2)
, (28)

According to the knowledge of probability theory, the probability distribution of |L1| is known [24].

Pr(L1 > v) = Pr(min(V1, V2, · · ·, Vdc−1) > v)= Pr(V1 > v, V2 > v, · · ·, Vdc−1 > v) = [Pr(V1 > v)]dc−1, (29)

Thus, its expectation is
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E(L1) =
∫
∞

0 Pr(L1 > v)dv =
∫
∞

0 [Pr(V1 > v)]dc−1dv

=
∫
∞

0 [1− F(v)]dc−1dv =
∫
∞

0

[
1− (1−Q(

µ+v
σ ) −Q(

µ−v
σ ))

]dc−1
dv

=
∫ µ

0

[
1−Q(

µ−v
σ ) + Q(

µ+v
σ )

]dc−1
dv +

∫
∞

µ

[
Q(

v−µ
σ ) + Q(

µ+v
σ )

]dc−1
dv

≈

∫ µ
0

[
1−Q(

µ−v
σ ) + Q(

µ+v
σ )

]dc−1
dv

(30)

Since E(ln 2− 0.5|v j|) = ln 2− 0.5E(|v j|), the PDF is f (v) = 1
σ
√

2π
e−

(v−µ)2

2σ2 , where σ2 = 2µ.
By definition of the mean we have

E(|v j|) =
∫ +∞

−∞
|v j| f (v j)dv j =

∫ +∞

−∞
|v j|

1
σ
√

2π
e−

(vj−µ)
2

2σ2 dv j = 2
∫ +∞

0 v
j

1
σ
√

2π
e−

(vj−µ)
2

2σ2 dv j

which using integral properties can be written as

E(|v j|) = 2
∫ +∞

0 (v j + µ) 1
σ
√

2π
e−

vj
2

2σ2 dv j = 2(
∫ +∞

0 v j
1

σ
√

2π
e−

vj
2

2σ2 dv j + µ
∫ +∞

0
1

σ
√

2π
e−

vj
2

2σ2 dv j)

= 2(−σ
∫ +∞

0
1
√

2π
(−

v j

σ2 )e
−

vj
2

2σ2 dv j + µ
∫ +∞

0
1

σ
√

2π
e−

vj
2

2σ2 dv j)

= 2(− σ
√

2π
· e−

vj
2

2σ2 |
+∞
0 +

µ
2 ) = 2( σ

√
2π

+
µ
2 ) = µ+ σ

√
2
π

(31)

And then the calculation of E(L3). Extend tanh−1 into a series form

tanh−1(x) =
1
2
[ln(1 + x) − ln(1− x)] =

∞∑
k=0

x2k+1

2k + 1
, (32)

According to the series expansion [18]

E(L3) = 2E

tanh−1(
dc−1∏
j=1

tanh(
|v j |

2 ))

 = 2
∞∑

k=0

E

(dc−1∏
j=1

tanh(
|vj |
2 ))

2k+1
2k+1 = 2

∞∑
k=0

E

(tanh(
|vj |
2 ))

2k+1
dc−1

2k+1 (33)

According to mathematical knowledge and relevant literature, such as [21,24,25], the high-order
expansion terms of the Taylor series are very small (negligible), so the first few terms of the series
are usually taken for approximate calculation. In this paper, the first five terms were selected as
approximate results by referring to Reference [25].

5. Simulation Results

The IEEE 802.16e standard defines six code rates (1/2, 2/3A, 2/3B, 3/4A, 3/4B, and 5/6) of the LDPC
codes. In this paper, density evolution and Gaussian approximation simulation of LDPC codes with
six code rates under 802.16 standard were carried out under the BIAWGN channel. Then, from the
perspective of density evolution and Gaussian approximation, the convergence of BP algorithm and
TDMP algorithm for 1/2 code rate LDPC codes under 802.16 and DTMB standards was compared.
In the simulation, the maximum number of iterations of BP algorithm and TDMP algorithm were set
as 20 and 10, respectively. Finally, the calculation of the normalization factor and the performance
comparison of the TDMP algorithm were simulated.

5.1. The Simulation Results of Density Evolution of the BP Algorithm and the TDMP Algorithm

The performance curves of the BP algorithm and the TDMP algorithm at six code rates are shown
in Figure 2a,b respectively. The values of the signal–noise ratio (SNR) of rate 1/2, rate 2/3A (or 2/3B), rate
3/4A (or 3/4B) and rate 5/6 are 0 to 2.5(dB), 0.5 to 3.0(dB), 1.0 to 3.5(dB), and 1.5 to 4.0(dB), respectively.



Entropy 2019, 21, 457 8 of 17

Entropy 2019, 21, x FOR PEER REVIEW 8 of 17 

 

1

1
2 12 1

1 1
1

3
0 01

(tanh( ))( tanh( ))
22

( ) 2 tanh ( tanh( )) 2 2
2 2 1 2 1

dc

dc jj kk

dc jj

k kj

vv
EE

v
E L E

k k

−

−
++

−  =
−

= ==

   
   
      

     = = =
  + +
 



   
(33) 

According to mathematical knowledge and relevant literature, such as [21,24,25], the high-order 

expansion terms of the Taylor series are very small (negligible), so the first few terms of the series are 

usually taken for approximate calculation. In this paper, the first five terms were selected as 

approximate results by referring to Reference [25].  

5. Simulation Results 

The IEEE 802.16e standard defines six code rates (1/2, 2/3A, 2/3B, 3/4A, 3/4B, and 5/6) of the 

LDPC codes. In this paper, density evolution and Gaussian approximation simulation of LDPC codes 

with six code rates under 802.16 standard were carried out under the BIAWGN channel. Then, from 

the perspective of density evolution and Gaussian approximation, the convergence of BP algorithm 

and TDMP algorithm for 1/2 code rate LDPC codes under 802.16 and DTMB standards was 

compared. In the simulation, the maximum number of iterations of BP algorithm and TDMP 

algorithm were set as 20 and 10, respectively. Finally, the calculation of the normalization factor and 

the performance comparison of the TDMP algorithm were simulated. 

5.1. The Simulation Results of Density Evolution of the BP Algorithm and the TDMP Algorithm 

The performance curves of the BP algorithm and the TDMP algorithm at six code rates are shown 

in Figure 2a,b respectively. The values of the signal–noise ratio (SNR) of rate 1/2, rate 2/3A (or 2/3B), 

rate 3/4A (or 3/4B) and rate 5/6 are 0 to 2.5(dB), 0.5 to 3.0(dB), 1.0 to 3.5(dB), and 1.5 to 4.0(dB), 

respectively. 

  
(a) (b) 

Figure 2. Bit error rate (BER) performance comparison at six code rates of density evolution (DE); (a) 

Belief propagation (BP) algorithm; (b) TDMP algorithm. 

As can be seen from Figure 2, as the SNR increases, the BER curve of the TDMP algorithm 

decreased faster than the BP algorithm. The following is a comparison of the convergence of the two 

algorithms under a single code rate. The code rate 2/3B and SNR 2.0(dB) were chosen in discussion. 

The relationship between BER and the iterations is shown in Figure 3. Obviously, the BER 

convergence speed of the TDMP algorithm was faster than the BP algorithm. When the two 
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Figure 2. Bit error rate (BER) performance comparison at six code rates of density evolution (DE);
(a) Belief propagation (BP) algorithm; (b) TDMP algorithm.

As can be seen from Figure 2, as the SNR increases, the BER curve of the TDMP algorithm
decreased faster than the BP algorithm. The following is a comparison of the convergence of the two
algorithms under a single code rate. The code rate 2/3B and SNR 2.0(dB) were chosen in discussion.
The relationship between BER and the iterations is shown in Figure 3. Obviously, the BER convergence
speed of the TDMP algorithm was faster than the BP algorithm. When the two algorithms achieved
the same BER, such as 10−5, the number of iterations of the BP algorithm was 13, but the number of the
TDMP algorithm was only 7.
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When expected BER reaches to 10−5 at code rate 2/3B under different SNRs, iterations needed for
the BP algorithm and the TDMP algorithm are shown in Figure 4. The BP algorithm and the TDMP
algorithm cannot reach to expected BER within the maximum iterations, when SNR are 0, 0.5, 1.0 and
1.5 (dB), respectively. When SNR is greater than 1.5 (dB), the TDMP algorithm needs fewer iterations
compared with the BP algorithm.
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From the simulation results of Figures 3 and 4, we can prove that decoding convergence speed of
the TDMP algorithm was faster than the BP algorithm from the perspective of density evolution theory.

In order to verify the results, we simulated and analyzed the LDPC codes with 1/2 code rate under
the 802.16 standard and the DTMB standard, respectively. The degree distributions of check nodes and
variable nodes under the two standards are as follows:

Under the 802.16 standard, the degree distribution of check nodes and variable nodes are shown
in Equations (34) and (35)

λ(x) = 0.2895x + 0.3158x2 + 0.3947x5 (34)

ρ(x) = 0.6316x5 + 0.3684x6 (35)

Under the DTMB standard, the degree distribution of check nodes and variable nodes are shown
in Equations (36) and (37)

λ(x) = 0.3382x2 + 0.2618x3 + 0.4x10 (36)

ρ(x) = 0.1273x6 + 0.8727x7 (37)

Figures 5 and 6 compare the BP and TDMP algorithms under the two standards. When the
expected BER reaches to 10−5, the number of iterations required under different SNRs is shown in
Figure 5. When the SNR is 2 dB, the relationship between BER and iteration is shown in Figure 6.
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By comparing the simulation results under the two standards in Figures 5 and 6, it can be seen that
when the SNR is 2 dB, the convergence speed of TDMP algorithm was faster than that of BP algorithm
under the two standards. In addition, as can be seen from Figure 5, when the was greater than 1.5 dB,
the number of iterations required by the TDMP algorithm is about 1/2 of the BP algorithm.

5.2. The Simulation Results of the Gaussian Approximation of the BP Algorithm and the TDMP Algorithm

Gaussian approximation algorithm is a simplified density evolution algorithm. Next, the correctness
of the TDMP algorithm was verified from the point of view of Gauss approximation. Through Gaussian
approximation analysis, the performance curves of the BP algorithm and the TDMP algorithm at six
code rates are shown in Figure 7a,b, respectively. It can be seen from Figure 7 that the BER curve of the
TDMP algorithm converges faster. When the code rate is 2/3B and the SNR is 2.0 (dB), the relationship
between the BER and the number of iterations of the two algorithms is shown in Figure 8. When the
expected BER reaches to 10−5 at the code rate 2/3B under different SNRs, iterations needed for the BP
algorithm and the TDMP algorithm are shown in Figure 9.

The analysis of Figures 7–9 is similar as that of Figures 2–4 in Section 5.1. Thus, the performance of
TDMP algorithm for multi-dimensional density evolution and one-dimensional Gaussian approximation
process was similar.
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Based on Gaussian approximation theory, the BP and TDMP algorithms of LDPC codes with
1/2 code rate under two standards are simulated. Figure 10 shows the number of iterations required
for the two algorithms to achieve the desired BER at different SNRs, where the expected BER is 10−5.
When the code rate is 1/2 and the SNR is 2.0 dB, the relationship between the BER and the number of
iterations is as shown in Figure 11. The standard adopted and the corresponding degree distribution
function are the same as Section 5.1.
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The analysis of Figures 10 and 11 was similar to that of Figures 5 and 6 in Section 5.1. Combined
with the simulation results of Sections 5.1 and 5.2, we can get the following conclusions. For LDPC
codes under different standards, we only need to know the degree distribution of LDPC codes under
the current standard. Therefore, for other standard LDPC codes, the density evolution theory can
be used to analyze according to the degree distribution function. In terms of LDPC code structure,
the TDMP algorithm is applicable to structured layered LDPC codes [32,33]. The currently known
standard LDPC codes conform to this feature, so we can conclude that the density evolution and
Gaussian approximation of the proposed TDMP algorithm are applicable to different standards.

5.3. The Actual Algorithm Simulation of the BP Algorithm and the TDMP Algorithm

In this section, we simulate the LDPC codes with the code length 2304. With the code rates 2/3B
and the SNR 3.0 (dB), the relationship between BER and iterations is shown in Figure 12. Here, SNR was
not the same as that in Sections 5.1 and 5.2, because in the actual algorithm simulation, it cannot reach
to the expected BER when SNR is 2.0 (dB). Though SNR was different, it did not influence the analysis
of the convergence trend of the BP algorithm and the TDMP algorithm. As shown in Figure 12, the BER
convergence speed of the TDMP algorithm in the actual algorithm simulation was also faster than the
BP algorithm. When the actual algorithm can decode correctly at the code rate 2/3B under different
SNRs, the iterations needed for the BP algorithm and the TDMP algorithm are shown in Figure 13.
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Figure 13. Iterations needed for decoding correctly under different SNRs.

The analysis of Figure 13 was similar to that of Figure 4 in Section 5.1. The analysis of the results
from the actual algorithm simulation can prove the correctness of the density evolution and Gaussian
approximation analysis of the TDMP algorithm. Table 1 shows the number of iterations required for
the BP and TDMP algorithms in DE, GA, and actual simulation when the code rate was 2/3 under the
802.16 standard.

Table 1. Iteration times of BP and TDMP algorithms under different SNRs in DE, GA and actual simulation.

Iteration SNR (dB) 0 dB 1 dB 2 dB 3 dB 4 dB

DE
BP 20 20 13 5 3

TDMP 10 10 7 3 1

GA
BP 20 20 9 4 2

TDMP 10 10 7 2 1

Actual
BP 20 20 18 6 4

TDMP 10 10 8 3 2

The relationship between the number of iterations required by BP and TDMP algorithm can be
seen in Table 1 when the desired BER was reached under three simulations. When the SNR was greater
than 2 dB, the number of iterations of the BP algorithm was about twice that of the TDMP algorithm.

5.4. The Simulation Results of TDMP Normalization Factor

In this section, we calculated the normalization factor when the SNR was 1.7, 1.8, and 1.9 dB based
on density evolution. The simulation results show that the normalization factor was stable at around
0.5, as shown in Figure 14, which can be used in the following simulations. Based on the density
evolution process, the relationship between BER and the number of iterations of the BP algorithm,
TDMP algorithm, and normalization factor simplification algorithm (TDMP-N) was simulated, the
results are shown in Figure 15. Under the AWGN channel, the BER performance of LDPC codes with a
code length of 2304 at different SNRs was simulated, as shown in Figure 16. The average number of
iterations at different SNRs was simulated as shown in Figure 17. The convergence speed was analyzed
from the perspective of density evolution. The simulation results in Figure 15 show that TDMP-N
converged slightly faster than TDMP. The simulation results show that the TDMP-N convergence speed
was slightly faster than TDMP, and the average iteration number was similar to TDMP. It indicates that
the calculation process of TDMP-N was simpler and more convenient for hardware implementation in
the case of less loss of BER performance.
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6. Conclusions

This paper used the density evolution theory and the Gaussian approximation theory to analyze
the TDMP algorithm. The TDMP algorithm optimizes information transmission in the decoding process,
that is, the update of the current layer information directly uses the updated information of the previous
layer, thereby accelerating the convergence speed of the decoding. Based on the density evolution
analysis of the existing BP algorithm, this paper analyzed the TDMP algorithm from the perspective
of density evolution, giving the theoretical analysis process of the TDMP algorithm, and verifying
the analysis results of the TDMP algorithm through simulation comparison with the BP algorithm in
this paper. In addition, a simplified TDMP algorithm based on a normalized factor was proposed.
The simulation results show that the proposed optimization algorithm had similar performance with the
TDMP algorithm. Moreover, it did not involve the operation of non-linear functions and was easier to
implement in the hardware. We further simulated six code rates of LDPC codes under the IEEE 802.16e
standard and obtained the performance curves of the BP algorithm and the TDMP algorithm based on
density evolution and Gaussian approximation, respectively. Thus, we can prove that the decoding
convergence speed of the TDMP algorithm was faster than the BP algorithm; meanwhile average
iterations were fewer from the perspective of density evolution theory and Gaussian approximation,
respectively. According to the structure of LDPC codes under the known standard and the simulation
results in the text, we can conclude that the density evolution and Gaussian approximation of the
proposed TDMP algorithm can be applied to different standards.
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