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Abstract: In this paper, a quantum identity authentication protocol is presented based on the
counterfactual quantum key distribution system. Utilizing the proposed protocol, two participants
can verify each other’s identity through the counterfactual quantum communication system.
The security of the protocol is proved against individual attacks. Furthermore, according to the
characteristics of the counterfactual quantum key distribution system, we propose an authenticated
counterfactual quantum key distribution protocol based on a novel strategy of mixing the two types
of quantum cryptographic protocols randomly. The authenticated quantum key distribution can also
be used to update the extent of the authentication keys.

Keywords: quantum identity authentication; quantum key distribution; counterfactual quantum
communication

1. Introduction

Quantum mechanics has produced immense influence in information security. The widely
used public key cryptography algorithms such as the RSA public key algorithm are facing serious
threat of quantum computation [1]. Meanwhile, quantum computation also promotes new kinds of
cryptographic protocols that can combat the powerful computation capability of quantum computer.
Interestingly, quantum mechanics could be a sharp spear to break cryptographic systems and also
a strong shield to protect our privacy. Research shows that quantum key distribution (QKD) can
provide information theoretic security between two distant and authenticated parties [2–5]. Various
QKD protocols have been proposed utilizing different quantum coding technologies, as well as the
other types of quantum cryptographic protocol, such as quantum secure direct communication [6–11],
quantum secret sharing [12–17], quantum private querying [18–23] and so on [24–26].

Counterfactual QKD protocols employ a very interesting coding method where the valid key bits
are generated when no photons have been transmitted in the public channel. Since no photons to be
intercepted and captured for the signals of the valid key bits, it is very difficult for the adversaries to
carry on an effective attack. Because of the above characteristics, the counterfactual QKD has attracted
a lot of attention since its first appearance. In 2009, Noh proposed a QKD protocol [27] inspired
by the counterfactual phenomena in quantum world [28] and the counterfactual computation [29].
The next year, Sun et al. proposed a high efficiency version of counterfactual QKD utilizing more beam
splitters [30]. The same year, Yin et al. proved the security of Noh’s protocol strictly [31]. During the
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next few years, many experiments on counterfactual QKD protocol have been performed [32–35].
In the theoretic study of counterfactual quantum communication technology, some scholars analyzed
the security of counterfactual QKD on real environment [36–41], while others proposed other types of
quantum cryptographic protocols with counterfactual quantum communication technology, such as
direct quantum communication [42–44], quantum private query [45], and so on [46–53].

As described above, the counterfactual QKD protocol has been proven secure in theory [31],
however, the security is based on several necessary conditions, such as the perfect quantum detectors,
the perfect single-photon source, true random number generator and so on. Secure and reliable
identity authentication is one of the key requirements of the security of the counterfactual QKD.
Realizing identity authentication with quantum technology has many potential advantages such as
higher security, higher efficiency and immunity to certain kinds of replay attacks. Therefore, we propose
a quantum identity authentication (QIA) protocol that can be used in the counterfactual QKD protocol
to identify the communication parties. Furthermore, due to the characteristics of the counterfactual
quantum communication technology, the combined processes of the counterfactual QKD protocol
and the proposed QIA protocol can be used to extend the length of authentication keys with almost
arbitrary expanded proportion. This paper is organized as follows. In Section 2, we briefly review the
processes of the counterfactual QKD and an alternative version, which our QIA protocol is based on.
The specific process of the counterfactual QIA protocol is proposed in Section 3. With the QIA protocol
in Section 3, we propose an authenticated counterfactual QKD protocol in Section 4. A brief conclusion
is given in Section 5.

2. Review of the Counterfactual Quantum Key Distribution Protocol

The main purpose of this paper is to verify the participants’ identities in the counterfactual QKD
system. As a foundation protocol, the counterfactual QKD protocol [27] is briefly introduced in this
section. Utilizing the interference system in Figure 1, the counterfactual QKD can help Alice and Bob
generate a secure key based on the signals where no photons have traveled through the public channel.
Note that, in Figure 1, C is the optical circulator; OD is the optical delay to make the two paths a and b
be the same; OL is the optical loop and SW is the optical switch, which help Bob choose the pulse in
specific polarization to the detector D2; FM is the faraday mirror, which reflects the pulse while turns
the state of the pulse to the orthogonal polarization; and D1 can discriminate the polarizations of the
pulse. The processes can be described as follows.

Figure 1. The schematic of the counterfactual QKD [27]. Here, C is the optical circulator; OD is the
optical delay to make the two paths a and b be the same; OL is the optical loop and SW is the optical
switch, which help Bob choose the pulse in specific polarization to the detector D2; FM is the faraday
mirror, which reflects the pulse while turns the state of the pulse to the orthogonal polarization; and D1

can discriminate the polarizations of the pulse.
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(1) At the beginning, Alice triggers the single-photon source S to emit a short optical pulse
containing a single photon at a certain point in time. The photon is prepared in either horizontal
polarization |H〉, which represents the classical bit 0, or vertical polarization |V〉, which represents 1.
Afterwards, the pulse will be divided into two paths, a and b, when it passes the beam splitter (BS).
The whole system can be described as one of the two orthogonal states

√
T|0〉a|V〉b + i

√
R|V〉a|0〉b, (1)

√
T|0〉a|H〉b + i

√
R|H〉a|0〉b, (2)

where R and T are the reflectivity and transmissivity of BS, and R + T = 1. The state |0〉k represents
the vacuum state in the path k, where k ∈ {a, b}.

(2) Bob randomly chooses a bit 0 or 1 and, utilizing the polarizing beam splitter (PBS) and the
optical loop (OL), switches different polarized pulse to the detector D2 according to the above bit.
Precisely, if Bob chooses 0 (1), he switches the pulse in the state |H〉 (|V〉) to the detector D2. In fact,
when the pulse in path b reaches the PBS at Bob’s side, it would directly go to the optical switch (SW) if
the pulse were horizontally polarized, and if the pulse were vertically polarized, it would be reflected
by the PBS, pass through the OL, be reflected by PBS again, and then go to SW. Thus, if the pulse were
in state |V〉, it would arrive at SW a certain period of time (L/c, where L is the length of OL and c is the
speed of time) later than the situation of |H〉. Therefore, Bob can choose to switch different polarized
states to the detector D2 by the control of the switch time.

(3) At last, Alice and Bob announce which detector clicks. If only D1 detects a photon with the
correct polarization, they establish a key bit, otherwise, the result will be used to detect eavesdropping.
In fact, if Alice’s and Bob’s bits are identical, the pulse in path b will be absorbed by D2, and the pulse
in path a will be divided into two parts towards D0 and D1, respectively. In this situation, the three
detectors D0, D1 and D2 will click with the probabilities R2, RT and T, respectively. If Alice’s and
Bob’s bits are different, the pulse in path b will be reflected back to BS. The faraday mirror (FM) alters
the state of the pulse to the orthogonal state while reflects it, therefore, the pulse will determinately
pass the OL once and be reflected by the PBS twice, before or after the reflection of FM. The two paths
a and b are set with the same length, so the two pulses will complete the interference at BS, with the
same polarization state and a phase difference of π. In this situation, D0 always clicks but D1 never.
Therefore, Alice and Bob would share an identical bit when only D1 clicks. In ideal cases, the shared
bit is secure since no photons have passed through the public channel if D1 clicks alone.

Generally, to achieve the highest key rate, R and T are set to be 1/2 and 1/2. Considering the
situation of 50:50 BS, there is an alternative version (see Figure 2) of the above protocol.

In this alternative version proposed by Brida et al. [33], Bob uses a half wave plate (HWP) and
a PBS to accomplish the same task with that in the original protocol. The effect of the half wave plate
can be described as follows,

U(α) = i

[
cos 2α sin 2α

sin 2α − cos 2α

]
, (3)

where α is the angle between the incident and the fast axis. The two faraday mirrors are replaced
by two mirrors. In Step (1), by adjusting the angle of HWPA, Alice randomly rotates the state of the
single-photon pulse to |H〉 or |V〉. In Step (2), Bob randomly performs U(0) or U(π/4) to the coming
pulse by adjusting the angle of HWPB to be 0 or π/4, where

U(0) = i|H〉〈H| − i|V〉〈V|, (4)

U(π/4) = i|H〉〈V|+ i|V〉〈H|. (5)
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For convenience of reading, we list another two operations, which will be used later,

U(π/8) =
i√
2
(|H〉〈H|+ |H〉〈V|+ |V〉〈H| − |V〉〈V|), (6)

U(3π/8) =
i√
2
(−|H〉〈H|+ |H〉〈V|+ |V〉〈H|+ |V〉〈V|). (7)

When the pulse passes BS the first time, the state becomes one of the following states,

ρBS(0) = −
i√
2
|0〉a|V〉b +

1√
2
|V〉a|0〉b, (8)

ρBS(π/4) =
i√
2
|0〉a|H〉b −

1√
2
|H〉a|0〉b, (9)

which are exactly the same with Equations (1) and (2), ignoring the global phase −i or i introduced by
HWPA. Here, we assume that S always emits a pulse in state |V〉. When Alice’s and Bob’s choices are
0 and π/4, respectively, the pulse in path b has been reflected back to BS at Alice’s side, the state of the
photon after the pulse passes BS the second time will become

ρ′BS(0, π/4) = − 1√
2
(

1√
2
|V〉0|0〉1|0〉2 +

i√
2
|0〉0|V〉1|0〉2) +

i√
2
(

i√
2
|V〉0|0〉1|0〉2 +

1√
2
|0〉0|V〉1|0〉2)

= −|V〉0|0〉1|0〉2, (10)

or similarly when Alice’s and Bob’s choices are π/4 and 0, the state would be

ρ′BS(π/4, 0) = |H〉0|0〉1|0〉2, (11)

where the subscripts represent the path leading to the corresponding detectors. Thus, the same as the
original protocol, D0 always clicks in this situation. Correspondingly, the key should be generated
when D1 clicks.

Figure 2. The schematic of the alternative version of the counterfactual QKD [33]. The alternative
version uses two half wave plates HWPA and HWPB, instead of the OL and SW, to implement the
random choices of the participants. Another difference is that the alternative version uses mirrors (M)
instead of faraday mirrors in the original one.

3. QIA in the Counterfactual QKD System

In this section, we propose a QIA protocol, where two participants, utilizing a pre-shared
classical authentication key, can verify each other’s identity through the counterfactual QKD system.
The communication system we adopt here is the alternative version, which is more convenient
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to introduce a conjugate basis to complete the task of identity authentication. Here, we make
a minor modification that the half wave plate on Alice’s side, i.e., HPBA is set at the right side
of BS (see Figure 3).

Figure 3. The schematic of the proposed QIA protocol and the authenticated QKD protocol. HWPA is
set at right side of BS in our protocol instead of left in the alternative version. Since the polarizations
of the pulses detected by D0 is also used to detect the adversary in our protocol, we add a PBS and
an additional detector in the D0.

Thus, the states of the photons back to Alice’s side should always be the same with their original
states, and the key bits should be generated from the signals where D0 clicks alone.

3.1. The QIA Protocol Based on the Counterfactual QKD

For the sake of description of the proposed QIA protocol, we first expound some basic concepts
about the protocol and the devices in Figure 3. Before the protocol, two participants are required to
pre-share a sequence of authentication keys {K1, K2, ..., Kl}. Each of the above keys has m + n bits,
where the first m bits would be used for Alice to verify Bob’s identity, and the last n bits are for Bob to
verify Alice’s identity. Alice and Bob also record the statuses of their keys, originally “valid”.

The single-photon source S in Figure 3 is supposed to always emit a pulse in state |V〉, and Alice
can choose to keep its state or flip it to |H〉 utilizing HWPA. Ignoring the global phases, if Alice adjusts
αA, the angle of HWPA, to 0, the state of the pulse remains |V〉, and if Alice adjusts αA to π/4, the state
changes to |H〉. Bob also randomly chooses to flip the state of the coming pulse or not, utilizing HWPB.
The above processes are just the alternative version of the counterfactual QKD protocol.

To complete the task of identity authentication, the participants use the authentication key as
the control bits in the manner that, if the ith bit of the authentication key is 1, Alice and Bob both
rotate an additional angle of π/8 to their half wave plates, otherwise, they do nothing additionally.
Thus, only the legal participants who have the authentication key can perform complete the QIA
protocol legally. The concrete processes of the proposed QIA protocol are as follows.

1. Key status exchange. Alice and Bob exchange the status of their pre-shared authentication
keys and choose the one with the smallest subscript among those keys which are “valid” on both
Alice’s and Bob’s sides. We denote the bits of this key K as

{b1, b2, ..., bm, a1, a2, ..., an}. (12)

2. Authentication of Bob’s identity. The first m pulses are used to authenticate Bob’s identity in the
manner that Alice chooses her bit randomly and Bob always chooses bit 0, and both of the above
choices are under control of the first m bits of K.



Entropy 2019, 21, 518 6 of 19

2.1 Alice generates a random string RA with m bits

{r1, r2, ..., rm}. (13)

2.2 For the ith pulse Alice emits into the system, she sets the angle of HWPA as

π

4
× ri +

π

8
× bi. (14)

2.3 For the ith coming pulse, Bob sets the angle of HWPB as

π

8
× bi. (15)

2.4 Alice checks the results of D0 and D1. If D1 clicks with the probability of 100% for the pulses
where ri = 1, and for those ri = 0, D0 and D1 click with the probability about 25% and 25%,
respectively, Alice believes Bob’s identity and they go on to Step 3, otherwise, Alice skips to the
last step.

3. Authentication of Alice’s identity. In this step, Bob checks Alice’s identity with the help of the last
n bits of K.

3.1 Bob generates a random string RA with m bits

{s1, s2, ..., sm}. (16)

3.2 For the (m + j)th pulse, Alice sets the angle of HWPA as

π

8
× ai. (17)

3.3 For the (m + j)th coming pulse, Bob sets the angle of HWPB as

π

4
× si +

π

8
× ai. (18)

3.4 Bob checks results of D2. If D2 never clicks when si = 0 and clicks with the probability of 50% for
both the two cases that {si = 1,ai = 0} and {si = 1,ai = 1}, Bob believes Alice’s identity.

4. Key status update. Alice and Bob update the statuses of K as “invalid”.

3.2. Correctness of the Proposed QIA Protocol

For the legal Alice and Bob, they can verify each other’s identity following the above processes.
The unitary operations of the HWPs in different cases are shown in Equations (4)–(7). In the processes
of Step 2, there are four cases about Alice’s and Bob’s choices of {αA, αB}: {0, 0}, {π/4, 0}, {π/8, π/8},
and {3π/8, π/8}. For the situation of {0, 0}, the state of the whole pulse when it first passes BS and
HWPA is

ρHA(0) = −
i√
2
|0〉a|V〉b +

i√
2
|V〉a|0〉b. (19)

The final state, i.e., the state of the polarization and the position of the photon after (part of) it
passes BS the second time, is

ρ′BS(0, 0) = − 1√
2
(

i√
2
|V〉0|0〉1|0〉2 +

1√
2
|0〉0|V〉1|0〉2)−

i√
2
|0〉0|0〉1|V〉2 (20)

= − i
2
|V〉0|0〉1|0〉2 −

1
2
|0〉0|V〉1|0〉2 −

i√
2
|0〉0|0〉1|V〉2. (21)
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Here, we use ρHA(α) to denote the state of the pulse when it first passes BS and HWPA in the
situation that αA = α, ρPBS(α1, α2) to denote the state when the pulse first passes PBS in the situation
that αA = α1 and αB = α2, and ρ′BS(α1, α2) to denote the state when the pulse passes BS the second
time. For the situation of {π/8, π/8},

ρHA(π/8) =
i√
2
|0〉a|−〉b +

i√
2
|V〉a|0〉b, (22)

where

|−〉 = 1√
2
(|H〉 − |V〉). (23)

and

ρPBS(π/8, π/8) = − 1√
2
|0〉a|V〉b +

i√
2
|V〉a|0〉b. (24)

Thus, the final state of this case would be

ρ′BS(π/8, π/8) = − i
2
|V〉0|0〉1|0〉2 −

1
2
|0〉0|V〉1|0〉2 −

i√
2
|0〉0|0〉1|V〉2. (25)

For both above cases of Equations (21) and (25), D0, D1 and D2 would click with the probabilities
of 25%, 25% and 50%, respectively. Similarly, we can calculate that

ρ′BS(π/4, 0) = ρ′BS(3π/8, π/8) = −|0〉0|V〉1|0〉2. (26)

D1 always clicks in these two cases. The calculations on the four cases coincide with the
judgements at the end of Step 2.

The four possible final states in the processes of Step 3 are ρ′BS(0, 0), ρ′BS(0, π/4), ρ′BS(π/8, π/8),
and ρ′BS(π/8, 3π/8). Here, ρ′BS(0, 0) and ρ′BS(π/8, π/8) are considered in Equations (21) and (25), and

ρ′BS(0, π/4) = ρ′BS(π/8, 3π/8) = −|0〉0|V〉1|0〉2. (27)

The calculations on these four final states in Step 3 coincide with the judgements in Step 3, too.
Therefore, for the legal participants who have the authentication key K, they can always authenticate
each other’s identities correctly.

3.3. The Security Analysis for No-Error Cases

In fact, the security of Bob’s identity is protected by the first part of K, i.e., {b1, b2, ..., bm}.
The operations Bob’s operations in the first part is U(0) if bi = 0 and U(π/8) if bi = 1. According to
the theorems on operation discrimination, the above two operations cannot be discriminated with
no error probability (see Appendix A for details). If the adversary, who is forging Bob’s identity to
communicate with Alice, performs an error operation on the received pulse, Alice would get a wrong
measurement result. Therefore, the adversary cannot always gives Alice a correct response to pass
Alice’s tests. Correspondingly, the security of Alice’s identity is protected by the second part of K,
i.e., {a1, a2, ..., an}. Since the second part of the protocol only executed when the communicating
peer passes Alice’s tests, the adversary cannot get any information about the string {a1, a2, ..., an}
from Alice’s side. Therefore, the adversary has to face Bob’s tests without any information on the
authentication key. Considering that Bob chooses his angles from {0, π/8 π/4, 3π/8} randomly,
the measurement results would be random if he is communicating with the adversary who has no
information about {a1, a2, ..., an}. That is, the adversary cannot pass Bob’s tests without introducing
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any error. Above all, we can get a conclusion that the adversary cannot forge either Alice’s identity or
Bob’s identity in the no-error cases.

For the more general cases, the security analysis of the proposed protocol are described in
Appendix A. Specifically, for each signal, we calculate a relaxed lower bound of the minimum error
probability that the adversary has to introduce in Alice’s test while forging Bob,

Pb =
1
2
(1−

√
5− 2

√
2

16
√

2− 8
) > 2.8%, (28)

and a relaxed lower bound of the minimum error probability that the adversary has to introduce in
Bob’s test while forging Alice,

Pa > 6.5%. (29)

We believe that the tight bounds would be much larger, since we have made many relaxations
during the derivation procedure to simplify the difficulty.

4. Authenticated Counterfactual QKD Protocol

In this section, we propose an authenticated counterfactual QKD protocol utilizing the proposed
QIA protocol. The basic idea is mixing the process of the QIA protocol into the QKD protocol according
to the random data generated in the QKD protocol, which can be recorded identically for the two
participants without any communication. In the following authenticated QKD protocol, the length
of original authentication key is independent with the length of the new generated key. Suppose the
length of the key that the participants expect to generate is m, and the length of the authentication key
KA which meets the requirement of security is n. Then, the mixing parameter of the authenticated
counterfactual QKD protocol is

r = b4m
n
c. (30)

With the definition of r, the main processes of the authenticated QKD protocol can be briefly
described as follows: once Bob’s detector has clicked r times, Alice and Bob insert one round
of the QIA process presented in last section. Specifically, utilizing the devices and circuit in
Figure 3, the participants can implement the authenticated counterfactual QKD protocol as follows.
For convenience of the following description, we use pi to denote the probability that the ith signal is
used for the process of QIA.

a. Set-up. For the main processes described above, pi is convergent when i gets larger, however
it is much smaller than the convergence value for small is. For example, pi = 0 when i ≤ r. If the
adversary only attacks these signals with smaller pi, he is more likely to pass the participant’s test.
Therefore, before the formal steps of the protocol, Alice and Bob should equalize pi for different is.
lr pulses would be used in this stage, where

lr = 2dlog(4r + 1)e. (31)

a1 Alice emits lr single-photon pulses to the system one by one. For each pulse, Alice (Bob) randomly
choose the angle of HWPA (HWPB) to be one of {0, π/8, π/4, 3π/8}.

a2 If the photon goes to Bob’s detector, i.e., D2 clicks and D0 and D1 do not, they record a classical
bit 1. If the photon goes back to Alice, i.e., D0 or D1 clicks and D2 does not, they record a classical
bit 0.
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a3 After all the lr pulses have been detected by the three detectors, Alice and Bob get a lr bit
binary number. Then, they use a hash function to uniformly map the above number into the set
{0, 1, ..., 4r}, and denote the result as fr. Note that, for one single binary bit, the uncertainty is

− 1
4

log(
1
4
)− 3

4
log(

3
4
) ≈ 0.56. (32)

Alice and Bob produce lr signals here so that the uncertainty of the lr bits is larger than log(4r + 1),
to make the value of fr totally random.

b. Signal transmission and identity authentication. Utilizing the random number fr generated in
last step, the participants start to distribute a new key while authenticate each other’s identity.

b1 For the first fr pulses in this step, Alice and Bob perform the QKD process, i.e., they both randomly
alter the angles of HWPA and HWPB to be 0 or π/4 and record the clicking situation of each
detector and the state of the photon if the detector has clicked.

b2 The ( fr+1)th pulse is the first pulse for identity authentication. As in Steps 2.2 and 2.3 in the
above QIA protocol, Alice alters the angle of HWPA to be π/4 ∗ r1 + π/8 ∗ b1 and Bob alters the
angle of HWPB to be π/8 ∗ b1, where b1 is the first bit of the authentication key and ri is a random
bit.

b3 From the ( fr + 2)th pulse, the participants start to insert the process of QIA into the QKD
according to the random data of the clicks of the detectors. Precisely, each time the click times of
D2 reaches an integral multiple of r, they insert one round of the QIA process immediately until
the authentication process for Bob’s identity has finished.

b4 Alice checks Bob’s identity according to Step 2.4.
b5−8 If the test for Bob’s identity passes, they continue to transmit the rest QKD signals and authenticate

Alice’s identity by repeating the processes from b1 to b4 but perform the operations in Steps 3.2–3.4
instead of these in Steps 2.2–2.4, respectively.

c. Eavesdropping detection. Alice and Bob first check the validity of each other’s identity. If the
identity authentication passes, they continue to the rest part of the counterfactual QKD protocol to
generate a new key and use part of the new key to update the authentication keys.

In the above protocol, the processes of QIA and QKD are mixed randomly; however, they
are performed independently. More specifically, the sequence of the signals for QIA and ones for
QKD are random for the adversaries. On the other hand, each signal is either used for QIA or for
QKD, but never for both. Because of such independence, the correctness of the above protocol is
obliviously established considering the correctness of the counterfactual QKD protocol [27,31] and the
counterfactual QIA protocol presented in the last section, as is the security of the process of QIA and
the process of QKD. The only new factor which may influence the security of the whole protocol is that
the adversary may discriminate the two type of signals, i.e., the signals for QKD and the signals for
QIA, and then only attack the signals for QKD. Next, we proved that the adversary cannot discriminate
the two type of signals.

Firstly, the two types of signals cannot be discriminated precisely. For a QKD signal, Alice randomly
sets her angle as 0 or π/4, and the reduced density matrix for the state in path b is

ρQKD =
1
2
(

1
2
(|0〉〈0|+ |V〉〈V|) + 1

2
(|0〉〈0|+ |H〉〈H|))

=
1
2
|0〉〈0|+ 1

4
I. (33)
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For a QIA signal in the first part, Alice’s operation set is {0, π/8, π/4, 3π/8}, and the reduced
density matrix for the state in path b is

ρQIAB =
1
4
(

1
2
(|0〉〈0|+ |V〉〈V|) + 1

2
(|0〉〈0|+ |H〉〈H|)

+
1
2
(|0〉〈0|+ |+〉〈+|) + 1

2
(|0〉〈0|+ |−〉〈−|))

=
1
2
|0〉〈0|+ 1

4
I, (34)

which is the same as ρQKD. For the second part of QIA, Alice’s operation set is {0, π/8}, and the
reduced density matrix for the state in path b is

ρQKAA =
1
2
(

1
2
(|0〉〈0|+ |V〉〈V|) + 1

2
(|0〉〈0|+ |−〉〈−|))

=
1
2
|0〉〈0|+ 1

4
(|V〉〈V|+ |−〉〈−|) (35)

The minimum error probability to discriminating ρQKD and ρQKAA is

1
2
−
√

2
16
≈ 0.41, (36)

which is close to 1/2, the probability of random guess. Furthermore, the discrimination operation
will inevitably disturb the pulse in path b and introduce errors in the authentication process or the
detection mode of QKD.

Secondly, we analyze the probability of being a QIA pulse for each signal. The expectation of the
above probability can be deduced by calculating the average interval of two QIA signals, which is

D =
∞

∑
j=r

jpCr−1
j−1 pr−1(1− p)j−r. (37)

= pr
∞

∑
k=0

(r + k)Ck
r+k−1(1− p)k. (38)

Then, both sides of the above equation are multiplied by (1− p),

(1− p)D = pr
∞

∑
k=0

(r + k− 1)Ck−1
r+k−2(1− p)k. (39)

By subtracting the two equations, we have

pD = pr
∞

∑
k=1

(r + k− 1)
(

Ck
r+k−1 −Ck−1

r+k−2

)
(1− p)k + rpr ++pr

∞

∑
k=1

Ck−1
r+k−2(1− p)k

= rpr + pr
∞

∑
k=1

(1− p)k
(
(r + k)Ck

r+k−2 + Ck−1
r+k−2

)
= rpr + rpr

∞

∑
k=1

Ck
r+k−1(1− p)k. (40)

Suppose

Di =
∞

∑
k=i

Ck
r+k−i(1− p)k. (41)
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Then,

(1− p)Di =
∞

∑
k=i

Ck
r+k−i(1− p)k+1 =

∞

∑
k=i+1

Ck−1
r+k−(i+1)(1− p)k. (42)

We can get

pDi = (1− p)iCi
r + Di+1. (43)

So that,

D1 =
∞

∑
k=1

Ck
r+k−1(1− p)k

=
r

∑
j=1

Cj
r(1−

1
p
)j +

1
pr

∞

∑
k=r

Ck
k−1(1− p)k

=
1
pr − 1. (44)

Substituting Equation (44) into Equation (40), we have

D =
r
p

, (45)

where p = 1/4. This implies that every D+1 signals contain one QIA signal on average.
Therefore, the average probability for a pulse to be a QIA signal is

p =
1

4r + 1
, (46)

However, it is difficult to propose a strategy where the above probability is totally identical for
each signal. As for the proposed protocol, the probability of the lth signal to be a QIA one is

Pr(l) = p ∑
k=1

4r + 1
b l

r+1 c

∑
j=1

Crj−1
l−1−i−k(

1
4
)rj(

3
4
)l−rj−j−k. (47)

The the graphs of function pr(l) for different values of r are given in Figure 4.

Figure 4. The graphs of function pr(l) when r = 10 (the red line), 15 (the green line), and 20 (the blue ine).
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We can see that the probability pl tends to be stable when l is larger than 8r. The adversary
cannot effectively reduce the error rate introduced by his attack utilizing the probability distribution of
the type of the signals. Therefore, if the adversary wants to attack a proportion of the QKD signals,
she will have to disturb a similar proportion of the QIA signals, which will cause a failure result in the
QIA part.

5. Conclusions

In this paper, we first propose a quantum identity authentication protocol that can be realized in
the counterfactual quantum communication system. Then, we propose an authenticated counterfactual
QKD protocol by mixing the processes of the proposed QIA protocol and the counterfactual
QKD protocol in [33]. In this authenticated counterfactual QKD protocol, the two independent
processes of QKD and QIA mixed randomly for any third party except the two participants,
therefore, the adversaries cannot discriminate between a QIA signal and a QKD signal. Any attempts
to perform a man-in-the-middle attack to the process of QKD will disturb the signal in the QIA process
and cause a failure result in the identity authentication. Since the two processes are independent,
the length of the authentication key is only related to the expected confidence degree for the participants’
identities, and is not concerned with length of the newly generated key in QKD. Therefore, the key
expansion in our protocol can be extremely high in theory. The problem is that the proposed protocol
can only be performed in noiseless channels since any channel loss or dark count would mess up
the whole process of the protocol. Once a channel loss or dark count happens, Alice and Bob cannot
synchronize the random data to control the signal type. Despite this, we think the idea of identity
authentication in this paper is promising in theory and might inspire practical QIA protocols and
authenticated QKD protocols designed in similar ways. The theory of high key-expand-ability QIA
protocols in noisy channel will also be our future work.
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Appendix A. Security of the Counterfactual QIA Protocol

Appendix A.1. Security of Bob’s Identity

Here, we first analyze the security of the protocol against an adversary who attempts to counterfeit
Bob’s identity. Suppose the adversary’s system is prepared in the state of |e〉. Furthermore, considering
the situation that the adversary knows no information of the authentication key K, we suppose his
attack operation is O, where

O|H〉|e〉 = |H〉|hh〉+ |V〉|hv〉+ |0〉|h0〉, (A1)

O|V〉|e〉 = |H〉|vh〉+ |V〉|vv〉+ |0〉|v0〉, (A2)

O|0〉|e〉 = |0〉|00〉. (A3)
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In the above equations, the states for the adversary’s system are non-normalized and satisfy

〈hh|hh〉+ 〈hv|hv〉+ 〈h0|h0〉 = 1, (A4)

〈vh|vh〉+ 〈vv|vv〉+ 〈v0|v0〉 = 1. (A5)

To avoid multiple responses in Alice’s detectors, when the state in path b is empty state |0〉,
the adversary should keep it empty, therefore 〈00|00〉 = 1.

When the pulse in path b arrives at the adversary’s side, the whole state of path a, path b and the
adversary’s system E is

1√
2
(|0〉a|Vα〉b|e〉E + i|V〉a|0〉b|e〉E), (A6)

where
|Vα〉 = U(α)|V〉. (A7)

For the situation α = 0, the state after the adversary’s operation is

− i√
2
|0〉a(|H〉b|vh〉E + |V〉b|vv〉E + |0〉b|v0〉E) +

i√
2
|V〉a|0〉b|00〉E. (A8)

When the pulse in path b passed HWPA the second time, the state turns to

1√
2
|0〉a(|H〉b|vh〉E − |V〉b|vv〉E − i|0〉b|v0〉E)−

1√
2
|V〉a|0〉b|00〉E. (A9)

Further, when the two pulses in paths a and b pass BS the second time, the state becomes

ρE(0) =
1
2
(|H〉0|0〉1|vh〉E + i|0〉0|H〉1|vh〉E)−

1
2
(|V〉0|0〉1|vv〉E + i|0〉0|V〉1|vv〉E)

−1
2
(i|V〉0|0〉1|00〉E + |0〉0|V〉1|00〉E)−

i√
2
|0〉a|0〉b|v0〉E. (A10)

After a simple transformation, we can get

ρE(0) =
1
2
|V〉0|0〉1(−i|00〉 − |vv〉)E +

1
2
|0〉0|V〉1(−|00〉 − i|vv〉)E

+
1
2
|H〉0|0〉1|vh〉E +

i
2
|0〉0|H〉1|vh〉E +

1√
2
|0〉0|0〉1|v0〉E. (A11)

Similarly, we can get the states of whole system when the two pulses pass BS the second time

ρE(
π

8
) =

1
2
|V〉0|0〉1(−i|00〉 − |S+−−+〉)E +

1
2
|0〉0|V〉1(−|00〉 − i|S+−−+〉)E

−1
2
|H〉0|0〉1|S++−−〉E −

i
2
|0〉0|H〉1|S++−−〉E −

1
2
|0〉0|0〉1(|h0〉 − |v0〉)E, (A12)

ρE(
π

4
) =

1
2
|V〉0|0〉1(−i|00〉+ |hh〉)E +

1
2
|0〉0|V〉1(−|00〉+ i|hh〉)E

−1
2
|H〉0|0〉1|hv〉E −

i
2
|0〉0|H〉1|hv〉E −

1√
2
|0〉0|0〉1|h0〉E, (A13)

and

ρE(
3π

8
) =

1
2
|V〉0|0〉1(−i|00〉 − |S+−+−〉)E +

1
2
|0〉0|V〉1(−|00〉 − i|S+−+−〉)E

−1
2
|H〉0|0〉1|S++++〉E −

i
2
|0〉0|H〉1|S++++〉E −

1
2
|0〉0|0〉1(|h0〉+ |v0〉)E, (A14)
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where

|S+−−+〉 =
1
2
(|hh〉 − |hv〉 − |vh〉+ |vv〉), (A15)

|S++−−〉 =
1
2
(|hh〉+ |hv〉 − |vh〉 − |vv〉), (A16)

|S+−+−〉 =
1
2
(|hh〉 − |hv〉+ |vh〉 − |vv〉), (A17)

|S++++〉 =
1
2
(|hh〉+ |hv〉+ |vh〉+ |vv〉). (A18)

Alice would notice the existence of the adversaries if she has detected a photon in horizontal
polarization or the clicking probabilities of D0 and D1 are not correct. We divide the probability that
the adversary would be found into four parts. The first part is the probability that Alice detects
a horizontal polarized photon,

P1 =
1
8
(〈vh|vh〉+ 〈S++−−|S++−−〉+ 〈hv|hv〉+ 〈S++++|S++++〉). (A19)

The second part is the probability that Alice has not detected any photon when ri = 1,

P2 =
1

16
[2〈h0|h0〉+ (〈h0|+ 〈v0|)(|h0〉+ |v0〉)]. (A20)

The third part is the probability that Alice detects a vertical polarized photon at D0 when ri = 1,

P3 =
1

16
[(i〈00|+ 〈hh|)(−i|00〉+ |hh〉) + (i〈00|+ 〈S+−+−|)(−i|00〉+ |S+−+−〉)]. (A21)

The fourth part is about the scales of the clicks of D0 and D1, and this part is related with the length
of the authentication key and the required confidence of the users’ identities in the actual applications.

We consider only the first two parts, and we have

P ≥ P1 + P2

=
1

16
[2〈vh|vh〉+ 2〈S++−−|S++−−〉+ 2〈hv|hv〉+ 2〈S++++|S++++〉

+2〈h0|h0〉+ (〈h0|+ 〈v0|)(|h0〉+ |v0〉)]

=
1

16
[2〈hv|hv〉+ (〈hh|+ 〈hv|)(|hh〉+ |hv〉) + 2〈vh|vh〉+ (〈vv|+ 〈vh|)(|vv〉+ |vh〉)

+2〈h0|h0〉+ (〈h0|+ 〈v0|)(|h0〉+ |v0〉)]. (A22)

Obviously, a necessary condition for the minimum of P1 + P2 is that the two vectors in each of the
three pairs {|hv〉, |hh〉}, {|vv〉, |vh〉} and {|h0〉, |v0〉} are reversed. Under this condition, we can figure
out the minimum value of P1 + P2 by Lagrange multiplier,

P > P1 + P2 ≥
2−
√

2
8

. (A23)

Thus, in the situation that the adversary knows nothing about the authentication key, he would
be discovered by Alice with a probability that is larger than

1− (
6 +
√

2
8

)m. (A24)

Next, we analyze the situation that the adversary first communicates with Bob to pry into the
authentication key, and then forges Bob’s identity with the information about the authentication key
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he got from Bob. Similar to the processes above, we assume that the adversary prepares the following
state and sends the system T to Bob,

|eh〉R|H〉T + |ev〉R|V〉T + |e0〉R|0〉T , (A25)

where 〈eh|eh〉 + 〈ev|ev〉 + 〈e0|e0〉 = 1. Bob can prevent the adversary from sending multi-photon
system to him by add a beam splitter and an additional detector before D2. If the authentication key
bit is 0, after Bob’s operation, the whole state would become

|φ0〉 = −|eh〉R|H〉T |0〉2 − i|ev〉R|0〉T |V〉2 + |e0〉R|0〉T |0〉2. (A26)

If the key bit is 1, the whole state would be

|φ1〉 = −|e+〉R|+〉T |0〉2 + i|e−〉R|0〉T |V〉2 + |e0〉R|0〉T |0〉2, (A27)

where

|e+〉 =
1√
2
(|eh〉+ |ev〉), (A28)

|e−〉 =
1√
2
(|eh〉 − |ev〉). (A29)

To calculate an accurate result of the minimum error probability to discriminate tr2(|φ0〉〈φ0|) and
tr2(|φ1〉〈φ1|) is difficult. Here, we pursue a lower bound by giving the adversary the power to access
the system 2, i.e., we calculate the minimum error probability of the discrimination of |φ0〉 and |φ1〉
as a lower bound of the minimum error probability to discriminate tr2(|φ0〉〈φ0|) and tr2(|φ1〉〈φ1|).
According to the known conclusions on quantum states discrimination, we find that

Pm ≥ 1
2
(1−

√
1− |〈φ0|φ1〉|2). (A30)

Now, the problem becomes finding the minimum value of |〈φ0|φ1〉|. By substituting
Equations (A26) and (A27) into the above formula, we get

〈φ0|φ1〉 =
1√
2
〈eh|e+〉 − 〈ev|e−〉+ 〈e0|e0〉

=
1
2
〈eh|eh〉+

1
2
〈eh|ev〉 −

1√
2
〈ev|eh〉+

1√
2
〈ev|ev〉+ 〈e0|e0〉. (A31)

Assuming that

|eh〉 = (l1eα1i, l2eα2i, ...)T , (A32)

|ev〉 = (m1eβ1i, m2eβ2i, ...)T . (A33)

Then, Equation (A31) changes to

〈φ0|φ1〉 = ∑
k
(

l2
k
2
+

m2
k√
2
) + 〈e0|e0〉+ ∑

k
(lkmk(

1
2

e(αk−βk)i − 1√
2

e(βk−αk)i). (A34)

We can get the minimum of |〈φ0|φ1〉|,

5
√

2− 6
8− 4

√
2

, (A35)
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which appears when αk−βk =−π and mk = (
√

2−1)lk for any k, and 〈e0|e0〉= 0. By further calculation,
we can get the lower bound of the minimum error probability of the adversary guessing each bit of the
first m authentication key,

pe >
1
2
(1−

√
5− 2

√
2

8
√

2− 4
). (A36)

Here, we did many relaxations to get the above result, and we think the tight lower bound is
much larger than it. With the information about the authentication key he obtained from the above
operation, the adversary could improve his attack. A relaxed lower bound of the minimum error
probability the adversary introduced would be

P′ =
pe

2
>

1
2
(1−

√
5− 2

√
2

16
√

2− 8
) > 2.8%. (A37)

This means in the situation that the adversary knows nothing about the authentication key,
he would be discovered by Alice with a probability that is larger than

1− 0.97m. (A38)

Appendix A.2. Security of Alice’s Identity

Since Alice only sends her communicating peer the last n signals when she has verified its identity,
the adversaries cannot get any information about the last n bit of K. Therefore, the adversary can only
attack without any information on K. Suppose the state the adversary sends to Bob is

|φ0〉E|0〉B + |φH〉E|H〉B + |φV〉E|V〉B, (A39)

where 〈φ0|φ0〉 + 〈φH |φH〉 + 〈φV |φV〉 = 1. When si = 0, for each signal, Bob will find the existence of
the adversary when his detector clicks, with the probability

P′ =
〈φV |φV〉

4
+

(−i〉φH + i〉φV |)(i|φH〉 − i|φV〉)
2

. (A40)

When si = 1, the expectations of the probability that Bob’s detector clicks are

〈φH |φH〉, (A41)

and

(i〉φH + i〉φV |)(i|φH〉 − i|φV〉)
2

, (A42)

which should be about 1/2. For simplicity, here we suppose that Bob would accept Alice’s identity if
both probabilities are in the interval of [4/9, 5/9]. Then, we can get a relaxed lower bound of the error
probability that the adversary would introduce,

1
2
(b2 +

(a− b)2

2
) =

3
2
((b− a

2
)2 +

2a2

9
) ≥ 6.5%, (A43)

where a = 〈φH |φH〉 and b = 〈φV |φV〉.
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