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Abstract: Over recent decades, the rapid growth in data makes ever more urgent the quest for highly
scalable Bayesian networks that have better classification performance and expressivity (that is,
capacity to respectively describe dependence relationships between attributes in different situations).
To reduce the search space of possible attribute orders, k-dependence Bayesian classifier (KDB) simply
applies mutual information to sort attributes. This sorting strategy is very efficient but it neglects the
conditional dependencies between attributes and is sub-optimal. In this paper, we propose a novel
sorting strategy and extend KDB from a single restricted network to unrestricted ensemble networks,
i.e., unrestricted Bayesian classifier (UKDB), in terms of Markov blanket analysis and target learning.
Target learning is a framework that takes each unlabeled testing instance P as a target and builds
a specific Bayesian model Bayesian network classifiers (BNC)P to complement BNCT learned from
training data T . UKDB respectively introduced UKDBP and UKDBT to flexibly describe the change
in dependence relationships for different testing instances and the robust dependence relationships
implicated in training data. They both use UKDB as the base classifier by applying the same learning
strategy while modeling different parts of the data space, thus they are complementary in nature.
The extensive experimental results on the Wisconsin breast cancer database for case study and
other 10 datasets by involving classifiers with different structure complexities, such as Naive Bayes
(0-dependence), Tree augmented Naive Bayes (1-dependence) and KDB (arbitrary k-dependence),
prove the effectiveness and robustness of the proposed approach.

Keywords: Bayesian network classifiers; Markov blanket; target learning

1. Introduction

Since 1995, researchers have proposed to embed machine-learning techniques into a computer-aided
system, such as medical diagnosis system [1–4]. Andres et al. [5] proposed an ensemble of fuzzy system
and evolutionary algorithm for breast cancer diagnosis, which can evaluate the confidence level to
which the system responds and clarifies the working mechanism of how it derives its outputs. Huang
et al. [6] constructed a hybrid SVM-based strategy with feature selection to find the important
risk factor for breast cancer. Generally speaking, without domain-specific expertise in medicine,
researchers in data mining prefer models with high classification accuracy and low computational
complexity. In contrast, common people (including patients and their relatives) hope that the models
can have high-level interpretability simultaneously. Bayesian network classifiers (BNCs) are such
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models that can graphically describe the conditional dependence between attributes (or variables)
and be considered to be one of the most promising graph models [7,8]. It can mine statistical
knowledge from data and infer under conditions of uncertainty [9,10]. BNCs, from 0-dependence
Naive Bayes (NB) [11] to 1-dependence tree augmented Naive Bayes (TAN) [12], then to arbitrary
k-dependence Bayesian classifier (KDB) [13], can represent the knowledge with complex or simple
network structure. KDB can theoretically represent conditional dependence relationships of arbitrary
complexity. However, this approach is not effective for some specific cases. The model learned from
training data may not definitely fit all testing instances. Otherwise, its bias and variance will always be
0, which is against the bias-variance dilemma [14]. In the case of breast cancer, for different specific
cases, the dependence relationships between attributes may be different. For BNCs, conditional
mutual information (CMI) [15], I(Xi; Xj|C), is commonly used to measure the conditional dependence
relationship between attributes Xi and Xj given class variable C :

I(Xi; Xj|C) = ∑
xi∈Xi

∑
xj∈Xj

∑
c∈C

P(xi, xj, c)log
P(xi, xj|c)

P(xi|c) ∗ P(xj|c)

= ∑
xi∈Xi

∑
xj∈Xj

∑
c∈C

I(xi; xj|c).
(1)

I(Xi; Xj|C) can measure the conditional dependence between attributes between attributes Xi and
Xj given class C. Correspondingly, I(xi; xj|c) can measure the conditional dependence between them
when they take specific values. When P(xi, xj|c) > P(xi|c) ∗ P(xj|c) or log(P(xi, xj|c)/(P(xi|c) ∗
P(xj|c)) > 0, I(xi; xj|c) > 0 holds and the relationship between attribute values xi and xj can
be considered to be conditional dependence. In contrast, when P(xi, xj|c) < P(xi|c) ∗ P(xj|c) or
log(P(xi, xj|c)/(P(xi|c) ∗ P(xj|c)) < 0, I(xi; xj|c) < 0 holds and we argue that the relationship between
attribute values xi and xj can be considered to be conditional independence. When P(xi, xj|c) =

P(xi|c) ∗ P(xj|c) and I(xi; xj|c) = 0, the relationship between attribute values xi and xj just turns from
conditional dependence to conditional independence. On dataset WBC (breast cancer), I(X1; X2|C)
achieves the largest value of CMI (0.4733) among all attribute pairs. The distribution of I(xi; xj|c),
which correspond to different attribute value pairs of X1 and X2, are shown in Figure 1. As shown
in Figure 1, the relationship between attributes X1 and X2 is dependent in general because the positive
values of I(x1; x2|c), which represent conditional dependence, have a high proportion among all the
values. In addition, some I(x1; x2|c) values are especially large. In contrast, there also exist some
negative values of I(x1; x2|c) that represent conditional independence, i.e., the dependence relationship
may be different rather than invariant when attributes take different values. However, general BNCs
(like NB, TAN and KDB), which only build one model to fit training instances, cannot capture this
difference and cannot represent the dependence relationships flexibly.

To meet the needs of experts in machine learning or in medicine, common people (including
patients and their relatives) and the problem of breast cancer mentioned above, we propose a novel
sorting strategy and extend KDB from a single restricted network to unrestricted ensemble networks,
i.e., unrestricted k-dependence Bayesian classifier (UKDB), in terms of Markov blanket analysis and
target learning. Target learning [16] is a framework that takes each unlabeled testing instance P as
a target and builds a specific Bayesian model BNCP to complement BNCT learned from training
data T .

To clarify the basic idea of UKDB, we introduce two concepts: “Domain knowledge”,
which expresses a general knowledge framework learned from the training data, it focuses
on describing interdependencies between attributes, such as attribute A1 and B1. In addition,
“Personalized knowledge”, which expresses a specific knowledge framework learned from the attribute
values in the testing instance, such as attribute A1 = a1 and B1 = b1. Take breast cancer as an example,
there is a strong correlation between attributes “Clump Thickness” and “Uniformity of Cell Size”
(corresponding CMI achieves the maximum value, i.e., 0.4733), which can be considered to be the
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domain knowledge. In contrast, for a testing instance with attribute values “Clump Thickness = 1”
and “Uniformity of Cell Size = 3”, the dependence relationship between those attribute values is
approximately independent (corresponding value of CMI is 0.0002), which can be regarded as the
personalized knowledge. The personalized knowledge with clear expressivity (capacity to respectively
describe dependence relationships between attributes in different situations.) and tight coupling
(capacity to describe the most significant dependencies between attributes.) makes ever more urgent
the quest for highly scalable learners.
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Figure 1. The distribution of I(xi; xj|c) between attributes X1 and X2 on dataset WBC.

UKDB contains two sub-models: UKDBT and UKDBP . UKDBT is learned from training data T ,
which can be thought of as a spectrum of dependencies and is a statistical form of domain knowledge.
UKDBP is a specific BNC to mine the personalized knowledge implicated in each single testing instance
P , i.e., the specific knowledge that describes the conditional dependency between the attribute values
in each single testing instance P . UKDBP and UKDBT apply the same strategy to build the network
structure, but they apply different probability distributions and target different data spaces, thus they
are complementary in nature, i.e., in contrast to restricted BNC, e.g., KDB, UKDB can discriminatively
learn different unrestricted Bayesian network structures to represent different knowledge from training
dataset and testing instance, respectively.

The Wisconsin breast cancer (WBC) database [17] is usually used as a benchmark dataset [1–4]
and is also selected in our main experiments for case study to demonstrate personalized Bayesian
networks (BN) structures. The case study on the WBC database, as well as an extensive experimental
comparison on additional 10 UCI datasets by involving some benchmark BNCs, show the advantages
of the proposed approach.

2. Bayesian Network and Markov Blanket

All the symbols used in this paper are shown in Table 1. We wish to build a Bayesian network
classifier from labeled training dataset T such that the classifier can estimate the probability P(c|x) and
assign a discrete class label c ∈ ΩC to a testing instance x = (x1, · · · , xn). BNs are powerful tools for
knowledge representation and inference under conditions of uncertainty. A BN consists of two parts:
the qualitative one in the form of a directed acyclic graph. Each node of the graph represents a variable
in the training data and the directed edges between pairs of nodes represent dependence relationships
between them; and the quantitative one based on local probability distributions for specifying the
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dependence relationships. Even though BNs can deal with continuous variables, we exclusively discuss
BNs with discrete nodes in this paper. Directed edges represent statistical or causal dependencies
among the variables. The directions are used to define the parent-children relationships. For example,
given an edge X → Y, X is the parent node of Y, and Y is the children node.

Table 1. List of symbols used.

Notation Description

P(·) probability estimation
Xi predictive attribute (or variable)
xi discrete values for attribute Xi
x = (x1, · · · , xn) an instance of n-dimensional vector
C class variable
c discrete values for C
ΩC set of labels of the class variable C
N number of training instances
M number of testing instances
n number of predictive attributes
D = (< x1, c1 > · · · ,< xN , cN >) training dataset
< xi, ci > the i-th training instance with the corresponding class label

A node is conditionally independent of every other node in the graph given its parents (Xp),
its children (Xc), and the other parents of its children (Xcp). {Xp, Xc, Xcp} forms the Markov blanket
of the node [7], which contains all necessary information or knowledge to describe the relationships
between that node and other nodes. BNCs are special type of BNs. By applying different learning
strategies, BNCs encode the dependence relationships between predictive attributes X = {X1, · · · , Xn}
and class variable C. Thus, the Markov blanket for variable C can provide the necessary knowledge
for classification.

Suppose that X is divided into three parts, i.e., X = {Xp, Xc, Xcp}, the joint probability distribution
P(x, c) can be described in the form of chain rule,

P(x, c) = P(xp, xcp, xc, c)

= P(xp)P(c|xp)P(xcp|xp, c)P(xc|xcp, xp, c)
(2)

The unrestricted BNC shown in Figure 2, which corresponds to (2), is a full Bayesian
classifier (i.e., no independencies). The computational complexity in such an unrestricted model
is an NP-hard problem.

Xc

p

cp

C X

X

Figure 2. Unrestricted Bayesian classifier corresponding to joint probability distribution.

NB is the simplest of the BNCs. Given the class variable C, the predictive attributes are supposed
to be conditionally independent of one another, i.e.,

PNB(x|c) =
n

∏
i=1

P(xi|c). (3)
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Even though the supposition rarely holds, its classification performance is competitive to some
benchmark algorithms, e.g., decision tree, due to the insensitivity to the changes in training data and
approximate estimation of the conditional probabilities P(xi|c) [10]. Figure 3 shows the structure
of NB. In contrast to Figure 2, there exists no edge between attribute nodes for NB and thus it can
represent 0 conditional dependencies. It is obvious that the conditional independence assumption is
too strict to be true in reality. When dealing with complex attribute dependencies, that will result in
classification bias.

......

XXX
1 n2

C

Figure 3. An example of Naive Bayes.

TAN relaxes the independence assumption and extends NB from 0-dependence tree to
1-dependence maximum weighted spanning tree [12]. The joint probability for TAN turns to be

PTAN(x, c) = P(c)P(x1|c)
n

∏
i=2

P(xi|c, xj), (4)

where Xj is the parent attribute of Xi. The constraint on the number of parents intensively requires
that only the most significant, i.e., 0 + 1 + · · ·+ 1 = n− 1, conditional dependencies are allowed to be
represented. By comparing CMI, the edge between Xi and Xj will be added to the network in turn
to build a maximal spanning tree. Once the conditional independence assumption does not hold,
TAN is supposed to achieve better classification performance than NB. An example of TAN is shown
in Figure 4.

......

X
1

X2 X3 Xn
Xn-1

C

Figure 4. An example of Tree augmented Naive Bayes.

KDB can represent arbitrary degree of dependence and control its bias/variance trade-off with
a single parameter, k. By comparing mutual information (MI) I(Xi; C) [15], attributes will be sorted in
descending order and enter the network structure in turn.

I(Xi; C) = ∑
xi∈Xi

∑
c∈C

P(xi, c)log
P(xi, c)

P(xi)P(c)
(5)
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To control the structure complexity, each attribute Xi is required to have no more than k parent
attributes. Thus, for any of the first k + 1 attributes in the order, they will indiscriminately select all
the attributes already in the model as its parents. For the other attributes, they will select k parent
attributes which correspond to the highest values of I(Xi; Xj|C) where Xj ranks before Xi.

Suppose that the attribute order is {X1, · · · , Xn}, the joint probability for KDB turns to be

PKDB(x, c) = P(c)
n

∏
i=1

P(xi|c, πxi ) (6)

where πxi = {Xi1 , · · · , Xij} are the j parent attributes of Xi in the structure, where j = min{i −
1, k}. KDB can represent nk − k2

2 −
k
2 conditional dependencies. When k = 1, KDB represents the

same number of conditional dependencies of TAN. As k increases, KDB can represent increasingly
conditional dependencies. Figure 5 shows an example of KDB when k = 2.

......

X
1

X2 X3
Xn-1 Xn

C

Figure 5. An example of k-dependence Bayesian classifier when k = 2.

Since KDB can be extended to describe dependence relationships of arbitrary degree and
thus demonstrates its flexibility, researchers proposed many important refinements to improve its
performance [18–21]. Pernkopf and Bilmes [22] proposed a greedy heuristic strategy to determine
the attribute order by comparing I(C; Xi|Xj) where Xj ranks higher than Xi in the order, i.e., i > j.
Taheri et al. [23] proposed to build a dynamic structure without specifying k a priori, and they proved
that the resulting BNC is optimal.

3. The UKDB Algorithm

According to generative approach, the restricted BNCs, which take class variable C as the common
parent of all predictive attributes, define a unique joint probability distribution P(x, c) in the form of
chain rule of lower-order conditional probabilities,

P(x, c) = P(c)P(x1|c)P(x2|x1, c) · · · P(xn|x1, · · · , xn−1, c). (7)

The corresponding classification rule is

c∗ = arg max P(x, c) = arg max P(c)P(x1|c) · · · P(xn|x1, · · · , xn−1, c). (8)

To maximize P(x, c), an ideal condition is that each factor P(xi|x1, · · · , xi−1, c) will be maximized.
In other words, Xi should be strongly dependent on its parents, especially on class variable C.
Given limited number of training instances, the reliability of conditional probability estimation
P(xi|Πi, c) will increase as the dependence relationships between Xi and its parent attributes
increases. To achieve the trade-off between classification performance and structure complexity,
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only limited number of dependence relationships will be represented by BNs, e.g., KDB. In addition,
the classification rule for KDB turns to be

c∗ = arg max P̂(x, c) = arg max P(c)
n

∏
i=1

P(xi|Πi, c), (9)

where Πi is one subset of {X1, · · · , Xi−1} and contains at most k attributes. Obviously, P(x, c) 6= P̂(x, c).
No matter what the attribute order is, the full BNC represents the same joint distribution, i.e., P(x, c).
In contrast, from Equation (8) we can see that for different attribute orders, the candidate parents
for Xi may differ greatly. The joint distributions P̂(x, c) represented by KDBs learned from different
attribute orders may not surely be same. The key issue for structure learning of restricted BNC is how
to describe the most significant conditional dependence relationships among predictive attributes,
or more precisely, the relationships between Xi and its parent attribute Xj (i > j). However for
KDB, the attributes are sorted in descending order of I(Xi; C), which only considers the dependence
relationship between Xi and class variable C while neglecting the conditional dependence relationships
between Xi and its parents. If the first few attributes in the order are relatively independent of each
other, the robustness of the network structure will be damaged from the beginning of structure learning.
To address this issue, UKDB selects the parents of variable C, or Xp, which are also the parents of the
other attributes from the viewpoint of Markov blanket. In addition, there exist strong conditional
dependence relationships between Xp and the other attributes. On the other hand, k corresponds to
the maximum allowable degree of attribute dependence, thus the number of attributes in Xp is k.

Suppose that attribute set Xp contains k attributes {Xn−k+1, · · · , Xn} and the order of attributes
in X is {Xp, X1, · · · , Xn−k}, Formula (7) can be rewritten in another form,

P(x, c) = P(xp)P(c|xp) · · · P(xn−k|xp, x1, · · · , xn−k−1, c) (k ≥ 1) (10)

The relationships between Xi and its parents corresponding to Equations (7) and (10) are shown
in Table 2.

Table 2. The relationships between Xi and its parents corresponding to the restricted and
unrestricted BNC.

Relationships in the Restricted BNC Relationships in the Unrestricted BNC

Xi Πi Xi Πi

C { } C {Xp}
X1 {C} X1 {Xp, C}
X2 {X1, C} X2 {Xp, X1, C}
X3 {X1, X2, C} X3 {Xp, X1, X2, C}
...

...
...

...
Xn {X1, X2, · · · , Xn−1, C} Xn−k {Xp, X1, · · · , Xn−k−1, C}

Since P(xp) is irrelevant to the classification, then

P(c, x) ∝ P(c|xp)P(x1|xp, c) · · · P(xn−k|xp, x1, · · · , xn−k−1, c) (11)

Thus, UKDB uses the following formula for classification,

c∗ = arg max P̌(x, c) = arg max P(c|xp)
n−k

∏
i=1

P(xi|Π̌i, c), (12)

where Π̌i is one subset of {Xp, X1, · · · , Xi−1} and contains k attributes. For any attribute Xi (Xi ∈ Xp),
Xi is the parent of the other attributes, then there should exist strong conditional dependencies, or tight
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coupling, between them. To this end, we sort the attributes by comparing the sum of CMI. To express
this clearly in the following discussion, we sort the attributes by comparing the sum of CMI (SCMI)
and SCMI(Xi) = ∑j I(Xi; Xj|C)(Xi 6= Xj). The first k attributes in the order with the largest SCMI are
selected as Xp. To control the structure complexity, UKDB also require that Xi should select at most
k parents from Πi as shown in Table 2. The attribute sets Xc and Xcp will be determined thereafter.
Figure 6 shows two examples of UKDB when k = 1 and k = 2.

... ...

C

X
1

Xp C

Xn-1

Xn-1

X
2

X
3

X
1

Xn-2X
2

X
3

Xn XnXp

(a) k = 1. (b) k = 2.

Figure 6. Two examples of UKDB when k = 1 and k = 2.

In the real world, when attributes take different values the same dependence relationships
between them may lead to wrong diagnosis or therapy. Considering attributes Sex and Pregnant,
Sex = “Female” and Pregnant = “Yes” are highly related, whereas Sex = “female” and Pregnant = “No”
also hold for some instances. Obviously, treatment of breast cancer during pregnancy should be
different to that during non-pregnancy. CMI can weigh the conditional dependency between Sex and
Pregnant, but cannot discriminately weigh the dependencies when these two attributes take different
values. Target learning takes each testing instance P = {x1, · · · , xn, c =?} as a target and tries to mine
the dependence relationships between these attribute values [16]. From Equations (1) and (5), we have
the following equations: 

I(Xi; C) = ∑
xi∈Xi

I(xi; C)

I(Xi; Xj|C) = ∑
xi∈Xi

∑
xj∈Xj

I(xi; xj|C)
(13)

where 
I(xi; C) = ∑

c∈C
P(c, xi) log P(c, xi)

P(c)P(xi)

I(xi; xj|C) = ∑
c∈C

P(xi, xj, c) log
P(xi, xj|c)

P(xi|c)P(xj|c)
(14)

The definitions of MI and CMI are measures of the average dependence between
attributes implicated in the training data. In contrast to those, local mutual information
(LMI) I(xi; C) and conditional local mutual information (CLMI) I(xi; xj|C) can weigh the direct
dependence and conditional dependence relationships between attribute values implicated in each
instance [16,24]. Similarly, we sort the attribute values by comparing the sum of CLMI (SCLMI) and
SCLMI(xi) = ∑j I(xi; xj|C)(xi 6= xj).

For Bayesian inference, LMI refers to the event when Xi = xi and can be used to measure the
expected value of mutual dependence between Xi and C after observing that Xi = xi. CLMI can be
used to weigh the conditional dependence between attribute values xi and xj while considering all
possible values of variable C.

From Equations (1) and (5), to compute I(Xi; C) or I(Xi; Xj|C), all possible values of attribute
Xi need to be considered. If there exist missing or unknown value for attribute Xi and Xj in any
instance, they will be replaced by some values and noise may be artificially introduced into the
computation of I(Xi; C) or I(Xi; Xj|C). These missing or unknown values are regarded as noisy
because the conditional dependence relationships between them and other non-noisy attribute values
may be incorrectly measured. If the noisy part only account for a small portion of the non-noisy part,
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the dependence relationships learned from training data may be still of high-confidence level and the
network structure of UKDBT may be still robust. In contrast, from the definitions of LMI and CLMI
(Equation (14)) we can see that for specific instance x, to compute I(xi; C) or I(xi; xj|C) only these
attribute values in x need to be considered. The computation of I(xi; C) or I(xi; xj|C) concerning noisy
values will not be needed. Thus, neglecting these noisy conditional dependence relationships may
make the network structure of UKDBP more robust.

We propose to use the Markov blanket and target learning to build an ensemble of two unrestricted
BNCs, i.e., UKDBT and UKDBP . UKDBT and UKDBP learn from different parts data space and their
learning procedures are almost the same, thus they are complementary in nature. In the training
phase, by calculating MI and CMI, UKDBT describes the global conditional dependencies implicated
in training data T . Correspondingly, in the classification phase, by calculating LMI and CLMI, UKDBP
describes the local conditional dependencies implicated in unlabeled testing instance P . Breiman [25]
revealed that ensemble learning brings improvement in accuracy only to those “unstable” learning
algorithms, in the sense that small variations in the training set would lead them to produce very
different models. UKDBT and UKDBP are such algorithms. UKDBT tries to learn the certain domain
knowledge implicated in training dataset, whereas the domain knowledge may not describe the
conditional dependencies in testing instance P . It may cause overfitting on the training set and
underfitting on the testing instance. In contrast, UKDBP can describe the conditional dependencies
implicated in testing instance P , whereas the personalized knowledge is uncertain since the class
label of P is unknown. It may cause underfitting on the training set and overfitting on the testing
instance. Thus, an ensemble of UKDBT and UKDBP may be much more appropriate for making the
final prediction.

The learning procedures of UKDBT is described by Algorithm 1 as follows:

Algorithm 1: The UKDBT algorithm
Input: Training set T with attributes {X1, · · · , Xn}, k.
Output: The BN of UKDBT .

1 Let Bayesian network BN = {N ,A}, where N denotes the node set and A the edge set.
2 Calculate SCMI and sort predictive attributes into list L in descending order of SCMI.
3 Calculate MI and sort predictive attributes into list L̂ in descending order of MI.
4 Let Ľ = {L1, · · · ,Lk, L̂1, · · · , L̂n−k}.
5 N = {C}; A = ∅;
6 for i = 1→ k do
7 N = N ∪ Ľ[i];
8 A = A∪ (Ľ[i]→ C);
9 end

10 for i = k + 1→ n do
11 N = N ∪ Ľ[i];
12 A = A∪ (C → Ľ[i]);
13 S = ∅;
14 k̂ = k;
15 while (k̂ > 0) do
16 m = arg maxj{I(Ľ[i]; Ľ[j]|C) : 1≤j<i, j /∈ S};
17 k̂ = k̂− 1;
18 S = S ∪ {m};
19 A = A∪ (Ľ[m]→ Ľ[i]);
20 end
21 end
22 return BN
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Since the class label of testing instance P is unknown, we can get all possible class labels
from training set T . Assume that the probability the testing instance P in class c is 1/m for each
c ∈ {c1, · · · , cm}, there will be m “pseudo” instances. By adding these m “pseudo” instances to training
set T , we can estimate the joint or conditional probabilities between arbitrary attribute value pairs by
using Equation (14) to achieve the aim of learning conditional independence from a testing instance P .

The learning procedures of UKDBP is shown in Algorithm 2, where “?” is represented the missing
value in the dataset. To estimate the marginal and joint probabilities P(c), P(xi, c) and P(xi, xj, c),
at training time UKDB needs one pass through the training data to collect the base statistics of
co-occurrence counts. Calculating MI and CMI respectively need O(Nmnv) and O(Nm(nv)2) time,
where N is the number of training instances, m is the number of classes, n is the number of attributes
and v is the number of values that discrete attributes may take on average. The procedure of parent
assignment for each attribute needs O(n2logn). Thus, the time complexity for UKDBT to build the
actual network structure is O(Nm(nv)2). Since UKDBP only needs to consider the attribute values
in the testing instance, calculating LMI and CLMI respectively need O(Nmn) and O(Nmn2) time.
The procedure of parent assignment for each attribute in UKDBP needs the same time, O(n2logn).
Thus, the time complexity for UKDBP is only O(Nmn2). UKDBT and UKDBP use different variations
of P(x, c) to classify each single instance and corresponding time complexities are the same, O(mnk).

Algorithm 2: The UKDBP algorithm
Input: Testing instance P = {x1, · · · , xn}, k.
Output: The BN of UKDBP .

1 Let Bayesian network BN = {N ,A}, where N denotes the node set and A the edge set.
2 Calculate SCLMI and sort predictive attribute values into list L in descending order of SCLMI.
3 Calculate LMI and sort predictive attribute values into list L̂ in descending order of LMI.
4 Let Ľ = {L1, · · · ,Lk, L̂1, · · · , L̂n−k}.
5 N = {C}; A = ∅;
6 for i = 1→ k do
7 if (Ľ[i] 6=′?′) then
8 N = N ∪ Ľ[i];
9 A = A∪ (Ľ[i]→ C);

10 end
11 end
12 for i = k + 1→ n do
13 if (Ľ[i] 6=′?′) then
14 N = N ∪ Ľ[i];
15 A = A∪ (C → Ľ[i]);
16 S = ∅;
17 k̂ = k;
18 for i = k + 1→ n do
19 m = arg maxj{I(Ľ[i]; Ľ[j]|C) : 1≤j<i, j /∈ S};
20 k̂ = k̂− 1;
21 S = S ∪ {m};
22 A = A∪ (Ľ[m]→ Ľ[i]);
23 end
24 end
25 end
26 return BN
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UKDBT learned from training data T describes the general conditional dependencies,
thus UKDBT corresponds to the domain knowledge that may be suitable for most cases. In contrast,
UKDBP learned from testing instance P describes local conditional dependencies with uncertainty
because all class labels are considered, thus UKDBP corresponds to the personalized knowledge that
may be suitable for P only [16].

When facing an expected case, it is difficult to judge which kind of knowledge should be
considered in priority. Precision knowledge may provide some statistical information that the expert
does not recognize and help him use the domain knowledge to confirm or rule out the decision. For
different cases, the weights of UKDBP and UKDBT may differ greatly. In this paper, without any prior
knowledge we simply use the uniformly weighted average instead of the nonuniformly weighted one.
The final probability estimate for the ensemble of UKDBT and UKDBP is,

P̂(c|x) = P(c|x, UKDBT ) + P(c|x, UKDBP )
2

.

4. Results and Discussion

4.1. Data

Breast cancer is the leading life-threatening cancer for women, especially for those aged between
40 and 55 in US and Europe [26]. American Cancer Society (ACS) estimated that [27], in 2017 about
252,000 women were diagnosed with invasive breast cancer and over 60,000 with noninvasive breast
cancer. Sometimes it is too late for those women to be treated since no obvious symptoms appear before
the diagnosis and among them about 12.8% will die of breast cancer after diagnosis [27]. Thus, there is
strong demand for improved classification/detection systems in medical science community.

Dr William H. Wolberg collected data relevant to breast cancer during his stay at the University
of Wisconsin-Madison Hospitals from 1989 to 1991, and provided the data to the UCI repository of
machine learning [17]. This WBC database is relatively small, containing only 699 instances of breast
cancer. In this database, 458 (65.5%) instances are benign and 241 (34.5%) instances are malignant.
Each instance has 10 predictive attributes and the detailed introduction of the 10 attributes is shown
in Table 3. Please note that some instances have missing values. In addition, attribute “Sample code
number” is not considered in experimental study because it represents the id number and is not helpful
for classification.

Table 3. Attributes in WBC database.

Attribute Type Explanation Symbol

Sample code number Discrete code number −−
Clump Thickness Discrete [1,10] X1
Cell Size Discrete [1,10] X2
Cell Shape Discrete [1,10] X3
Marginal Adhesion Discrete [1,10] X4
Epithelial Cell Size Discrete [1,10] X5
Bare Nuclei Discrete [1,10] X6
Bland Chromatin Discrete [1,10] X7
Normal Nucleoli Discrete [1,10] X8
Mitoses Discrete [1,10] X9
Class Binary 2 for benign, C

4 for malignant

In the last decade, larger datasets are not scarce resources anymore [28–30]. Larger data quantities
can help make the estimation of conditional probabilities more accurate. BNCs need higher-degree
representation of attribute dependence and more accurate estimation of probability distribution to deal
with them. Ten large datasets (size > 3000) with different number of attributes (n ≥ 10) are selected
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from the UCI repository of machine learning [17] for experimental study. Table 4 describes the details
of each dataset, including the number of instances, attributes and classes.

Table 4. Datasets.

No. Dataset Instance Attribute Class

1 Hypothyroid 3163 25 2
2 Chess 3196 36 2
3 Dis 3772 29 2
4 Sick 3772 29 2
5 Spambase 4601 57 2
6 Musk 6598 166 2
7 Mushroom 8124 22 2
8 Magic 19,020 10 2
9 Adult 48,842 14 2
10 Census-Income 299,285 41 2

4.2. Evaluation Function

In machine learning, zero-one loss [31] is one of the standard measures for evaluating the
classification performance. The bias-variance decomposition [32] for zero-one loss can help analyze
the expected generalization error of trained models. To achieve bias-variance trade-off is a key issue
in supervised learning. Zero-one loss can measure the extent to which a classifier correctly identifies
the class label of an unlabeled instance. Given M testing instances, the zero-one loss function can be
calculated as follows:

ξ(c, ĉ) =
∑M

i=1{1− δ(ci, ĉi)}
M

, (15)

where ci and ĉi are respectively the true class label and predicted label of the i-th instance, besides
δ(ci, ĉi) = 1 if ci = ĉi and 0 otherwise. While dealing with highly imbalanced datasets where “positive”
class has very low proportion as compared to the “negative” class, F1 score can help to judge whether
the classifier tends to be biased towards the majority class or not. The F1 score is defined as follows,

F1 =
2TP

2TP + FP + FN
(16)

where TP is equal to the number of positive instances that have been classified correctly, FP and FN
are equal to the numbers of positive instances that have been misclassified and the numbers of negative
instances that have been misclassified.

We also has been introduced the ROC (Receiver Operating Characteristics) cure [33,34] to evaluate
performance of machine-learning algorithms. The ROC curve is created by plotting the true-positive
rate (TPR) against the false-positive rate (FPR) at various threshold settings. The TPR is also known
as sensitivity or recall in machine learning. The FPR is also known as the fall-out or probability of
false alarm and can be calculated as (1 - specificity), where specificity is the true negative rate (TNR).
All formula involved are defined as follows:

TPR =
TP

TP + FN
(17)

TNR =
TN

TN + FP
(18)

FPR =
FP

FP + TN
= 1− TNR (19)
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We compared the proposed algorithm when k = 1, 2 with several benchmark classifiers [12,13,23]
that were presented in the literature. The statistical results of all evaluated functions using 20 rounds
of 10-fold cross validation are shown in Table 5. For each fold, 9/10 of the data was used for training
and 1/10 of the data was used for testing. In addition, all experiments have been conducted on
a desktop computer with an Intel(R) Xeon(R) CPU X5680 @ 3.33GHz, 64 bits and 8192 MiB of memory.
In addition, for training data, missing values for qualitative attributes are replaced with modes and
those for quantitative attributes are replaced with means from the training data [35–37]. In addition,
for testing data, UKDBP proposes a natural way for dealing with missing values, not considering the
dependence relationships related to missing values. The negative effect caused by missing values
for UKDBP can be mitigated by removing noisy dependence relationships, and the learned network
structure may be more robust.

Sampling is one of the main methods used for handling the problem of imbalanced dataset,
which follows two different approaches: undersampling and oversampling [38–40]. Undersampling
methods aim to decrease the size of the majority class. On the contrary to undersampling,
oversampling algorithms tend to balance class distributions through the increase of the minority
class. Since undersampling may cause the classifier to miss important concepts pertaining to the
majority class, we conduct all experiments with oversampling. In the preprocessing stages of datasets,
we add a set of randomly selected minority instances in the set of minority class instances and augment
the original set by replicating the selected instances and adding them to it. In this way, the number of
total instances in the set of minority class instances is increased and the class distribution balance is
adjusted accordingly.

We also employ the Win/Draw/Loss records to summary the experimental results. Cell[i, j] in
each table contains the number of datasets for which the BNC on the ith-row performs better (Win),
equally well (Draw) or worse (Loss) than the other on the jth-column. In the following experiments,
we assess a difference as significant if the outcome of a one-tailed binomial sign test is less than 0.05.

Table 5. Comparison of various algorithms from literature based on the WBC dataset.

Algorithms Reference Zero-One Loss F1 Score

NB Duda and Hart et al. (1973) [11] 0.0258 0.8006
TAN Friedman et al. (1997) [12] 0.0429 0.7858
KDB (k = 1) Sahami (1996) [13] 0.0485 0.7865
KDB (k = 2) Sahami (1996) [13] 0.0521 0.7869
UKDB (k = 1) 0.0301 0.7917
UKDB (k = 2) 0.0385 0.7932

4.3. Experimental Study on WBC Dataset

From Table 5 we can see that except NB, UKDB (k = 1) has a remarkably obvious prediction
superiority compared to the other algorithms in terms of zero-one loss and UKDB (k = 2) achieves
slightly improved F1 score than other algorithms. Although NB achieves lower errors than other
algorithms on WBC, it is just a special case. As Sahami [13] argued that there would be expected to
achieve optimal Bayesian accuracy if more “right” dependencies are captured. In most cases, BNCs
with simple structure perform worse than those with complex structure. We will further demonstrate
it in the Section 4.4.3.

UKDBT , which is learned from all training instances, can describe the general conditional
dependence relationships. However, it is not all the dependence relationships but only some of
them that may hold for a certain instance. In contrast, UKDBP can encode the most possible local
conditional dependencies implicated in one single testing instance. UKDB can use the knowledge
learned from the training set and testing instances by applying the aggregating mechanism. If UKDBT
and UKDBP are complementary to each other for classification, an ideal phenomenon is that they focus
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on different key points. To prove this, we take an instance from WBC dataset for case study, and the
detail of the instance is shown as follows,

P = {x1 = 9, x2 = 5, x3 = 8, x4 = 1, x5 = 2, x6 = 3, x7 = 2, x8 = 1, x9 = 5}

By comparing MI I(Xi; C), X̄ = {X2, X3, X6} are the first three key attributes for UKDBT . Whereas
by comparing I(xi; C), X̂ = {X4, X5, X8} are the first three for UKDBP . The marginal probabilities of
each attribute value in P are shown in Table 6. From Table 6, for any attribute value xi (Xi ∈ X̂) and
xj (Xj ∈ X̄), P(xi) > P(xj) always holds. Then for attribute Xk, it is more possible that P(xk|xi, c) >
P(xk|xj, c)(k 6= i and k 6= j). To maximize the joint probability P(x, c), as (10) suggests, an ideal
condition is that each underlying conditional probability will be maximized. Obviously, UKDBP can
achieve a much more reasonable attribute order.

Table 6. Attribute values in P and corresponding marginal probabilities.

xi x1 = 9 x2 = 5 x3 = 8 x4 = 1 x5 = 2 x6 = 3 x7 = 2 x8 = 1 x9 = 5

P(xi) 0.0200 0.0429 0.0401 0.5823 0.5522 0.0401 0.2375 0.6338 0.0086

Generally, as Figure 7 shows, dependency types in BNCs can be divided into two types: one is the
direct dependence relationship (indicated in the Figure 7a by the solid line), such as the relationships
between variables U and V; another is the conditional dependence relationship (indicated in the
Figure 7b by the dotted line), such as the relationships between variables V and W given U. To interpret
the effect of dependency types to UKDB, a simulation study has been carried out on dataset WBC.

V

U

(a) Direct dependency. (b) Conditional dependency.

V W

U

Figure 7. The dependency types in BNCs.

Figures 8 and 9 respectively show the network structures of UKDBT and UKDBP on dataset WBC
when k = 1, where UKDBP is based on testing instance P . The parent attribute of class variable is
annotated in black. We can see clearly the differences in direct and conditional dependencies between
them. For UKDBT , attribute X8 and class C have direct dependence relationships with other attributes,
and X2 is the key attribute that has conditional dependence relationships with almost all the other
attributes. In contrast, for UKDBP , X3 and C have direct dependence relationships with other attributes,
and X4 plays the main role instead and is the common parent of only 3 out of 8 other attributes.
In Figure 10 another structure is presented for the testing instance P ′ = {5, 3, 3, 3, 6, 10, 3, 1, 1} that
is different from the structure obtained for instance P = {9, 5, 8, 1, 2, 3, 2, 1, 5}. These examples
illustrate the personalized structure (e.g., Figure 9) generated from our targeted learning for given
testing instance are discriminative not only with the domain structure (e.g., Figure 8) but also other
personalized structure (e.g., Figure 10) learned from other testing instance. In the next section, we will
prove that the ensemble of these discriminative BNCs can use the knowledge learned from the training
set and testing instances to achieve better classification performance.
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Figure 8. The network structure of UKDBT corresponding to breast cancer dataset.
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Figure 9. The network structure of UKDBP corresponding to testing instance P = {9,5,8,1,2,3,2,1,5} in
breast cancer dataset.
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Figure 10. The network structure of UKDBP corresponding to testing instance P ’ = {5,3,3,3,6,10,3,1,1}
in breast cancer dataset.

4.4. Further Experiments on Other Datasets

4.4.1. The Effect of Values of k

We firstly compared the classification performance of KDB and UKDB with the same values of k.
Since the restrictions of currently available hardware place some requirements on the software and
the complexity of the probability table increases exponentially as k increases, to achieve the trade-off
between classification performance and efficiency, we respectively compared KDB and UKDB with
k = 1 and k = 2 on 10 datasets (described in Table 4). The detailed results in terms of zero-one loss can
be found in Table A1 in Appendix A.
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As shown in Table 7, for UKDB, the model with k = 2 achieves significant advantages over the
one with k = 1 and results in Win/Draw/Loss of 6/2/2. In addition, there are only two datasets,
i.e., Dis and Mushroom, have larger results of zero-one loss with UKDB, which indicates that UKDB
(k = 2) seldom performs worse than UKDB (k = 1). In addition, for many datasets, UKDB (k = 2)
substantially improved the classification performance of UKDB (k = 1), for example, the decrease from
0.0644 to 0.0414 for the datasets Adult.

Table 7. Win/Draw/Loss comparison results of UKDB (k = 1) and UKDB (k = 2) in terms of
zero-one loss.

Win/Draw/Loss UKDB (k = 1)

UKDB (k = 2) 6/2/2

4.4.2. The Effect of Missing Values

As mentioned above, for training data, missing values for qualitative attributes are replaced
with modes and those for quantitative attributes are replaced with means from the training
data [35–37]. In addition, for testing data, UKDBP proposes a natural way for dealing with missing
values, not considering the dependence relationships related to missing values. The negative effect
caused by missing values for UKDBP can be mitigated by removing noisy dependence relationships,
and the learned network structure may be more robust.

In this section, to prove that UKDB has the ability to mitigate the negative effect caused by missing
values in testing instance, we also present a simulation experiment to investigate the effect of missing
values to UDKB. We choose datasets with no missing values from Table 4. In addition, there are three
datasets satisfying this conditions, i.e., Chess, Magic and Spambase. To compare the algorithm on
a controlled situation, when classifying testing instances, we manually and randomly delete 5% of
attribute values in each instance.

Table 8 shows the detailed results of UKDB (k = 2) on two sets of data with and without missing
values in terms of zero-one loss. As can be seen, although some attribute values of testing instances
have been deleted, the results of zero-one loss on these 3 datasets are similar to the one without
missing values (we assess a difference as significant if the outcome of a one-tailed binomial sign test is
less than 0.05), i.e., UKDB has the ability to mitigate the negative effect caused by missing values in
testing instance.

Table 8. Detailed results of UKDB (k = 2) on two sets of data with and without missing values in
terms of zero-one loss.

Results with Missing Values Results without Missing Values

Chess 0.04247 ± 0.0071 0.0414 ± 0.0061
Magic 0.2001 ± 0.0203 0.1987 ± 0.0101
Spambase 0.0760 ± 0.0153 0.0732 ± 0.0144

4.4.3. The Effect of Criterion Used to Measure the Strength of the Dependence between the Variables

Our proposed algorithm, UKDB, is using MI and CMI (or LMI and CLMI) to measure the strength
of the dependence between attributes. Actually, UKDB could use others. Since the efficiency of
the UKDB depends on the efficiency of MI and CMI, we use another criterion, pointwise mutual
information (PMI) and pointwise conditional mutual information (PCMI) to compare and to show
in which situations MI and CMI is more (or less) efficient. In contrast to MI and CMI, PMI and
PCMI refer to single events, whereas MI and CMI refer to the average of all possible events [41].
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In computational linguistics, PMI and PCMI have been used for finding collocations and associations
between words [41]. They can be calculated as follows:

PMI(x; c) = log
P(x, c)

P(x)P(c)
. (20)

PCMI(xi; xj|c) = log
P(xi, xj|c)

P(xi|c)P(xj|c)
. (21)

Table 9 shows the Win/Draw/Loss comparison results of UKDB (k = 2) with {MI, CMI}
and {PMI, PCMI}. The corresponding detailed results can be found in Table A2 in Appendix A.
As can be seen, UKDB (k = 2) with {MI, CMI} achieves lower error more often than the one with
{PMI, PCMI}. To identify the efficiency between UKDB (k = 2) with different information-based
criteria to measure the dependence relationships between attributes, we present the results of average
running computational time for UKDB (k = 2) with {MI, CMI} and {PMI, PCMI} in Table 10.
The results in Table 10 reinforce what the orders of complexity for these two algorithms indicated,
i.e., UKDB (k = 2) with {MI, CMI} needs more time to build model than the one with {PMI, PCMI}
on most datasets. For example, on dataset Census-Income, the running computational time of UKDB
with {PMI, PCMI} is almost 1.84 times faster than the one with {MI, CMI} (as highlighted in bold in
the table). Thus, although UKDB with {PMI, PCMI} is more efficient than the one with {MI, CMI}
in terms of average running computational time, UKDB with {MI, CMI} has better classification
performance in terms of zero-one loss at the cost of increasing less computational time.

Table 9. Win/Draw/Loss comparison results of UKDB (k = 2) with {MI, CMI} and {PMI, PCMI}.

Win/Draw/Loss UKDB (k = 2) with {PMI, PCMI}
UKDB (k = 2) with {MI, CMI} 5/5/0

Table 10. The average results of running computational time for UKDB (k = 2) with {MI, CMI} and
{PMI, PCMI}.

Datasets
Time (s)

UKDB (k = 2) with {MI, CMI} UKDB (k = 2) with {PMI, PCMI}
Hypothyroid 0.1139 0.0688
Chess 0.0641 0.0368
Dis 0.1969 0.1172
Sick 0.1999 0.1203
Spambase 2.0921 1.1009
Musk 9.4360 4.7562
Mushroom 0.2656 0.1631
Magic 0.1420 0.1117
Adult 0.7436 0.5131
Census-Income 83.6734 45.5719

Total 5.2560 9.6928

4.4.4. UKDB vs. NB, TAN and KDB

Although NB ranked the highest among all algorithms on WBC database in terms of zero-one
loss and F1, the conditional independence assumption of NB is not true in most cases, furthermore,
many researchers found that general algorithm performs better than NB in most cases [12,13,18–20].
Thus, it is necessary to have more general algorithm even if NB works the best in some cases.

In this section, we will demonstrate that the advantages of UKDB are due to its flexible
high-dependence representation when dealing with large datasets. Since UKDB with k = 2 achieves
lower results of zero-one loss more often than the one with k = 1, we compare UKDB (k = 2) with
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other lower-dependence BNCs, i.e., NB (0-dependence) and TAN (1-dependence). The experimental
results of KDB (2-dependence when k = 2) are also shown for object reference. The derailed results
of the average zero-one loss, bias and variance on 10 datasets (described in Table 4) are presented in
Appendix A, respectively.

Table 11 shows the corresponding Win/Draw/Loss comparison results of different BNCs.
The results of zero-one loss in Table 11 reveal some patterns that confirm the hypothesis proposed

above. As can be seen, TAN performs better than NB on 8 datasets and never worse. KDB performs
better than TAN on 5 datasets and never worse. UKDB performs the best among all classifiers. It proved
that the superior classification performance of NB on dataset WBC is just a special case. NB, TAN,
KDB and UKDB can represent different degrees of dependence relationship. In general, as structure
complexity increases, higher-dependence BNCs enjoy significant advantage in classification over
lower-dependence BNCs on most cases.

From Table 11, in terms of bias, TAN still performs better than NB, and KDB performs better
than TAN. However, the advantage of UKDB over KDB is not so significant. Higher-dependence BNCs
can represent more conditional dependencies, which in general help these models to approximate the
correct value of conditional probability P(xi|Πi, c). From Table 11, in terms of variance, NB achieves
the lowest variance because there exists no structure learning for it and its structure remains the same
regardless of the change of training data. TAN performs better than KDB on 5 datasets and worse on
3 datasets. UKDB performs better than TAN on 5 datasets and worse on 3 datasets, and it performs
better than KDB on 7 datasets and worse on 2 datasets. This also emphasizes that the robustness
of UKDB is only second to NB. UKDB enjoys significant advantage over TAN and KDB in terms of
bias and variance. Simple network structure may result in underfitting whereas complex one may
result in overfitting. It is very difficult for a BNC to achieve the trade-off between structure complexity
and classification performance. However, mining the possible dependence relationships implicated
in testing instance helps to alleviate the negative effect caused by overfitting while improving the
classification accuracy.

Table 11. The Win/Draw/Loss comparison results of different BNCs in terms of zero-one loss,
Bias and Variance.

Classifier NB TAN KDB (k = 2)

TAN 8-2-0

0-1 loss KDB (k = 2) 9-1-0 5-5-0

UKDB (k = 2) 10-0-0 7-2-1 6-3-1

TAN 9-0-1

Bias KDB (k = 2) 9-0-1 5-5-0

UKDB (k = 2) 9-0-1 6-4-0 2-8-0

TAN 3-0-7

Variance KDB (k = 2) 4-0-6 3-2-5

UKDB (k = 2) 3-2-5 5-3-2 7-1-2

To attest the effective superiority of the UKDB, we use the Friedman test [42] for comparison of
all alternative algorithms on other 10 datasets in Table 4. The null hypothesis of the Friedman test
is that there is no difference in average ranks. With 4 algorithms and 10 datasets, the Friedman test
is distributed according to the F distribution with 4− 1 = 3 and (4− 1)× (10− 1) = 27 degrees of
freedom. The critical value of F(3, 27) for α = 0.05 is 2.9603. The result of Friedman test for zero-one
loss is 22.25 > 2.9603 with p < 0.001. Hence, we reject the null hypothesis. That is to say, the seven
algorithms are not equivalent in terms of zero-one loss results. The average ranks of zero-one loss of
different classifiers are {NB(3.8000), TAN(2.8000), KDB(2.2000), UKDB(1.2000)}, and the minimum
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required difference of mean rank is 0.6701, i.e., the rank of UKDB is better than that of other algorithms,
followed by KDB, TAN and NB. UKDB has significant statistical difference with NB, TAN and KDB.

The ROC cures for NB, TAN, KDB (k = 2) and UKDB (k = 2) on 10 datasets are presented
in Figure 11, respectively. The X-axis represents (1 - specificity) and Y-axis represents sensitivity.
The area under the curve (AUC) is an effective and combined measure of sensitivity and specificity
for assessing inherent validity of a diagnostic test [33]. The value of AUC closer to 1 indicates better
performance of the test. According to the values of AUC, UKDB performs lower results more often than
other algorithms, especially on datasets Adult, Chess, Magic, Musk and Sick. Compared with KDB,
UKDB achieves similar values of AUC on 4 datasets (Dis, Hypothyroid, Mushroom and Spambase),
i.e., UKDB also has significant advantages with NB, TAN and KDB in terms of ROC cures.
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(a) Adult. (b) Dis. (c) Hypothyroid.
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Figure 11. The ROC cures for NB, TAN, KDB (k = 2) and UKDB (k = 2) on 10 datasets.
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To further demonstrate the performance of UKDB over KDB, we employ the goal difference
(GD) [19,21]. Suppose there are two classifiers A and B, the value of GD can be computed as follow:

GD(A; B|T ) = |win| − |loss|, (22)

where T is the datasets, |win| and |loss| represent the number of datasets on which A performs better
or worse than B, respectively.

Figure 12 shows the fitting curve of GD(UKDB;KDB|St) in terms of 0-1 loss. The X-axis shows the
indexes of different datasets, referred to as t, which correspond to that described in Table 4. In addition,
the Y-axis corresponds to the value of GD(UKDB;KDB|St), where St = {Dm|m ≤ t} and Dm is the
dataset with index m. As can be seen, UKDB enjoys significant advantages over KDB in terms of 0-1
loss when the number of instances ≤4000 (3 wins and 1 draw) or >10,000 (3 wins), otherwise the
advantage is not significant (2 draws and 1 loss).

Figure 13 shows the fitting curve of GD(UKDB;KDB|Sn) in terms of 0-1 loss. The X-axis
shows the number of attributes for different datasets, referred to as n, which correspond to that
described in Table 4. In addition, the Y-axis corresponds to the value of GD(UKDB;KDB|Sn),
where Sn = {Dn′ |n′ ≤ n} and Dn′ is the dataset with n′ attributes. We can see that when the
number of attributes >22, the advantage of UKDB over KDB is significant in terms of 0-1 loss (4 wins
and 3 draws), otherwise the advantage is not significant (2 wins and 1 loss).
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Figure 12. The fitting curve of GD(UKDB;KDB|St) in terms of 0-1 loss.

0

0

2

4

6

Number of attributes(n)

G
D

(U
K

D
B

;K
D

B
|S
n
)

UKDB vs KDB

10 14 22 25 29 29 36 41 57 166

Figure 13. The fitting curve of GD(UKDB;KDB|Sn) in terms of 0-1 loss.

4.4.5. UKDB vs. Target Learning

Target learning [16] is a framework that takes each unlabeled testing instance P as a target
and builds a specific Bayesian model BNCP to complement BNCT learned from training data T .
It respectively uses TAN and KDB as the base classifier to clarify the superiority of target learning
(which referred to as TANe and KDBe).

We have conducted experiments with TANe and KDBe (k = 2) on 10 datasets (described in Table 4).
The detailed zero-one loss results of all alternative algorithms are presented in Table A6 in Appendix A.
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Table 12 shows the Win/Draw/Loss comparison results of TANe, KDBe and UKDB (k = 2) in terms
of zero-one loss. As can be seen, UKDB achieves lower values of zero-one loss more often than
TANe and KDBe, for example, the decrease from 0.4821 ± 0.0037 (TANe) or 0.4781 ± 0.0039 (KDBe) to
0.1537 ± 0.0045 (UKDB) for the dataset Abalone.

Table 12. Win/Draw/Loss comparison results of TANe, KDBe and UKDB (k = 2) in terms of
zero-one loss.

Win/Draw/Loss TANe KDBe (k = 2)

UKDB (k = 2) 7/2/1 6/4/0

The Friedman test was also performed for these three algorithms on 10 datasets. The final result
is 5.6862 > F(2, 18) = 3.5546 with p < 0.001. This means that at α = 0.05, there is evidence to reject the
null hypothesis that all algorithms are equivalent. The average ranks of zero-one loss of these three
algorithms are {TANe(2.4500), KDBe(2.2500), UKDB(1.3000)}, and the minimum required difference
of mean rank is 0.7655, which demonstrates that UKDB has significant statistical difference with TANe

and KDBe.

4.4.6. UKDB vs. ETAN

Cassio P. de Campos et al. [43] proposed an extended version of the TAN, ETAN, which also does
not require attributes to be connected to the class. Based on a modification of Edmonds’ algorithm,
its structure learning procedure explores a superset of the structures that are considered by TAN,
yet achieves global optimality of the learning score function in a very efficient way.

Since it shares similarities with UKDB (k = 1), we have conducted experiments with ETAN on
10 datasets (described in Table 4). The detailed zero-one loss results can be found in Table A7 in
Appendix A. The Win/Draw/Loss comparison results are presented in Table 13. As can be seen,
UKDB obtains lower error than ETAN more often than the reverse. Although ETAN is an efficient
algorithm and has similar unrestricted Bayesian network structure with UKDB (k = 1), it is a single
model. On the contrary, UKDB is an ensemble algorithm.

Table 13. Win/Draw/Loss comparison results of ETAN, UKDB (k = 1) and UKDB (k = 2) in terms of
zero-one loss.

Win/Draw/Loss ETAN UKDB (k = 2)

UKDB (k = 1) 6/2/2
UKDB (k = 2) 7/1/2 6/2/2

The corresponding results of Friedman test for these three algorithms on 10 datasets is
4.0435 > F(2, 18) = 3.5546 with p < 0.001. The corresponding average ranks in terms of zero-one
loss are {ETAN(2.5000), UKDB (k = 1)(2.1000), UKDB(k = 2)(1.3000)}, and the minimum required
difference of mean rank is 0.8227, which demonstrates that the rank of UKDB (k = 2) is better than that
of other algorithms, followed by UKDB(k = 1) and ETAN. UKDB (k = 2) has significant statistical
difference with ETAN.
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5. Conclusions

In this paper, we have proposed to extend KDB from restricted BNC to unrestricted one by
applying Markov blanket. The final classifier, called UKDB, demonstrates better classification
performance with high expressivity, enhanced robustness and tight coupling. For each testing instance
P , an appropriate local Bayesian classifier UKDBP is built using the same learning strategy as that
of UKDBT learned from training data T . Compared with other state-of-the-art BNCs, the novelty of
UKDB is that it can use the information mined from labeled and unlabeled data to make joint decisions.
From the case study we can see that given testing instances P1 and P2, the weights of dependence
relationships between the same pair of attribute values may differ that makes the topology of UKDBP1

distinguish from that of UKDBP2 . Besides, the model is learned directly from the data in some field,
and it can only express part of domain knowledge, i.e., datasets are only part of the field, and the
knowledge of statistics may be contrary to expert knowledge. Some of the mined knowledge does not
conform to the knowledge of medical experts, which requires the discrimination of expert knowledge.
Thus, if given expertise in medicine, the network structures of UKDBP and UKDBT will be improved.

Given a limited number of instances, the accuracy of probability estimation determines the
robustness of dependence relationships, and then determines the structure complexity of BNCs.
The characteristic of tight coupling helps UKDB improve the probability estimation. UKDB has
been compared experimentally with some state-of-the-art BNCs with different structure complexities.
Although KDB and UKDB are of the same structure complexity, UKDB presents superior advantage
over KDB in terms of classification accuracy (zero-one loss) and robustness (bias and variance).
The independence assumption of NB rarely holds for all instances but may hold for specific instance.
However, high-dependence BNCs, e.g., TAN, KDB and UKDB focus on the interdependence between
attributes but disregard the independence between attribute values. If the independence in testing
instance can be measured and identified, UKDBP can provide a much more competitive representation.

Target learning is related to dependence evaluation when attributes take specific values. Because
the proposed UKDBP is based on UKDB, it needs enough data to learn accurate conditional probability
during structure learning. Thus, in practical applications, the inaccurate estimate of conditional
probability for some attribute values, e.g., P(xi|Π, c), may lead to noise propagation in the estimate of
joint probability P(c, x). This situation is more obvious while dealing with datasets with less attributes.
Therefore, our further research is to decide the appropriate estimate of conditional probability needed
for this purpose and to seek alternative methods, e.g., Laplace correction.
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Appendix A

Table A1 shows the detailed results of zero-one loss for KDB (k = 1), KDB (k = 2), UKDB (k = 1)
and UKDB(k = 2) on 10 datasets (described in Table 4). Table A2 shows the detailed results of zero-one
loss for UKDB (k = 2) with {MI, CMI} and {PMI, PCMI} on 10 datasets (described in Table 4).
Tables A3–A5 show the detailed experimental results of average zero-one loss, bias and variance for
NB, TAN, KDB and UKDB (k = 2) on 10 datasets (described in Table 4), respectively. Table A6 shows
the detailed zero-one loss results of TANe, KDBe and UKDB. In addition, Table A7 shows the detailed
zero-one loss results of ETAN, UKDB (k = 1) and UKDB (k = 2).
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Table A1. Detailed zero-one loss results of KDB (k = 1), KDB (k = 2), UKDB (k = 1) and UKDB
(k = 2). The lowest results from all these BNCs are highlighted in bold.

Dataset KDB (k = 1) KDB (k = 2) UKDB (k = 1) UKDB (k = 2)

Adult 0.1758 ± 0.0041 0.1852 ± 0.0036 0.1676 ± 0.0035 0.1537± 0.0045
Census-Income 0.0736 ± 0.0020 0.0767 ± 0.0019 0.0740 ± 0.0037 0.0689± 0.0022
Dis 0.0186 ± 0.0047 0.0196 ± 0.0047 0.0141 ± 0.0027 0.0177± 0.0047
Hypothyroid 0.0127 ± 0.0049 0.0124 ± 0.0043 0.0121 ± 0.0062 0.0112± 0.0065
Chess 0.0998 ± 0.0023 0.0491 ± 0.0039 0.0644 ± 0.0023 0.0414± 0.0061
MAGIC 0.2042 ± 0.0105 0.2139 ± 0.0110 0.2021 ± 0.0081 0.1987± 0.0101
Mushroom 0.0007± 0.0007 0.0007 ± 0.0009 0.0007± 0.0012 0.0009 ± 0.0004
Musk 0.0713 ± 0.0157 0.0684 ± 0.0166 0.0706 ± 0.0197 0.0654± 0.0167
Sick 0.0241± 0.0071 0.0264 ± 0.0070 0.0266 ± 0.0062 0.0262 ± 0.0067
Spambase 0.0865 ± 0.0119 0.0742 ± 0.0142 0.0810 ± 0.0126 0.0732± 0.0144

Table A2. Detailed zero-one loss results of UKDB (k = 2) with {MI, CMI} and {PMI, PCMI}.
The lowest results from all these BNCs are highlighted in bold.

Dataset UKDB (k = 2) with {MI, CMI} UKDB (k = 2) with {PMI, PCMI}
Adult 0.1537 ± 0.0045 0.1569 ± 0.0039
Census-Income 0.0689± 0.0022 0.0729 ± 0.0019
Dis 0.0177 ± 0.0047 0.0181 ± 0.0047
Hypothyroid 0.0112 ± 0.0065 0.0116 ± 0.0047
Chess 0.0414± 0.0061 0.0438 ± 0.0028
Magic 0.1987± 0.0101 0.2872 ± 0.0107
Mushroom 0.0009± 0.0004 0.0010 ± 0.0004
Musk 0.0654± 0.0167 0.0701 ± 0.0360
Sick 0.0262 ± 0.0067 0.0267 ± 0.0070
Spambase 0.0732 ± .00144 0.0743 ± 0.0126

Table A3. Experimental results of average zero-one loss for 10-cross validation. The lowest results
from all these BNCs are highlighted in bold.

Dataset NB TAN KDB (k = 2) UKDB (k = 2)

Adult 0.1840 ± 0.0041 0.1765 ± 0.0039 0.1852 ± 0.0036 0.1537± 0.0045
Census-Income 0.1739 ± 0.0022 0.0736 ± 0.0022 0.0767 ± 0.0019 0.0689± 0.0022
Dis 0.0251 ± 0.0077 0.0197 ± 0.0054 0.0196 ± 0.0047 0.0177± 0.0047
Hypothyroid 0.0144 ± 0.0043 0.0128 ± 0.0048 0.0124 ± 0.0043 0.0112± 0.0065
Chess 0.1354 ± 0.0051 0.0853 ± 0.0092 0.0491 ± 0.0039 0.0414± 0.0061
MAGIC 0.2396 ± 0.0069 0.2149 ± 0.0098 0.2139 ± 0.0110 0.1987± 0.0101
Mushroom 0.0480 ± 0.0036 0.0008 ± 0.0004 0.0007± 0.0009 0.0009 ± 0.0004
Musk 0.1222 ± 0.0696 0.0890 ± 0.0132 0.0684 ± 0.0166 0.0654± 0.0167
Sick 0.0290 ± 0.0058 0.0296 ± 0.0061 0.0264 ± 0.0070 0.0262± 0.0067
Spambase 0.1069 ± 0.0127 0.0827 ± 0.0100 0.0742 ± 0.0142 0.0732± 0.0144

Table A4. Experimental results of average bias for 10-cross validation. The lowest results from all these
BNCs are highlighted in bold.

Dataset NB TAN KDB (k = 2) UKDB (k = 2)

Adult 0.1649 0.1312 0.1220 0.1127
Census-Income 0.2303 0.0544 0.0421 0.0396
Dis 0.0165 0.0193 0.0191 0.0190
Hypothyroid 0.0116 0.0104 0.0096 0.0083
Chess 0.1107 0.0702 0.0417 0.0401
MAGIC 0.2111 0.1252 0.1241 0.1203
Mushroom 0.0237 0.0001 0.0001 0.0001
Musk 0.1847 0.1560 0.1535 0.1582
Sick 0.0246 0.0207 0.0198 0.0193
Spambase 0.0929 0.0570 0.0497 0.0532
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Table A5. Experimental results of average variance for 10-cross validation. The lowest results from all
these BNCs are highlighted in bold.

Dataset NB TAN KDB (k = 2) UKDB (k = 2)

Adult 0.0069 0.0165 0.0285 0.0164
Census-Income 0.0052 0.0101 0.0110 0.0060
Dis 0.0001 0.0005 0.0011 0.0002
Hypothyroid 0.0017 0.0021 0.0024 0.0026
Chess 0.0186 0.0102 0.0111 0.0096
MAGIC 0.0174 0.0490 0.0491 0.0457
Mushroom 0.0043 0.0002 0.0002 0.0002
Musk 0.1108 0.1180 0.1320 0.1169
Sick 0.0047 0.0051 0.0043 0.0048
Spambase 0.0092 0.0158 0.0214 0.0152

Table A6. Detailed zero-one loss results of TANe, KDBe (k = 2) and UKDB (k = 2). The lowest results
from all these BNCs are highlighted in bold.

Dataset TANe KDBe (k = 2) UKDB (k = 2)

Adult 0.1554 ± 0.0037 0.1601 ± 0.0039 0.1537± 0.0045
Census-Income 0.0784 ± 0.0030 0.0729 ± 0.0027 0.0689± 0.0022
Dis 0.0180 ± 0.0041 0.0185 ± 0.0034 0.0177± 0.0047
Hypothyroid 0.0120 ± 0.0055 0.0120 ± 0.0056 0.0112± 0.0065
Chess 0.0701 ± 0.0058 0.0463 ± 0.0089 0.0414± 0.0061
Magic 0.2177 ± 0.0090 0.2157 ± 0.0097 0.1987± 0.0101
Mushroom 0.0008± 0.0008 0.0010 ± 0.0011 0.0009 ± 0.0004
Musk 0.0828 ± 0.0165 0.0749 ± 0.0190 0.0654± 0.0167
Sick 0.0320 ± 0.0062 0.0272 ± 0.0071 0.0262± 0.0067
Spambase 0.0849 ± 0.0113 0.0755 ± 0.0132 0.0732± 0.0144

Table A7. Detailed zero-one loss results of ETAN, UKDB (k = 1) and UKDB (k = 2). The lowest
results from all these BNCs are highlighted in bold.

Dataset ETAN UKDB (k = 1) UKDB (k = 2)

Abalone 0.1180 ± 0.0043 0.1676 ± 0.0035 0.1537 ± 0.0045
Census-Income 0.0733 ± 0.0017 0.0740 ± 0.0037 0.0689± 0.0022
Dis 0.0194 ± 0.0040 0.0141± 0.0027 0.0177 ± 0.0047
Hypothyroid 0.0113 ± 0.0049 0.0121 ± 0.0062 0.0112± 0.0065
Chess 0.0746 ± 0.0054 0.0644 ± 0.0023 0.0414± 0.0061
Magic 0.2157 ± 0.0112 0.2021 ± 0.0081 0.1987± 0.0101
Mushroom 0.0008 ± 0.0009 0.0007± 0.0012 0.0009 ± 0.0004
Musk 0.0789 ± 0.0182 0.0706 ± 0.0197 0.0654± 0.0167
Sick 0.0281 ± 0.0080 0.0266 ± 0.0062 0.0262± 0.0067
Spambase 0.0838 ± 0.0137 0.0810 ± 0.0126 0.0732± 0.0144
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