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Abstract: Uncertain information exists in each procedure of an air combat situation assessment.
To address this issue, this paper proposes an improved method to address the uncertain information
fusion of air combat situation assessment in the Dempster–Shafer evidence theory (DST) framework.
A better fusion result regarding the prediction of military intention can be helpful for decision-making
in an air combat situation. To obtain a more accurate fusion result of situation assessment,
an improved belief entropy (IBE) is applied to preprocess the uncertainty of situation assessment
information. Data fusion of assessment information after preprocessing will be based on the classical
Dempster’s rule of combination. The illustrative example result validates the rationality and the
effectiveness of the proposed method.

Keywords: Dempster–Shafer evidence theory (DST); air combat situation assessment; belief entropy;
uncertainty management; uncertainty measure

1. Introduction

Artificial intelligence technology has brought new weapons to intelligent air combat, e.g.,
the ALPHA software system [1–3]. In air combat situation assessment, the decision-making procedure
of pilots and unmanned combat aerial vehicle is deeply dependent on intelligent information
processing methods [4,5]. Air combat situation assessment often includes threat assessment such
as the prediction of enemy’s military intentions. Existing researches mainly include target threat
assessment between the two sides basing on the space situation. In [6], the naive Bayes method is
used to design the air combat situation assessment method. In [7,8], the Bayesian networks are used
to model the situation assessment environment to obtain a better understanding of the battlefield
scenario. A fuzzy logic-based situation assessment system is developed to help the pilot make the
right decision in complex air scenarios where there may be multiple friendly aircrafts and/or enemy
aircrafts [9]. In [10], the situation assessment knowledge of fighter pilots in air combat is applied
to model a human situation assessment model in Bayesian networks, which is a new perspective to
improve the performance of fighter pilots in air combat.

The aforementioned methods can inherit the advantages of the corresponding intelligent
algorithm. However, more attention should be addressed to the data fusion process of the
heterogeneous information coming from multiple sources [11]. Due to the dynamic complexity
and high real-time characteristic of the battlefield environment, decision-making basing on only the
information of a single sensor at a single time cannot accurately depict the complex situation of air
combat. The application of information fusion technology can contribute to a better understanding
of a situation in a battlefield and provide technical support for real-time decision-making for the
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pilots and commanders. This paper studies the uncertain information fusion of air combat situation
assessment under the framework of evidence theory [12,13] since DST is a typical method for uncertain
information processing [14–18].

To address the uncertainty in air combat situation assessment, an improved belief entropy
(IBE)-based situation assessment method in the evidence theory framework is proposed.
Firstly, evidence modeling will be based on an understanding of air combat situations according
to the knowledge in the military domain. Secondly, the uncertainty of each evidence is measured
and applied to evidence modification. The uncertainty measure for evidence is based on the IBE [19],
which is another hot topic in the DST framework [20–24]. After that, Dempster’s rule of combination
is chosen for information fusion after evidence modification. Finally, real-time decision-making in air
combat situation assessment aided by intelligent information fusion will be used to support the pilots
and commanders. The illustrative example shows the effectiveness and availability of the IBE-based
air combat situation assessment method.

This rest of this paper is organized as follows. The preliminaries are introduced in Section 2.
In Section 3, an IBE-based situation assessment method for air combat is proposed. A numerical
example of applying the proposed method for real-time decision-making in air battlefield environment
is presented in Section 4. Some open issues of the current work are discussed in Section 5. Section 6
presents the conclusion and possible future work.

2. Preliminaries

2.1. Dempster–Shafer Evidence Theory

Some basic definitions in DST are presented as follows [12,13].

Definition 1. Assume that Ω= {θ1, θ2, . . . , θi, . . . , θN} is a nonempty set with N mutually exclusive and
exhaustive events, Ω is the frame of discernment (FOD). The power set of Ω consists of 2N elements denoted
as follows:

2Ω =

{
∅, {θ1} , {θ2} , . . . , {θN} , {θ1, θ2} ,
. . . , {θ1, θ2, . . . , θi} , . . . , Ω

}
. (1)

Definition 2. A mass function m is a mapping from the power set 2Ω to the interval [0,1]. m satisfies

m (∅) =0, ∑
A∈Ω

m (A) =1. (2)

If m (A) > 0, then A is called a focal element. m (A) indicates the support degree of the evidence on the
proposition A.

Definition 3. In DST, two independent mass functions m1 and m2 can be fused with Dempster’s rule
of combination:

m(A)= (m1 ⊕m2) (A) =
1

1− k ∑
B∩C=A

m1(B)m2(C) (3)

where k is a normalization factor defined as follows:

k= ∑
B∩C=∅

m1(B)m2(C).
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2.2. Improved Belief Entropy

Belief entropy in the DST framework is still an open issue [25–27]. Based on Deng entropy [28]
and the weighted belief entropy [29], an IBE is proposed in [19], shown as follows:

Eibe (m) = − ∑
A⊆Ω

m (A) log2

(
m (A)

2|A| − 1
e
|A|−1
|Ω|

)
(4)

where Ω is the FOD, |A| denotes the cardinality of the focal element A, and |Ω| is the number of
elements in the FOD.

3. Improved Belief Entropy-Based Situation Assessment Method for Air Combat

A typical framework of situation assessment in air combat is presented in Figure 1 [30,31],
where there are mainly three main processes: environment sensing in air battlefields, situation
assessment of air battlefields, and real-time decision-making.

Environment sensing 
in air battlefield

Situation assessment in air 
battlefield

Modeling of air 
combat situation 

assessment indexes

Real time 
decision 

making in 
air combat

Battlefield 
environment

Information 
collection by 

sensors

Sensor data 
fusion

Information fusion 
of air combat 

situation assessment

Prediction of 
military intentions

Figure 1. A typical framework of air combat situation assessment.

The framework of the IBE-based situation assessment method for air combat is proposed in
Figure 2. Three main processes (including seven steps)—environmental awareness for air combat
situation assessment, evidence modeling and uncertainty measures for situation assessment, and air
combat situation assessment and fusion-based intelligent air combat decision-making—are designed
in the proposed method.
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Figure 2. The proposed framework of air combat situation assessment based on the improved belief
entropy (IBE).
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The seven steps in the IBE-based situation assessment method for air combat are described
as follows.

• Step 1: battlefield environment information modeling

All the information about the two sides in the battlefield, the weather, the terrain, the international
political situation, and the military expert assessment information should be included in the
model of the battlefield environment.

• Step 2: sensor information acquisition

Battlefield information acquisition will be based on many kinds of sensors, including satellites,
air reconnaissance aircraft, ground-based radar, airborne radars, and intelligence agent.

• Step 3: sensor data fusion

The heterogeneous sensor information acquired from the previous step will be fused for air
combat situation assessment. The sensor data fusion method needs to be chosen cautiously, which
is another important issue.

• Step 4: air combat situation understanding and evidence modeling

Sensor data fusion results shall be modeled in the DST framework based on air combat situation
understanding. The knowledge in the military domain includes clustering analysis of multi-enemy
targets, behavior analysis of the enemy, etc.

• Step 5: IBE-based uncertainty measure and preprocessing of the evidence for situation assessment

Before applying evidence fusion of the situation assessment information, the uncertainty of each
evidence is measured and applied for evidence modification. If evidence has a high degree of
uncertainty, which is represented by a high value of IBE, then the reliability of the evidence is low,
which means the evidence makes a small contribution to the final decision. Based on this cautious
rule, the preprocessing of the evidence based on the uncertainty measure results will be based on
the following function:

mw (·) = ∑n
i=0 mi (·)

e−Eibe(mi)

∑3
i=0 e−Eibe(mi)

(5)

where mw (·) means the modified evidence after preprocessing, mi (i = 1, 2, ..., n) is the ith piece
of evidence coming from air combat situation understanding and evidence modeling, and Eibe is
the IBE defined in Equation (4).

• Step 6: information fusion of air combat situation assessment and the prediction of
military intention

In this paper, Dempster’s rule of combination is chosen for information fusion after evidence
modification. The prediction of military intention will be based on the fused situation assessment
information. If the evidence modification is based on (n + 1) (n = 1, 2, 3...) pieces of evidence,
the time of information fusion for the modified evidence is n.

m(·)(0,1,2,...,n) =
(
((mw ⊕mw)1 ⊕mw)2 ⊕ · · ·

)
n (·) (6)

where ⊕ refers to the information fusion of the modified evidence mw (·), which is based on
Dempster’s rule of combination in Equation (3).

• Step 7: real-time decision-making of air combat

Real-time decision-making in air combat situation assessment aided by the aforementioned
intelligent information fusion method will be used to support the pilots and commanders.
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4. Example

4.1. Problem Description

In air combat, assume that there are two fighter planes in the battlefield environment, as shown in
Figure 3. In the space OXYZ, two fighter planes are denoted as r and b, the distance is R, the azimuth
angle is α, the target entry angle is β, and V represents the speed.

X

Y

Z

O

Vr

Vb

r

b

R

r

b

r

b

Figure 3. The sketch map of two fighter planes in the battlefield environment.

The military intention of the opposite fighter plane can be assessed and modeled in the
DST framework.

Assume that the threshold of the belief for the intelligence-aided decision support system in the
air combat situation assessment is 90%. In other words, if the final decision of a pilot is based on an
intelligent method provided by the decision support system, then the belief of the proposal for the
intelligent decision-making should be no less than 90%. The high belief condition set for the intelligent
decision support system is to ensure high reliability in possible practical engineering applications.
This is reasonable because it is a matter of life and death. If the intelligent aided decision support
system has not reached its threshold for intelligent decision-making, then the belief on each candidate
should be presented to human beings for reference.

4.2. Implementation Steps

Steps 1–3. Battlefield environment information modeling, sensor information acquisition in
battlefields, and the corresponding sensor data fusion are key issues corresponding to environment
sensing of situation assessments in air combat. Related work can be found in [32–34]. This paper
will focus on an accurate fusing method for the evidence of the air combat situation assessment.
Thus, the illustrative example will focus on Steps 4–7.

Step 4: air combat situation understanding and evidence modeling Assume that there are four
types of battlefield situation: the attack situation, denoted as SA1, the defence situation, denoted as
SA2, the escape situation, denoted as SA3, and the feint situation, denoted as SA4. Thus, the FOD
for the types of battlefield situation is Ω= {SA1, SA2, SA3, SA4}. The evidence modeling after
environment sensing for Step 4 is shown as follows.
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• At time T0, the sensor reports event E0, and a fighter plane appears. The distance is 100 km,
the speed is Mach 1.2, and the military intentions are not clear. The evidence modeling based on
the military knowledge is m0= {SA1, SA2, SA3, SA4} = {0.25, 0.25, 0.25, 0.25}.

• At time T1, the sensor reports event E1, and the fighter plane is approaching at Mach
1.8. The evidence modeling based on military knowledge is m0= {SA1, SA2, SA3, SA4} =

{0.3, 0.2, 0.2, 0.3}.
• At time T2, the sensor reports event E2, and the fighter plane is approaching at Mach 2.2.

The evidence modeling based on the military knowledge is m0= {SA1, SA2, SA3, SA4} =

{0.4, 0.1, 0.2, 0.3}.
• At time T3, the sensor reports event E3, and the fighter plane is still approaching at a high

speed. In addition, its fire control radar is turned on, the attack situation becomes obvious,
and the evidence modeling based on the military knowledge is m0= {SA1, SA2, SA3, SA4} =

{0.7, 0.1, 0.1, 0.1}.

The mass functions of the aforementioned situation assessment information in air combat are
shown in Table 1.

Table 1. The mass functions of the situation assessment in air combat.

Evaluation Code SA1 SA2 SA3 SA4

Situation Type Attack Defense Escape Feint

Time T0, m0 0.25 0.25 0.25 0.25
Time T1, m1 0.3 0.2 0.2 0.3
Time T2, m2 0.4 0.1 0.2 0.3
Time T3, m3 0.7 0.1 0.1 0.1

Step 5: IBE-based uncertainty measure and preprocessing of the evidence for situation assessment
The uncertain degree of each piece of evidence is measured. With Equation (4), the uncertainty degree
measured by the IBE for the evidence is shown as follows:

Eibe (m0) = − ∑
SA1⊆Ω

m0 (SAj) log2

(
m0(SAj)
2|SAj|−1

e
|SAj|−1
|Ω|

)
=2.0000

Eibe (m1) = − ∑
SA1⊆Ω

m1 (SAj) log2

(
m1(SAj)
2|SAj|−1

e
|SAj|−1
|Ω|

)
=1.9710

Eibe (m2) = − ∑
SA1⊆Ω

m2 (SAj) log2

(
m2(SAj)
2|SAj|−1

e
|SAj|−1
|Ω|

)
=1.8464

Eibe (m3) = − ∑
SA1⊆Ω

m3 (SAj) log2

(
m3(SAj)
2|SAj|−1

e
|SAj|−1
|Ω|

)
=1.3568

where j = 1, 2, 3, 4.
If evidence has a high degree of uncertainty, which is represented by a high value of IBE, then the

reliability of the evidence is low, which means the evidence makes a small contribution to the final
decision. Based on this cautious rule, the preprocessing of the evidence based on the uncertainty
measure results will be based on the following function:

mw(SAj) = ∑3
i=0 mi (SAj)

e−Eibe(mi)

∑3
i=0 e−Eibe(mi)

(7)

where j = 1, 2, 3, 4. With Equation (7), the preprocessing results at time T1, T2, and T3 are shown in
Table 2.
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Table 2. Evidence modification of air combat situation assessment based on IBE.

Evidence Modification m0, m1 m0, m1, m2 m0, m1, m2, m3

m(SA1) 0.2754 0.3208 0.4623
m(SA2) 0.2246 0.1792 0.1496
m(SA3) 0.2246 0.2156 0.1725
m(SA4) 0.2754 0.2844 0.2156

Step 6: information fusion of air combat situation assessment and the prediction of military
intention After evidence modification, information fusion of the situation assessment is based on
Dempster’s rule of combination shown in Equation (3). Because the evidence modification is based
on n (n = 2, 3, 4) pieces of evidence at different times, the time of information fusion for the modified
evidence in Table 2 is 1, 2, and 3 at time T1, T2, and T3, respectively. Take the SA1 as an example,
the equations of evidence fusion results in Table 2 at time T1, T2, and T3 are shown as follows:

m(SA1)(0,1) = (mw ⊕mw)1 (SA1) = 0.3002
m(SA1)(0,1,2) = ((mw ⊕mw)1 ⊕mw)2 (SA1) = 0.4600
m(SA1)(0,1,2,3) =

(
((mw ⊕mw)1 ⊕mw)2 ⊕mw

)
3 (SA1) = 0.9280.

If the evidence in Table 1 is fused directly with Dempster’s rule of combination in Equation (3),
the calculation equations for SA1 at time T1, T2, and T3 are as follows:

m(SA1)T1 = (m0 ⊕m1) (SA1) = 0.3002
m(SA1)T2 = ((m0 ⊕m1)⊕m2) (SA1) = 0.4600
m(SA1)T3 = (((m0 ⊕m1)⊕m2)⊕m3) (SA1) = 0.9280.

In summary, the fusion results with evidence modification (shown in Table 2) and without
evidence modification (shown in Table 1) are presented in Table 3.

Table 3. Fusion results of the air combat situation assessment based on the evidence in Tables 1
and 2, respectively.

Evidence Fusion m0, m1 m0, m1, m2 m0, m1, m2, m3

Fusion of Table 1

m(SA1) 0.3000 0.4444 0.8485
m(SA2) 0.2000 0.0741 0.0202
m(SA3) 0.2000 0.1481 0.0404
m(SA4) 0.3000 0.3333 0.0909

Fusion of Table 2

m(SA1) 0.3002 0.4600 0.9280
m(SA2) 0.1998 0.0801 0.0102
m(SA3) 0.1998 0.1397 0.0180
m(SA4) 0.3002 0.3202 0.0438

Figures 4–6 present the comparison of the fusion results between the proposed method and
the method without evidence modification, which means Dempster’s rule of combination is directly
applied to the original evidence in Table 1. According to military knowledge, the fighter plane’s
intention of attack becomes clearer from time T1 to time T3. The fusion result is consistent with
judgements according to military knowledge. In addition, the fusion result based on the modified
evidence in Figures 4–6 has a higher belief on the situation SA1 at time T1, T2, and T3, respectively.
Figure 6 shows that the proposed method has a belief of 92.80% with regard to the claim that the
situation assessment result is SA1, which is nearly 8% higher than the fusion result without the
IBE-based evidence modification. This is because the evidence modification procedure has a positive
effect on the fusion result. The belief entropy measures the uncertainty of the situation assessment
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data and contributes to a positive effect on the fusion result-based decision-making for the pilots
and commanders.

Figure 4. The fusion results of air combat situation assessment at time T1.

Figure 5. The fusion results of air combat situation assessment at time T2.

Figure 6. The fusion results of air combat situation assessment at time T3.
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Step 7: real–time decision-making of air combat At time T3, with enough situation assessment
information, the belief on SA1 is more than 90%, based on the proposed method. The decision support
system will give the pilot a proposal on air combat situation SA1. However, if the evidence fusion is
directly based on data in Table 1 without evidence modification, and the belief on air combat situation
SA1 is only 84.85% at time T3, the decision support system cannot give a proposal because the threshold
of the setting belief (90%) has not been reached. As for times T0, T1, and T2, the intelligent aided
decision support system has not reached the belief of the threshold 90%; in this case, we recommend
the belief on each candidate should be showed on the interface for reference of pilots.

5. Discussion and Open Issues

The IBE-based evidence modification can be regarded as an aided progress for the decision-making
of pilots in air combat situation assessment. As is shown in Figure 6, the proposed method contributes
to a higher belief in the potential air combat situation, which can be helpful for the decision-making
of pilots. Although the uncertainty measure in the DST framework is applied to air combat situation
assessment, some open issues need further study.

Firstly, the uncertainty in the battlefield environment, the acquired information from sensors and
the air combat situation understanding according to the military knowledge of many experts can be
transmitted to the process of evidence modeling. How the aforementioned uncertainty can be modeled
in the DST framework to contribute to accurate evidence modeling needs a great deal of further study.
In addition, apart from the IBE, there is potential for other solutions of uncertainty measure to solve
this issue.

Secondly, the current example is artificial. How the initial beliefs are generated for the situation
assessment information is an open issue related to the topic of generating mass function automatically.
Currently, the existing method of generating mass function is based on specific applications [35,36].
In future research, algorithms such as the partially observable Markov decision process (POMDP) [37]
and the hidden Markov model (HMM) [38,39] can be considered to determine or generate the initial
mass functions.

Thirdly, the proposed method should be integrated to a simulation platform with air combat
scenarios. The simulation platform should include each procedure in the framework of air combat
situation assessment. Only in this way can the proposed method reach a state where it can be practically
applied. In addition, in the simulation platform, the effectiveness of different methods can be compared
visually and intuitively according to the final winning rate of a pilot.

Last but not least, complex application scenarios should be taken into consideration. In real
applications, there may be more than two vehicles. How the current method can be extended to such
complex situations needs further study.

6. Conclusions

To address the uncertainty of the situation assessment information in the Dempster–Shafer evidence
theory framework, an IBE-based situation assessment method is proposed in this paper. Before applying
evidence fusion, the uncertainty of the situation assessment in air combat is measured with the IBE,
which contributes to a higher belief with regard to the final decision of the potential situation.

Apart from the open issues discussed in the paper, future work of this paper may focus on
accurately measuring uncertainties in battlefield environments, evidence modeling situation sensing
results in a DST framework, situation assessments involving open world assumptions, where there
may be incomplete situations (the current work focuses on a complete FOD), and modeling and fusing
conflict situation assessment information cautiously for reliable decision-making in air combat.
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