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Abstract: The real world is full of rich and valuable complex networks. Community structure is
an important feature in complex networks, which makes possible the discovery of some structure
or hidden related information for an in-depth study of complex network structures and functional
characteristics. Aimed at community detection in complex networks, this paper proposed a membrane
algorithm based on a self-organizing map (SOM) network. Firstly, community detection was
transformed as discrete optimization problems by selecting the optimization function. Secondly,
three elements of the membrane algorithm, objects, reaction rules, and membrane structure were
designed to analyze the properties and characteristics of the community structure. Thirdly, a SOM
was employed to determine the number of membranes by learning and mining the structure of
the current objects in the decision space, which is beneficial to guiding the local and global search
of the proposed algorithm by constructing the neighborhood relationship. Finally, the simulation
experiment was carried out on both synthetic benchmark networks and four real-world networks.
The experiment proved that the proposed algorithm had higher accuracy, stability, and execution
efficiency, compared with the results of other experimental algorithms.

Keywords: community detection; membrane algorithm; self-organizing map network; complex
networks; optimization

1. Introduction

Many networks can be simulated by complex networks, such as social networks, biological
networks, and the World Wide Web. The study of complex networks is increasingly attracting the
attention of researchers from many different fields. These complex networks are represented by nodes
and edges. In order to clearly understand the structural characteristics and functional characteristics
of complex networks, finding the relationship between these nodes and edges is especially important
for studying the composition of the network and understanding the functional characteristics of
the network. As a method to revealing the relationship between nodes and edges in the network,
community structure has become a hot research topic in network science. More and more researchers
are paying attention to community detection problems in complex networks [1–3].

There are many algorithms for studying community detection, including the graph partitioning
algorithm, hierarchical clustering, modularity optimization algorithm, label propagation algorithm,
partition-based clustering algorithm, evolutionary algorithm, etc. [4]. Among many algorithms,
evolutionary algorithms can solve the problems of community detection without prior knowledge.
These problems need to be converted into optimization problems first, and then they can be
solved by using evolutionary algorithms, such as the genetic algorithm (GA), particle swarm
optimization (PSO), differential evolution (DE), etc. Such algorithms have the ability to automatically
detect the number of communities when the number of communities in the network is unknown,
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and is more suitable for solving real network problems [1]. The application of evolutionary
algorithms in complex networks has attracted the attention of many researchers. Tasgin et al. first
proposed a genetic algorithm to solve these kinds of complex problems [5]. Pizzuti proposed
a GA-based community detection algorithm, which introduced a genetic representation and the
concept of community score as the fitness function to detect community structure in complex
networks [6]. Pizzuti proposed a multiobjective genetic algorithm to find communities in complex
networks. The method maximizes the intra-connections inside each community and minimizes
inter-connections between different communities [7]. Gong et al. proposed a synergy of a genetic
algorithm with a hill-climbing strategy as the local search procedure to optimize modularity destiny to
explore the network at different resolutions [8]. Pizzuti et al. proposed a many-objective optimization
algorithm for community detection in multi-layer networks [9]. Meo et al. proposed a scalable
method to maximize modularity in large networks, which is a new clustering method that couples
the accuracy of global approaches with the scalability of local methods [10]. Grass-Boada et al.
proposed a multi-objective overlapping community detection algorithm, which is based on the
Pareto-dominance based multi-objective evolutionary algorithmsand global and local approaches for
discovering overlapping communities [11]. Berahmand et al. proposed a local approach by detecting
and expanding core nodes through extended local similarity of nodes [12]. Shi et al. proposed a
locally-biased spectral approximation approach to adapt the Lanczos method for local community
detection, which apply a fast random walk, personalized PageRank, and heat kernel diffusion [13].
Moradi et al. proposed an extension genetic algorithm with a novel local search strategy for community
detection [14].

In summary, the research results of community detection based on evolutionary algorithms
mainly focus on network coding, group initialization, evolution rule design, and objective function
selection. Although the above literature has obtained a wealth of research results, the accuracy and
complexity of these algorithm still needs to be improved. In this paper, we proposed an evolutionary
membrane community detection algorithm based on self-organizing maps (SOM), named EMCD-SOM.
SOM, an unsupervised learning algorithm for clustering and high-dimensional visualization, is an
artificial neural network developed by simulating the characteristics of the human brain’s processing
signals [15]. The proposed algorithm consists of objects, reaction rules, and membrane structure.
An object presents a partition result of the complex network. Reaction rules include GA and DE.
In the skin membrane, GA is utilized as reaction rules to evolve the objects. DE is introduced as
reaction rules in the region of each membrane. In order to find the optimal membrane structure,
SOM determines the number of membranes by learning the information of the objects. To evaluate
the performance of EMCD-SOM, synthetic benchmark networks and four real-world networks were
conducted by the proposed EMCD-SOM. The experimental results showed that the proposed method
was more useful and effective than other state-of-the-art algorithms including FastNewman [16],
LconDanon [17], GA-NET [6], CMM [18], and Meme-net [8] from the literature.

The main contributions of this paper are summarized below:

• The SOM neural network may learn and mine the structure of the current objects in the decision
space, which is beneficial for guiding the local and global search of the proposed algorithm;

• The number of membranes of the proposed EMCD-SOM is determined according to the
characteristics of SOM mapping similar data to adjacent neurons.

• GA and DE are employed as reaction rules to evolve the objects in the different region of
membrane;

• The proposed EMCD-SOM can implement the balance of exploration and exploitation in four real
world networks.

The rest of this paper is organized as follows. In Section 2, the description of the proposed
EMCD-SOM is elaborated. In Section 3, the simulation results are evaluated on the benchmark test
problems in comparison with some state-of-the-art evolutionary algorithms. Moreover, this section
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includes a sensitivity analysis for the proposed EMCD-SOM. Finally, Section 4 summarizes the
concluding remarks of this paper.

2. The Proposed Approach

This section will explain the principles of the proposed EMCD-SOM based on a membrane
system. Since the membrane system consists of three elements: object, reaction rule, and membrane
structure, the proposed algorithm also has these elements. In the proposed EMCD-SOM, the focus
is on how to achieve these three elements. The object as the first element in the region of membrane
represents candidate solution for network partitioning. The second element is the reaction rule, which
are designed to evolve objects in different region of membranes. The membrane structure is the last
element, which helps to promote the exchange of information between membranes and enhance the
diversity of objects. These features are very useful in developing a new evolutionary algorithm to
improve its solving performance.

The pseudo-code of the proposed EMCD-SOM is given in the Algorithm 1.

Algorithm 1 The pseudo-code of the proposed EMCD-SOM.

Input: The parameters of the proposed algorithm are initialized, including the number of objects in

each elementary membrane, each object within its boundaries.
Output: The best object is found from the different elementary membranes.

1: The objects are initialized from the search space.
2: The fitness of these objects is calculated according to the modularity density function in Equation (3).
3: while End Condition do
4: Determining the number of membrane (NC) by invoking SOM
5: for i = 1; i < NC; i ++ do
6: Evolving the objects in the region of elementary membrane according to the DE-based

reaction rule.
7: end for
8: The objects from the region of elementary membrane are released into the region of skin membrane.
9: All objects in the region of skin membrane are evolved according to the GA-based reaction rule.

10: end while

2.1. Object and Its Initialization

The object is encoded as a partition of community in the complex network. Depending on the
number of network communities, each object can be represented as a set of real integer values. In the
proposed algorithm, an object is defined as:

X = (x1, x2, · · · , xn) (1)

where n represents the number of the nodes in a complex network, and xi is the i-th node and is
an integer change from 1 to n. A community consists of nodes with the same value. The graphical
illustration of the object coding is shown in Figure 1. As can be seen from Figure 1, there are 14 nodes
and a total of three communities represented by objects. It is worth mentioning that the number of
communities is automatically determined by the proposed algorithm. In the worst case, a complex
network with n nodes can be divided into n communities.



Entropy 2019, 21, 533 4 of 15

Figure 1. A generic illustration of the representation of a discrete object.

The object represents the result of network partitioning in the proposed EMCD-SOM. It is
initialized according to Equation (2):

xi,j = dxl
j + (xu

j − xl
j)× re+ 1 (2)

where 1 ≤ i ≤ N, N is the number of objects in the region of all membranes. 1 ≤ j ≤ n, n represents
the maximum value of the node identifier in a complex network. xi,j is the value of the j-th identifier in
the i-th object, which is an integer value from 1 to n. xl

j represents the j-th lower limit of the identifier
in the complex network, which has a value of 1, and xu

j represents the upper boundary value of the j-th
identifier of the identifier in the complex network, which is n. r can generate a random number on the
interval (0, 1). In the formula, the ceiling operations is utilized to ensure that xi,j is an integer value.

2.2. Objective Function

Among many objects in the region of membranes, how to determine which object is the best
forthe best community partition requires the use of the objective function. The modularity density
widely used in community detection problems [19], and its definition is given in Equation (3).

f =
N

∑
i=1

(
L(Vi, Vi)− L(Vi, Vi)

|Vi|
) (3)

where L(V1, V2) = ∑i∈V1,j∈V2
Aij, and L(V1, V2) = ∑i∈V1,j∈V2

Aij, and V2 = Ω − V2, and A is the
adjacent matrix of the network, and Ω = V1, V2, · · · , VN is a partition.

The value of the objective function is one of the most critical steps that guides the object’s search
direction. The modularity density values are utilized to evaluate the quality of objects in all membranes.
The higher modularity density value has, the better community structure is attained by the proposed
algorithm. If the modularity density value is equal to 1, the network partition represents a very good
community structure.
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2.3. Membrane Structure

Since the proposed algorithm is based on a membrane system, it inherits the same network
structure from the membrane system. In order to simplify the implementation of this structure,
the proposed algorithm is defined as a structure containing only the elementary membrane.
Each elementary membrane can be thought of as an evolutionary unit. In the experiment, we found
that the number of membranes is difficult to set. To solve this problem, we used a self-organizing
mapping network (SOM) to determine the number of elementary membranes, specifically using SOM
to discover the structural information of the decision space of objects, and then determine the number
of elementary membranes. The details of SOM are given below.

SOM, an unsupervised learning algorithm proposed by Kohonen for clustering and
high-dimensional visualization, is an artificial neural network developed by simulating the
characteristics of the human brain’s processing signals. It is characterized by the ability to map
high-dimensional distributions to low dimensions and maintain mapping invariance. In recent years,
SOM have been applied to the solution of optimization problems. Jin et al. proposed a SOM with a
novel learning rule to solve the traveling salesman problem (TSP) [20]. Villmann et al. proposed a
hybrid system combining SOM and evolutionary algorithms to promote neighborhood cooperation [21].
Zhang et al. proposed a self-organizing multiobjective evolutionary algorithm. SOM is employed
to establish the neighborhood relationship among current solutions [22]. Liang et al. proposed a
multi-objective particle swarm optimization algorithm based on SOM, which mainly uses SOM to
discover the structural information of population and the multi-objective Pareto solution set, and then
guides the particle flight [23]. The topology of a two-dimensional SOM is shown in Figure 2.

Figure 2. An illustration of a two-dimensional self-organizing map network (SOM).

As shown in the figure, SOM consists of an input layer and a competition layer (output layer).
The number of input layer neurons is D, and the competition layer consists of a one-dimensional
or two-dimensional planar array of N = n1 × n2 neurons. Each neuron ui ∈ (1, 2, · · · , N) has
its own location information Zui = (zui

1 , zui
2 ) and weight information Wui = (wui

1 , wui
1 , · · · , wui

D ).
The network is fully connected, that is, each input node is connected to all output nodes.
SOM consists of a training phase and a clustering phase. In the first stage, the training data
is randomly selected, the winning neurons are selected according to the Euclidean distance,
and the weights of the winning neurons and their neighboring neurons are updated. The second
stage is mapping test data to neurons and similar data to neighboring neurons. The number of
membranes of the proposed EMCD-SOM is determined according to the characteristics of SOM
mapping similar data to adjacent neurons. Furthermore, the number of clusters in the SOM
is used to determine the number of membranes in the proposed algorithm. The structure of
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EMCD-SOM is conducive to improving search efficiency and is suitable for solving community
detection problems.

In the proposed algorithm, the objects in the region of elementary membrane are evolved by the
reaction rule according to the differential evolution algorithm. When objects from different membranes
are evolved, they are released into the region of the skin membrane. These objects will continue to
evolve by calling genetic algorithm-based reaction rules. Then, they are aggregated into several classes
using SOM and these clustered objects are in turn sent to the region of elementary membrane and are
evolved by invoking the reaction rule. After executing several generations, some good objects can be
generated by executing reaction rules in the different elementary membranes. The best object can be
found by comparing the modularity density values of these objects.

2.4. Reaction Rules

The reaction rule is inspired by the chemical reaction of the objects and the way of handling the
compound. Reaction rules can be implemented through mechanisms that can develop objects into the
direction of the global optimal partition of the network. According to “No Free Lunch”, there is no
single optimization algorithm to solve every optimization problem effectively and efficiently. In other
words, different algorithms possess a different accuracy to solve the same optimization problem.
The ensemble of state-of-the-art algorithms can obtain a better solution than using a single algorithm.
Inspired by this, we employed the GA algorithm and the DE algorithm to evolve objects in both the
skin membrane and elementary membrane.

GA is a computational model that simulates the natural evolution of Darwin’s biological
evolution theory and the biological evolution process of genetic mechanism. It is a method to
search for optimal solutions by simulating natural evolutionary processes. In each generation,
the optimal individual is selected based on the individual’s adaptability in the problem domain,
and new individuals are generated by crossover and mutation operations in the genetic operator.
In the proposed algorithm, GA acts as a reaction rule in the skin membrane. More specifically,
the individual in GA is represented by the object. The selection operation is used to select the
parent population of mating in the GA. Here we used a wide range of deterministic tournament
selection operators. The crossover operation was implemented by two-way crossing over operation
in the literature [8]. In mutation, we randomly selected a object in the region of the skin
membrane. A point mutation was employed, which randomly picked a dimension value on the
object and then randomly changed the value to its neighbor’s dimension value. GA facilitated
global search by the proposed algorithm. The parameters of GA were given as follows: Crossover
probability = 0.8, mutation probability = 0.2.

DE was employed as a reaction rule in elementary membranes. DE is an optimization
algorithm based on differential and simple mutation operation and one-to-one competitive survival
strategy, which reduces the complexity of genetic operations. It generates new individuals through
differential mutation with some different strategies including DE/rand/1, DE/best/1, DE/best/2,
DE/rand-to-best/1, etc. In order to improve the diversity of candidate solutions, DE introduces
crossover to operate on target vectors and mutation vectors to generate new experimental vectors.
In the proposed algorithm, DE/best/1 was utilized to evolve objects in the region of the elementary
membrane. A modified binomial crossover was employed to assign the value of either dimension in an
object to the value of the corresponding dimension in another object [24]. The parameters of DE were
given as follows: F = 0.9 is called the differential weight. CR = 0.3 is called the crossover probability.

3. Experimental Evaluation

The performance of the proposed algorithm was validated in a series of experiments based
on both synthetic benchmark networks and the four real-world networks by comparing it with
state-of-art algorithms. Section 3.1 will discuss the details of these networks. Section 3.2 will
describe the experimental condition in running the simulation. Section 3.3 will give several
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metrics of the experimental algorithms. Section 3.4 will give the simulation result of the LFR
(Lancichinetti–Fortunato–Radicchi)benchmark network calculated by all experimental algorithms.
Section 3.5 will discuss the experimental results based on the evaluation metrics of the experimental
algorithm on different network datasets.

3.1. Synthetic Benchmark Networks and Four Real-World Networks

3.1.1. Description of Synthetic Benchmark Betworks

The first set of experiments is the LFR benchmark network presented by Lancichinetti and
Radicchi in [25], which has power law degree distribution and variable sized communities. It is
the most widely used benchmark network for testing the performance of algorithms in community
detection. Compared with other synthetic networks, LFR networks can reflect some important features
of complex real-world systems. In the simulation, the number of nodes in the LFR network was 1000,
the average degree was 15, the maximum degree was 50, the mixing parameter was 0.1, the minimum
planted community size was 20, and the maximum planted community size was 50.

3.1.2. Description of Four Real-World Networks

In the following experiments, four real-world networks were employed to test the performance of
the proposed algorithm, including the Zachary’s karate club network, American college football club
network, Krebs America Political Book network, and Bottlenose dolphins network. The ground-truths
of these networks has been known. More details about the definition of these network datasets can be
discussed as follows. The Zachary’s karate club network, constructed by Zachary, is a network
of relations between 34 members of a karate club over a period of two years [26]. The karate
club is split into two communities of almost the same size on account of disagreements between
the administrator and the instructor of the club. The American college football network consists
of 115 vertices and 613 edges, which is divided into 12 communities, which was first proposed
by Girvan and Newman [27]. Vertices in the network represent teams which are identified
by their college names, and edges represent the regular season games between the two teams
they connect. This Krebs America political book network consists of 105 vertices and 441 edges
between books purchased together during the 2004 presidential election, which was compiled
by Krebs [28]. Bottlenose Dolphins network consists of 62 vertices and 60 edges based on social
acquaintances, which is naturally divided into two large groups: The male group and the female
one [29]. Each node represents a dolphin living over a period of 7 years in the bottlenose dolphins
network. The related parameters of each real-world network are described in Table 1.

Table 1. Parameters of the real-world networks.

Datasets Nodes Edges Communities

Zachary’s karate club network 34 78 2
American college football club network 115 613 12
Krebs America political book network 105 441 3

Bottlenose dolphins network 62 60 2

3.2. Experimental Conditions

In the experiments, some related community detection algorithms were employed to compare with
the proposed algorithm. These algorithms consist of Fast–Newman, Lcon-Danon, GA-net, Meme-net,
and MOGA-net. Some of them, including GA-net and Meme-net, are single-objective algorithms, while
the rest are non-evolutionary algorithms. They were run in Windows 7 enterprise version under the
hardware environment of Intel Pentium dual-core 2.93 GHZ and 16 GB RAM. The proposed algorithm
was implemented using Matlab2015.
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Since the results of the community detection method based on evolutionary algorithm depend on
the validity of the random search process, 30 repeated tests were performed independently on both
synthetic benchmark networks and 4 real-world networks, and statistical results were calculated in
order to evaluate the statistical performance of algorithms and reduce statistical errors. Moreover,
4 statistical metrics were designed, such as Mean, Std, Worst, and Best. These metrics were employed
to evaluate the solving performance of these various algorithms.

3.3. Evaluation Measures

At present, there are many metrics for evaluating the effectiveness of community detection
algorithms that detect the quality of network partitions of complex networks. Among these metrics,
the normalized mutual information (NMI) are the most widely used in community detection of
complex networks. In addition, to further evaluate the quality of the experimental results, some
clustering indicators were introduced include the F-measure and Rand Index.

NMI is a similarity measure estimating the similarity between detected partitions and true ones.
A higher NMI value represents a greater similarity between two partitions. If NMI takes its maximum
value which is equal to 1, all communities obtained by the experimental algorithms are identical to all
real communities. In the following experiment, NMI was used to evaluate the results between true
partition and the partition obtained by experimental algorithms. The definition of NMI(A, B) is shown
in Equation (4):

NMI(A, B) =
−2 ∑CA

i=1 ∑CB
j=1 Dij log(

Dij N
Di ·Dj

)

∑CA
i=1 Di · log(Di

N ) + ∑CB
j=1 Dj · log(

Dj
N )

(4)

where A and B are partitions of a network, and CA represents the number of communities in A while
CB denotes that of B. D is a confusion matrix, and Di,j stands for the number of nodes in community i
of A that also appear in community j of B. N is the number of elements. Di is the sum over row i of D
while Dj is the sum of elements in column j.

F-measure is also called F-score, which is a weighted harmonic averaging of Precision and Recall.
It is a commonly used evaluation standard in the clustering field and is often used to evaluate the
quality of the classification model. The definition of F-measure is shown in Equation (5):

F = 2× PR
P + R

(5)

where P is the precision and R is the recall rate.
Rand Index(RI) is also called Rand measure, which is a measure of the similarity between two

data clusterings. In the experiments, Rand Index is employed to measure the similarity between real
partitions and the partitions obtained by experimental algorithms. The definition of Rand Index is
shown in Equation (6):

RI =
a

a + b
(6)

where a can be considered as the number of agreements between real partitions and the partitions
obtained by experimental algorithms, and b as the number of disagreements between real partitions
and the partitions obtained by experimental algorithms.

3.4. Experiments on Synthetic Benchmark Networks

In the following experiment, the LFR network consisted of a network of size 1000 with a mixing
parameter fixed at 0.1. All experimental algorithms ran independently 30 times in the networks.
The statistical results of the evaluation indicators with NMI, F-measure, and Rand Index were used to
evaluate the performance of all experimental algorithms.

As shown in Table 2, the proposed EMCD-SOM achieved the best results on all indicators in
comparison with other experimental algorithms. FastNewman had suboptimal results on the synthetic
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benchmark networks. Due to the fact that Meme-net runs for a long time and there is no calculation
result, the statistical result was represented by ’-’. In summary, compared with other experimental
methods, the proposed algorithm was suitable for solving networks with a large number of nodes.

Table 2. The statistical values obtained by the experimental algorithms on the synthetic benchmark
networks of size 1000 with a mixing parameter fixed at 0.1. GA-NET: GeneticAlgorithm-NET; CMM:
Convexified Modularity Maximization; Meme-net: Memeticalgorithm-net; EMCD-SOM: The proposed
algorithm; NMI: normalized mutual information; RI: Rand Index.

Metrics Statistics FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

NMI Mean 0.952684 0.945996 0.872757 0.939711 - 0.992237
Std 5.64601 × 10−16 0 0.0186498 0.0136735 - 0.0115922

Worst 0.952684 0.945996 0.827308 0.915167 - 0.947601
Best 0.952684 0.945996 0.899495 0.969452 - 1

F-measure Mean 0.881533 0.943461 0.858099 0.86981 - 0.976459
Std 3.38761 × 10−16 0 0.0256338 0.0270183 - 0.0337187

Worst 0.881533 0.943461 0.79845 0.825811 - 0.854329
Best 0.881533 0.943461 0.898216 0.937594 - 1

RI Mean 0.986993 0.992146 0.983747 0.975294 - 0.996954
Std 3.38761 × 10−16 4.51681 × 10−16 0.00267911 0.00821687 - 0.00554023

Worst 0.986993 0.992146 0.977668 0.960883 - 0.971924
Best 0.986993 0.992146 0.988004 0.993564 - 1

3.5. Experiments on Real-World Networks

In this section, the proposed algorithms were compared with other algorithms for 4 real-world
datasets with real partitions known in the following experiment. All experimental algorithms were
run 30 times, independently. The statistical results of NMI, F-measure, and Rand Index were utilized
to evaluate the performance of the experimental algorithms.

3.5.1. Display Network Partition

We visualized the community detection results obtained by the proposed algorithm on 4
real-world datasets with real partitions known. As shown in Figures 3–6, the community division was
the best result from 30 runs, and almost every partition had a good community structure and was
similar to the real division of the network. The results of Figure 3 show that the proposed algorithm
can obtain different levels of community structure on Zachary’s karate club network. The proposed
algorithm could discover 2 communities, as shown in Figure 3, which is consistent with the real
community structure in Table 1.

The community structure detected by the proposed algorithm on the American college football
network is shown in Figure 4. It can be seen from Figure 4 that the proposed algorithm detected 11
partitions, but only a few nodes had community partitioning errors. The real network had 12 partitions
in Table 1.

As seen Figure 5 in the US political book network, due to the complexity of the network structure,
the proposed algorithm had a community structure with 4 communities, but the actual network
partition was 3 in Table 1.

Lastly, Figure 6 shows the results of the community of the Bottlenose dolphins network obtained
by the proposed algorithm. As shown in Figure 6, the number of the community obtained by the
proposed algorithm was larger than the result of the real network in Table 1.
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Figure 3. The community detection result of the proposed algorithm on Zachary’s karate club network.

Figure 4. The community detection result of the proposed algorithm on the American college football
club network.
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Figure 5. The community detection result of the proposed algorithm on the Krebs America political
book network.

Figure 6. The community detection result of the proposed algorithm on the Bottlenose dolphins network.
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3.5.2. Comparison of the Proposed Algorithm with Other Algorithms

In this section, Tables 3–5 show the community detection effect of the proposed algorithm
and other experimental algorithms running 30 times with 3 evaluation indicators on 4 real networks.
As shown in Tables 3–5, compared to other algorithms, the proposed algorithm had a good performance
in community detection on 4 real-world networks.

The NMI values of all experimental algorithms are shown in Table 3. On Zachary’s karate club
network, the best results obtained by the proposed algorithm indicated that it can all converge to
the global optimal NMI = 1. The result indicates that the community obtained by the proposed
algorithm was exactly the same as the real community. This result can also be obtained from Figure 3.
To illustrate the performance of the proposed algorithm, we sorted these algorithms according to the
average of the NMI indicator as follows: CMM, Meme-net, EMCD-SOM, FastNewman, GA-NET, and
LconDanon. Compared with Meme-net, the proposed algorithm obtained the suboptimal community
partition result.

On the American college football club network, the proposed algorithm gained the best
average NMI of 0.900987 in all experimental algorithms. CMM attained the second-best NMI
average. The performance of these algorithms was sorted as follows: EMCD-SOM, CMM, Meme-net,
LconDanon, FastNewman, and GA-NET.

On Krebs America political book network, the proposed algorithm found the second-best NMI
average of 0.528597, which is not much different from FastNewman. The best result, out of the 30 times,
belonged to the proposed EMCD-SOM. According to the average value of NMI, these algorithms were
sorted as follows: FastNewman, EMCD-SOM, LconDanon, Meme-net, CMM, and GA-NET.

On the Bottlenose dolphins network, the proposed algorithm obtained the fourth average.
These algorithms were sorted as follows: CMM, LconDanon, FastNewman, EMCD-SOM, Meme-net,
and GA-NET.

Next, all experimental algorithms were evaluated by calculating the F-measure, which was
conducted on the real-world networks. This indicator is often used to evaluate the quality of the
classification model. The F-measure values obtained by the experimental algorithms on real-world
networks are shown in Table 4.

As seen in Table 4, the proposed algorithm could obtain the best results for the F-measure indicator
compared with all experimental algorithms on most of real-world networks. Compared with the
proposed algorithm, CMM gained the best result on Dolphins, and Meme-net gained the best result on
Karate Club, and FastNewman gained the best result on Political Book and Dolphins.

Finally, all experimental algorithms were evaluated according to the Rand Index indicator.
This indicator is often used to measure the similarity between two data clusterings. The Rand Index
values obtained by the experimental algorithms on the real-world networks are shown in Table 5.

As we can see, compared with the other 5 community detection methods for Rand Index on real
networks, the proposed EMCD-SOM could get satisfactory results, especially in the American college
football club network. For the karate network, Meme-net gained the best result. For Football club,
the proposed algorithm gained the best result. FastNewman gained the best result on the Political
book and Dolphins network in terms of the Rand Index. It is worth noting that the proposed algorithm
was similar with FastNewman on the Political book network.

Finally, although the proposed algorithm was not optimal, the proposed algorithm showed stable
results on different networks, which indicates that the proposed algorithm is suitable for solving
community structure partitioning problems in complex networks.
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Table 3. The NMI values obtained by the experimental algorithms on the real-world networks with
real partitions known.

Networks NMI FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

Karate Club Mean 0.692467 0.530471 0.662719 1 0.759591 0.729539
Std 2.25841e × 10−16 0 0.041038 0 0.12226 0.0916947

Worst 0.692467 0.530471 0.593038 1 0.699488 0.6895798
Best 0.692467 0.530471 0.707135 1 1 1

Football Club Mean 0.697732 0.72976 0.36438 0.900688 0.877428 0.900987
Std 1.1292 × 10−16 3.38761 × 10−16 0.0326597 0.00603723 0.0338035 0.0128863

Worst 0.697732 0.72976 0.287833 0.896274 0.757927 0.858186
Best 0.697732 0.72976 0.432277 0.914376 0.924195 0.91137

Political Book Mean 0.530814 0.522288 0.407465 0.454128 0.46474 0.528597
Std 4.51681 × 10−16 2.25841 × 10−16 0.0204818 3.38761 × 10−16 0.0283599 0.0190332

Worst 0.530814 0.522288 0.361427 0.454128 0.425702 0.482507
Best 0.530814 0.522288 0.449338 0.454128 0.522001 0.553662

Dolphins Mean 0.5727 0.574277 0.431174 0.814113 0.52687 0.567711
Std 1.1292 × 10−16 2.25841 × 10−16 0.0350064 1.1292 × 10−16 0.0510336 0.0432212

Worst 0.5727 0.574277 0.363285 0.814113 0.396634 0.501266
Best 0.5727 0.574277 0.523461 0.814113 0.612508 0.660154

Table 4. The F-measure values obtained by the experimental algorithms on real-world networks with
real partitions known.

Networks F-measure FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

Karate Club Mean 0.828011 0.758621 0.810516 0.812349 0.907227 0.89563
Std 4.51681 × 10−16 3.38761 × 10−16 0.0345437 0.0292515 0.0471795 0.0353847

Worst 0.828011 0.758621 0.761594 0.771371 0.884034 0.884034
Best 0.828011 0.758621 0.846678 0.878937 1 1

Football Club Mean 0.607997 0.624275 0.357385 0.888643 0.829276 0.881271
Std 3.38761 × 10−16 4.51681 × 10−16 0.0259086 0.0102019 0.0593904 0.0222667

Worst 0.607997 0.624275 0.304809 0.866702 0.654615 0.806481
Best 0.607997 0.624275 0.415762 0.902567 0.914482 0.896491

Political Book Mean 0.819664 0.792252 0.631611 0.778402 0.721159 0.810397
Std 1.1292 × 10−16 2.25841 × 10−16 0.0476347 1.1292 × 10−16 0.0532029 0.0256946

Worst 0.819664 0.792252 0.541227 0.778402 0.617422 0.736497
Best 0.819664 0.792252 0.700829 0.778402 0.806321 0.834708

Dolphins Mean 0.786624 0.70509 0.549487 0.968117 0.671548 0.721252
Std 0 3.38761 × 10−16 0.056409 0 0.0584518 0.0520816

Worst 0.786624 0.70509 0.444878 0.968117 0.567638 0.665973
Best 0.786624 0.70509 0.753607 0.968117 0.778187 0.88149

Table 5. The Rand Index values obtained by the experimental algorithms on real-world networks with
real partitions known.

Networks RI FastNewman [16] LconDanon [17] GA-NET [6] CMM [18] Meme-net [8] EMCD-SOM

Karate Club Mean 0.841355 0.707665 0.770291 0.762686 0.88164 0.866845
Std 2.25841 × 10−16 2.25841 × 10−16 0.0276138 0.0295904 0.0601917 0.0451438

Worst 0.841355 0.707665 0.730838 0.734403 0.85205 0.85205
Best 0.841355 0.707665 0.802139 0.834225 1 1

Football Club Mean 0.880702 0.887109 0.836476 0.971647 0.953755 0.973221
Std 4.51681 × 10−16 5.64601 × 10−16 0.0252958 0.00177524 0.0241369 0.00652113

Worst 0.880702 0.887109 0.762319 0.972387 0.886651 0.949352
Best 0.880702 0.887109 0.88177 0.979863 0.984744 0.978032

Political Book Mean 0.828205 0.804212 0.703199 0.759341 0.757045 0.820733
Std 2.25841 × 10−16 1.1292 × 10−16 0.0192073 5.64601 × 10−16 0.034364 0.0203903

Worst 0.828205 0.804212 0.6663 0.759341 0.707692 0.764103
Best 0.828205 0.804212 0.730403 0.759341 0.817216 0.843223

Dolphins Mean 0.713908 0.684294 0.570739 0.936542 0.645672 0.679129
Std 3.38761 × 10−16 2.25841 × 10−16 0.0295801 0 0.0288785 0.0398455

Worst 0.713908 0.684294 0.52935 0.936542 0.597039 0.640402
Best 0.713908 0.684294 0.700159 0.936542 0.718139 0.814384
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4. Conclusions

This paper proposed a membrane algorithm based on a self-organizing map network named
EMCD-SOM, which was used to solve complex network community detection problems. According
to the characteristics of community detection, the proposed algorithm gave the realization principle
of object, reaction rule, and membrane structure. The encoded object represented the partitioning
result of community detection. Genetic algorithm and differential evolution were employed as two
reaction rules to evolve objects in different regions of the membranes. The proposed algorithm used
SOM to determine the number of elementary membranes and fully exploit neighborhood information.
The effectiveness of the proposed algorithm was evaluated on four real-world networks. Compared
with other algorithms, the results showed that our algorithm could achieve better performance,
indicating that EMCD-SOM has great potential in solving community detection problems. In addition,
because EMCD-SOM adopts modularity density as an objective function, it can effectively solve the
resolution limitation problem of the modularity degree, and reasonably divide the network structure
at different resolutions. In the future, EMCD-SOM will be improved so that it can effectively detect
communities in overlapping networks, large-scale networks, and multi-level heterogeneous networks.

Author Contributions: Conceptualization, C.L.; methodology, C.L.; software, J.L; validation, J.L.; writing–original
draft preparation, C.L.; writing—review and editing, Y.D.

Funding: This project was supported by the Startup Research Fund for Ph.D of Liaoning Province, China
(Grant No. 20170520364), Key R&D Program Guidance Plan of Liaoning Province, China (Grant No.2018104013),
the Technological Innovation Program for Young People of Shenyang City, China (Grant No. RC180338), and the
Science and Technology Program of Shenyang City, China (Grant No. F16-155-9-00, and F17-180-9-00).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pizzuti, C. Evolutionary Computation for Community Detection in Networks: A Review. IEEE Trans. Evol.
Comput. 2018, 22, 464–483. [CrossRef]

2. Dakiche, N.; Tayeb, F.B.S.; Slimani, Y.; Benatchba, K. Tracking community evolution in social networks:
A survey. Inf. Proc. Manag. 2019, 56, 1084–1102. [CrossRef]

3. Liu, J.; Abbass, H.A.; Tan, K.C. Evolutionary Community Detection Algorithms. In Evolutionary Computation
and Complex Networks; Springer International Publishing: Cham, Switzerland, 2019; pp. 77–115. [CrossRef]

4. Lancichinetti, A.; Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 2009, 80, 056117. [CrossRef]

5. Tasgin, M.; Herdagdelen, A.; Bingol, H. Community detection in complex networks using genetic algorithms.
arXiv 2007, arXiv:0711.0491.

6. Pizzuti, C. Ga-net: A genetic algorithm for community detection in social networks. In Parallel Problem
Solving from Nature–PPSN X; Springer: Berlin, Germany, 2008; pp. 1081–1090.

7. Pizzuti, C. A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol.
Comput. 2012, 16, 418–430. [CrossRef]

8. Gong, M.; Fu, B.; Jiao, L.; Du, H. Memetic algorithm for community detection in networks. Phys. Rev. E
2011, 84, 056101. [CrossRef]

9. Pizzuti, C.; Socievole, A. Many-objective optimization for community detection in multi-layer networks.
In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8
June 2017; pp. 411–418.

10. Meo, P.D.; Ferrara, E.; Fiumara, G.; Provetti, A. Mixing local and global information for community detection
in large networks. J. Comput. Syst. Sci. 2014, 80, 72–87. [CrossRef]

11. Grass-Boada, D.H.; Pérez-Suárez, A.; Gago-Alonso, A.; Bello, R.; Rosete, A. Multi-objective Overlapping
Community Detection by Global and Local Approaches. In Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications; Mendoza, M.; Velastín, S., Eds.; Springer International Publishing: Cham,
Switzerland, 2018; pp. 272–280.

http://dx.doi.org/10.1109/TEVC.2017.2737600
http://dx.doi.org/10.1016/j.ipm.2018.03.005
http://dx.doi.org/10.1007/978-3-319-60000-0_5
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1109/TEVC.2011.2161090
http://dx.doi.org/10.1103/PhysRevE.84.056101
http://dx.doi.org/10.1016/j.jcss.2013.03.012


Entropy 2019, 21, 533 15 of 15

12. Berahmand, K.; Bouyer, A.; Vasighi, M. Community Detection in Complex Networks by Detecting and
Expanding Core Nodes Through Extended Local Similarity of Nodes. IEEE Trans. Comput. Social Syst. 2018,
5, 1021–1033. [CrossRef]

13. Shi, P.; He, K.; Bindel, D.; Hopcroft, J.E. Locally-biased spectral approximation for community detection.
Knowl. Syst. 2019, 164, 459–472. [CrossRef]

14. Moradi, M.; Parsa, S. An evolutionary method for community detection using a novel local search strategy.
Physica A Stat. Mech. Appl. 2019, 523, 457–475. [CrossRef]

15. Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [CrossRef]
16. Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133.

[CrossRef] [PubMed]
17. Danon, L.; Diaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat.

Mech. Theor. Exp. 2005, 2005, P09008. [CrossRef]
18. Chen, Y.; Li, X.; Xu, J. Convexified modularity maximization for degree-corrected stochastic block models.

Ann. Stat. 2018, 46, 1573–1602. [CrossRef]
19. Li, Z.; Zhang, S.; Wang, R.S.; Zhang, X.S.; Chen, L. Quantitative function for community detection.

Phys. Rev. E 2008, 77, 036109. [CrossRef]
20. Jin, H.D.; Leung, K.S.; Wong, M.L.; Xu, Z.B. An efficient self-organizing map designed by genetic algorithms

for the traveling salesman problem. IEEE Trans. Syst. Man. Cybernet. 2003, 33, 877–888. [CrossRef]
21. Villmann, T.; Villmann, B.; Slowik, V. Evolutionary algorithms with neighborhood cooperativeness according

to neural maps. Neurocomputing 2004, 57, 151–169. [CrossRef]
22. Zhang, H.; Zhou, A.; Song, S.; Zhang, Q.; Gao, X.Z.; Zhang, J. A Self-Organizing Multiobjective Evolutionary

Algorithm. IEEE Trans. Evol. Comput. 2016, 20, 792–80. [CrossRef]
23. Liang, J.; Guo, Q.; Yue, C.; Qu, B.; Yu, K. A self-organizing multi-objective particle swarm optimization

algorithm for multimodal multi-objective problems. In Advances in Swarm Intelligence; Tan, Y., Shi, Y.,
Tang, Q., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 550–560.

24. Jia, G.; Cai, Z.; Musolesi, M.; Wang, Y.; Tennant, D.A.; Weber, R.J.M.; Heath, J.K.; He, S. Community Detection
in Social and Biological Networks Using Differential Evolution. In Learning and Intelligent Optimization;
Hamadi, Y., Schoenauer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 71–85.

25. Lancichinetti, A.; Fortunato, S.; Radicchi, F. Benchmark graphs for testing community detection algorithms.
Phys. Rev. E 2008, 78, 046110. [CrossRef]

26. Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977,33,
452–473. [CrossRef]

27. Girvan, M.; Newman, M.E. Community structure in social and biological networks. PNAS 2002, 99,
7821–7826. [CrossRef]

28. Newman, M. Mark Newman’s Network Data Collection. Available online: http://www-personal.umich.
edu/~mejn/netdata/ (accessed on 24 May 2019).

29. Lusseau, D.; Schneider, K.; Boisseau, O.J.; Haase, P.; Slooten, E.; Dawson, S.M. The bottlenose dolphin
community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol.
2003, 54, 396–405. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCSS.2018.2879494
http://dx.doi.org/10.1016/j.knosys.2018.11.012
http://dx.doi.org/10.1016/j.physa.2019.01.133
http://dx.doi.org/10.1109/5.58325
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://www.ncbi.nlm.nih.gov/pubmed/15244693
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1214/17-AOS1595
http://dx.doi.org/10.1103/PhysRevE.77.036109
http://dx.doi.org/10.1109/TSMCB.2002.804367
http://dx.doi.org/10.1016/j.neucom.2004.01.012
http://dx.doi.org/10.1109/TEVC.2016.2521868
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1086/jar.33.4.3629752
http://dx.doi.org/10.1073/pnas.122653799
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://dx.doi.org/10.1007/s00265-003-0651-y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Proposed Approach
	Object and Its Initialization
	Objective Function
	Membrane Structure
	Reaction Rules

	Experimental Evaluation
	Synthetic Benchmark Networks and Four Real-World Networks
	Description of Synthetic Benchmark Betworks
	Description of Four Real-World Networks

	Experimental Conditions
	Evaluation Measures
	Experiments on Synthetic Benchmark Networks
	Experiments on Real-World Networks
	Display Network Partition
	Comparison of the Proposed Algorithm with Other Algorithms


	Conclusions
	References

