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Abstract: The study of nonlinear and possibly chaotic time-dependent systems involves long-term
data acquisition or high sample rates. The resulting big data is valuable in order to provide useful
insights into long-term dynamics. However, efficient and robust algorithms are required that can
analyze long time series without decomposing the data into smaller series. Here symbolic-based
analysis techniques that regard the dependence of data points are of some special interest.
Such techniques are often prone to capacity or, on the contrary, to undersampling problems if
the chosen parameters are too large. In this paper we present and apply algorithms of the relatively
new ordinal symbolic approach. These algorithms use overlapping information and binary number
representation, whilst being fast in the sense of algorithmic complexity, and allow, to the best of our
knowledge, larger parameters than comparable methods currently used. We exploit the achieved
large parameter range to investigate the limits of entropy measures based on ordinal symbolics.
Moreover, we discuss data simulations from this viewpoint.

Keywords: symbolic analysis; ordinal patterns; Permutation entropy; conditional entropy of ordinal
patterns; Kolmogorov-Sinai entropy; algorithmic complexity

1. Introduction

Symbolic-based analysis techniques are efficient and robust research tools in the study of
non-linear and possibly chaotic time-dependent systems. Initially, an experimental time series
x0, x1, . . . , xN with N in the natural numbers N is decoded into a sequence of symbols and, if needed,
successive symbols are conflated into symbol words of length m ∈ N. Subsequently, these symbol
sequences or symbol word sequences are analyzed mainly by considering symbol (word) distributions
or quantifiers based on the distributions, such as entropies. Anomalies in the symbol data or changes
in the entropy can be used to detect temporal characteristics in the data. As a result of long-term data
acquisition and high sample rates, the study of long-time series is becoming increasingly important
in order to provide useful insights into long-term dynamics [1]. Efficient and robust algorithms are
required that can analyze long time-series without decomposing the data into smaller series.

In this paper, we are especially interested in the relatively new ordinal symbolic approach which
goes back to the innovative works of Bandt and Pompe [2] and Bandt et al. [3]. In the symbolization
process, the ordinal approach regards the dependence of d + 1 equidistant data points resulting in
ordinal patterns of order d ∈ N. The ordinal approach is applied in many research areas to identify
interesting temporal patterns that are hidden in the data. Application examples, techniques and further
details are listed in the review papers of Kurths et al. [4], Daw et al. [5] and Zanin et al. [6]. In addition,
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see the contributions to the special topic “Recent Progress in Symbolic Dynamics and Permutation
Complexity. Ten Years of Permutation Entropy” of The European Physical Journal [7] and to the special
issue “Symbolic Entropy Analysis and Its Applications” of Entropy [1]. The significant demand for
literature on the ordinal idea is due to the fact that the method is easy to interpret and efficient to apply.
However, large values of N, d and word lengths m lead to capacity or, on the contrary if N is reduced,
undersampling problems. Here m is the number of successive ordinal patterns forming the words
considered in the analysis.

This paper covers two main objectives: efficient algorithms for determining ordinal pattern (word)
distributions and applicability of ordinal methods. The algorithms use overlapping information and
binary representations of ordinal patterns and therefore realize an efficient determination of different
entropy measures including and generalizing permutation entropies [2]. To the best of our knowledge,
our algorithm not only allows larger parameters N, d and m than methods presently used but also
compute a whole series of entropies based on ordinal words of different length and pattern order.
A discussion of algorithmic complexity and runtime of the given algorithms in comparison to other
ones is provided. Our algorithms are particularly useful for getting deeper insights into the general
applicability of ordinal methods, which is the second objective of the paper. We discuss limits of
estimating the complexity of finite time series and underlying systems on the base of ordinal patterns
and words. There are different restrictions. First of all, if a system provides a large variety of ordinal
patterns or ordinal pattern words with sufficiently large d or m, then a time series must be extremely
long to represent the variety. This naturally bounds useful orders d and word lengths m (see e.g., [8,9]
for further information). Even in the case that extremely long series and large d and m would be
accessible, complexity estimation can be limited. Let us shortly explain reasons for that.

Central complexity measures for dynamical systems are related to the Kolmogorov-Sinai entropy
being mathematically well-founded but being not easy from the computational and estimation
viewpoint. There are different ways of approximating Kolmogorov-Sinai entropy on the base of
ordinal pattern (word) distributions for sufficiently large d or m (see Bandt et al. [3] and Gutjahr
and Keller [10] for ordinal pattern distributions and Keller et al. [11] for ordinal word distributions).
Since there are systems with arbitrarily large, even infinite, Kolmogorov-Sinai entropy, there is no d
or m which is large enough for reaching the Kolmogorov-Sinai entropies for all systems. Moreover,
in case that data considered are directly an orbit of a time-discrete dynamical system (representing the
system), calculation precision bounds the number of accessible ordinal patterns and words. The reason
is that, independent from d and m, there are not more patterns and words than possible values of
the system in the precision decided. The aspect of calculation precision is also interesting for data
simulation including the problem of getting periodicities by rounding.

Many researchers use entropies based on ordinal pattern distributions as complexity measures
themselves independent from the Kolmogorov-Sinai entropy, which is particularly justified by
the problems mentioned and by the good performance of permutation entropy and similar
measures [12,13]. For purely explorative data analysis as it is often given related to automatic learning,
classification or comparison of data there is no a priori reason for avoiding large d and m.

The paper is organized as follows. We discuss the idea of ordinal patterns in Section 2, in particular,
different pattern representations. Please note that the right choice of representation is substantial
in developing our fast algorithms. Moreover, Section 2 provides the main entropy concept used in
the paper. Section 3 is devoted to the efficient computation of ordinal patterns and ordinal pattern
words from a time series. Here the special binary ordinal pattern representation mentioned above is
described and used. Section 4 discusses different methods for establishing ordinal pattern and ordinal
pattern word distributions. Furthermore, algorithmic complexity and runtime of our algorithms are
investigated. Finally, Section 5 discusses the above specified limits of ordinal pattern-based entropies
for complexity quantification in more detail. In this context, also aspects of data simulation are touched.
In a certain sense, this paper is complementary to the recent paper [8] of Cuesta-Frau et. al. considering
limits from the more practical viewpoint. Please consider the pseudocode descriptions of our
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algorithms given in the Appendix A and refer to MATLAB File Exchange [14] for realization in
MATLAB 2018b.

2. Ordinal Pattern Representations and Empirical Permutation Entropy

Let (X ,�) be a totally ordered set. Mostly the set of real numbers R with the usual order ≤ is
used in application. Nonetheless, our theory applies for the general case of ordinal data, for example
on discrete-valued ratings or discrete rating scales as well. For our subsequent algorithmic analysis we
demand that evaluation of the order relation � is not too complex and can be performed in constant
time, i.e., independent from the compared elements.

We say that two vectors x = (xk)
d
k=0 ∈ X d+1 and y = (yk)

d
k=0 ∈ X d+1 share the same ordinal

pattern of order d iff their components have the same order, i.e.,

x ∼Ord y⇔ ∀ 0 ≤ k, l ≤ d : xk � xl ⇔ yk � yl .

The equivalence relation ∼Ord defines (d + 1)! equivalence classes on X d+1. Please note that the
definition of ∼Ord and the following ideas can easily be extended to the case that x and y are from
different ordered sets. This expands the usage of ordinal analysis to a broader range of applications,
by other means incomparable properties can be compared by these methods.

We call a single-pair-comparison within x an atomic ordinal information. A pair (xk, xl) with k < l
is said to be discordant or an inversion if xk � xl and concordant if xk � xl . There are d(d− 1)/2 of
these elementary comparisons. Due to the transitive property of order relations, not all variations are
possible to occur.

Please note that the set inv(x) := {(k, l) ∈ {0, . . . , d} | k < l ∧ xk � xl} of all inversions within x
uniquely determines the regarding ordinal pattern.

2.1. Ordinal Representations

Each ordinal equivalence class is represented by an ordinal pattern. We describe the ordinal
patterns formally as elements of a pattern set Pd := X d+1/∼Ord. Concrete representations of the
ordinal patterns have to be bijections from Pd to a suitable set. The choice of representation of the
ordinal information within a pattern has an influence on various factors. These include computability,
comparability and behavior under transformation as the pattern order d increases. The most common
representations include the permutation representation and the inversion vector representation. They were
considered from the beginning of Ordinal Pattern Analysis including Bandt [15] and Keller et al. [16].
Formally, they are given by the transformations

P : Pd → Sd+1 x 7→ π = (πk)
d
k=0, πk = # {l | 0 ≤ l ≤ d ∧ (xl ≺ xk ∨ (xl = xk ∧ l < k))} ,

I : Pd → Id x 7→ i = (ik)
d
k=1, ik = # {l | 0 ≤ l < k ∧ xl � xk}

where Sd+1 is the symmetric group on {0, 1, . . . , d}, i.e., it contains all permutations of the numbers
0, 1, . . . , d and where Id = ×d

k=1 {0, . . . , k}. Please note that in the literature, the names of these
representations vary; moreover some authors use the inverse permutation as the permutation
representation instead.

Both transformations are based on order comparisons in different ways. The permutation
representation assigns to each vector x the permutation which has the same order within its elements,
i.e., for each element xk of x and πk of π the number of other elements in the respective vectors that
are less or equal is the same. Therefore particular properties like the largest and smallest element
can directly be determined from this representation. Moreover, the group structure on Sd+1 with the
permutation composition operation gives many possibilities to analyze the permutation vectors in
algebraic terms (e.g., Amigó [17]). However, if a new element is appended to x the whole permutation
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vector has to be updated. This is a main disadvantage of the permutation representation that makes
computation rather inefficient.

The inversion vector representation is chosen to avoid this problem. It assigns a vector i to each
x where the k-th entry is the number of inversions of xk with all previous elements in x. In other
words, the underlying comparisons only refer to prior appended elements, therefore all preceding
elements in i are not affected by the increase of d. This property allows a simple extension to patterns
of infinite order d. Moreover, using the factorial number system, a special numeral system with mixed
radix, the inversion vectors can easily be mapped to the numbers 0, . . . , (d + 1)!− 1. The map is given
by ∑d

l=1 l! · il . The resulting number representation allows the most compact description of an ordinal
pattern since it combines all ordinal information in a single integer.

For these representations as well as the representation presented in Section 3 one has to note
the trade-off between accessibility of the atomic information and flexibility on the one hand and
compactness of the representation on the other hand.

2.2. Ordinal Pattern Based Entropies

In the application of the ordinal approach, experimental data x = (xn)N
n=0 ∈ X N+1 of length

N + 1 is decoded into a sequence of ordinal patterns and, if needed, successive patterns are conflated
into pattern words of length m ∈ N.

An important reason ordinal pattern-based measures are interesting for data analysis is that
the ordinal pattern (word) sequences usually store much information about the systems dynamics if
the data originates from an ergodic dynamical system. This is especially notable, if one focuses on
quantifying the complexity of the underlying system. Complexity measures considered are mainly
built up on the Shannon entropy of ordinal pattern (word) distributions. In addition, as already
mentioned in the introduction, these measures are related to the Kolmogorov-Sinai entropy which is a
central complexity measure for dynamical systems. In the following, we give precise definitions of
these basic entropy concepts.

Let us regard d ∈ N as fixed and let p be some ordinal pattern in Pd. To determine the absolute
frequency hp of how often p occurs in x, we identify the ordinal structures within each data segment
x(n,d) := (xk)

n+d
k=n , n = 0, . . . , N − d. The patterns associated with the segments are denoted by

p(n,d). Then,
hp := #

{
n ∈ {0, . . . , N − d}

∣∣∣ p(n,d) = p
}

.

Let w be a word of m ∈ N successive patterns of order d and letWd,m be the set of all possible
ordinal words of length m and order d. We call the parameter pair (d, m) a word configuration.
The absolute frequency hw of some ordinal word w ∈ Wd,m, is defined by

hw = #
{

n ∈ {0, . . . , N − d−m + 1}
∣∣∣ w(n,d,m) = w

}

where
w(n,d,m) :=

(
p(n+k,d)

)m−1

k=0
, n = 0, . . . , N − d−m + 1.

Please note that we write p(n) and w(n,m) when d is known from the context.
All entropy measures we consider in this paper, are based on quantities H(d,m); d, m ∈ N.

The H(d,m) are called Empirical Shannon entropy of order d and word length m, and defined by

H(d,m) := − ∑
w∈Wd,m

hw

N − d−m + 2
ln

hw

N − d−m + 2

= ln(N − d−m + 2)− 1
N − d−m + 2 ∑

w∈Wd,m

hw ln hw. (1)
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They quantify the complexity of ordinal patterns of order d conflated into pattern words of length
m in a given time series. Please note that hw

N−d−m+2 is the relative frequency of such words. To compute
H(d,m); d, m ∈ N one has to determinate the pattern (word) distributions, which is our main subject of
the next section.

3. A Pattern Representation for Efficient Computation

In this section, we describe how all desired ordinal patterns in x can be computed in an efficient
and fast way. We will do so by taking advantage of the redundancy in terms of atomic ordinal
information between the patterns. We introduce a pattern representation that allows us to do the
following tasks in a simple and fast manner when p(n,d) is given:

• Computation of the successive pattern p(n+1,d),

• Computation of patterns p(n,d−m), m = 1, . . . , d− 1 of smaller order,

• Computation of the ordinal words w(n,d−m,m+1), m = 1, . . . , d− 1.

Furthermore, our representation is chosen so that pattern and word frequencies can be
determined fast.

3.1. Computation of Successive Patterns

Example: Consider the first six data points of a time series as shown in Figure 1 and the ordinal
order d = 4. Then, we have two ordinal patterns: the red colored pattern p(0) determined by the points
x(0) = (xk)

4
k=0 and the blue colored pattern p(1) determined by x(1) = (xk)

5
k=1. Please note that both

patterns are maximally overlapping and share the data points x1, . . . , x4.

x0 x1 x2 x3 x4 x5

p(0)

p(1)

Figure 1. Successive ordinal patterns of order d = 4.

To take optimal advantage of this shared ordinal information, we subdivide the task of computing
p(1) – when p(0) is given – into three parts:

Tasklist 1.

(i) remove atomic information regarding x0,
(ii) adapt the atomic information regarding x1 to x4,
(iii) add atomic information regarding x5.

Generally, these successive steps can be realized as follows: Consider the set inv(x) of inversions
within x ∈ X d+1 and the lower triangular matrix M(x) ∈ {0, 1}d×d

M(x) :=




1x0�x1 0
...

. . .
1x0�xd · · · 1xd−1�xd ,


 ,

where 1 is the indicator function. It takes the value of one if the statement in the subscript is true.
Otherwise, the value is zero. For instance, the schematic illustrations in Figure 2 show the overlapping
atomic information between successive matrix representations in general and for our previous example.
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1x0�x1

1x0�x2

1x0�x3

1x0�x4

1x1�x2

1x1�x3

1x1�x4

1x1�x5

1x2�x3

1x2�x4

1x2�x5

1x3�x4

1x3�x5 1x4�x5

M(x(0))

M(x(1))

(a)

1

1

1

1

1

0

1

0

0

0

0

1

1 0

M(x(0))

M(x(1))

(b)
Figure 2. Schematic representation of the overlap between successive matrix representations M(x(0))
and M(x(1)) in general (a) and for our example (b) (compare to Figure 1).

We see that M(x(n+1,d)) is obtained from M(x(n,d)) in terms of Tasklist 1 by executing the
following steps:

Tasklist 2.

(i) removing the first row and column of M(x(n,d)),

(ii) keeping the rest of M(x(n,d)),
(iii) appending a new row and column at the end with the atomic information 1xn+k�xn+d+1 for all

k = 1, . . . , d.

While the matrix representation M is suitable for computing successive patterns, it lacks of
compactness and is difficult to compare. We define a more compact representation which nevertheless
directly contains all atomic information – the binary vector representation:

B(x) := M(x) · (20 · · · 2d)T =

(
∑

0≤l<k
1xl�xk 2l

)d

k=1

∈
d×

k=1
{0, 1, . . . , 2k − 1}. (2)

By this definition, we encode each row of M as a binary number where the least significant bit
stands in the first column of M. Please note that the binary vector representation is closely related to
inversion vectors by

I(x) = M(x) · (1 · · · 1)T.

By counting the ones in their binary representations, the elements of the binary vector can be
transformed to inversion vector elements.

The key benefit of the binary system is that all operations on binary vectors can be performed as
bit operations and can thereby be implemented in an efficient and fast way, especially in low-level
programming languages. Here, we use left and right bit shifts in order to manipulate B and to
use overlapping atomic information. By a right bit shift, the least significant bit gets dismissed.
This corresponds to a division by 2 rounded down. Analogously, the left bit shift corresponds
to a multiplication by 2 or, in other words, a concatenation of B with an additional 0 as the least
significant bit. A bit shift on n ∈ N by i bits we denote by n � i (resp. n � i) for a right
(resp. left) bit shift. Denote that here � is a mathematical operator and should not be confused
with the “much smaller than” symbol. For example, consider the number 11 which is 1011 in
binary representation. Then 10112 � 1 = 1012 which is 5 in decimal. Please note that bit shifts
are monotonous functions.

The introduced representation simplifies Tasklist 2 to

Tasklist 3.

(i) perform a right bit shift on B(x(n,d)) and remove the first entry,
(ii) keep the rest of the vector,

(iii) compute ∑d
k=1 1xn+k�xn+d+12k−1 and append it to the end of the vector.
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The underlying relationship between consecutive binary vectors used in Tasklist 3(i) reads as
follows: Let b(n,d) = (b(n,d)

k )d
k=1 = B(x(n,d)). Then

b(n,d)
k = b(n−1,d)

k+1 � 1. (3)

For the patterns of the example introduced in this section (see Figure 1), we have

B(x(0)) = (1 3 1 11)T and

B(x(1)) = (3� 1 1� 1 11� 1 4)T = (1 0 5 4)T.

3.2. Computation of Patterns of Smaller Order

As with inversion vectors, both, the matrix and binary vector representation, share the possibility
to append new elements without changing the other elements. In particular, when the pattern p(n,d) is
already computed in terms of M, the patterns of lower order (p(n,d−k))N−d

n=0 can be obtained by taking
the (d− k)th leading principle submatrices of M as depicted in Figure 3a. In terms of B, the vector’s
last k elements have to be removed to obtain the pattern of order d− k.

1x0�x1

1x0�x2

1x0�x3

1x0�x4

1x0�x5

1x1�x2

1x1�x3

1x1�x4

1x1�x5

1x2�x3

1x2�x4

1x2�x5

1x3�x4

1x3�x5 1x4�x5

M(x(0,4)) M(x(0,5))

(a)

1x0�x1

1x0�x2

1x0�x3

1x0�x4

1x0�x5

1x1�x2

1x1�x3

1x1�x4

1x1�x5

1x2�x3

1x2�x4

1x2�x5

1x3�x4

1x3�x5 1x4�x5

M(x(0,4))

M(x(1,4))

M(x(1,5))

(b)

1x0�x1

1x0�x2

1x0�x3

1x0�x4

1x0�x5

1x1�x2

1x1�x3

1x1�x4

1x1�x5

1x2�x3

1x2�x4

1x2�x5

1x3�x4

1x3�x5 1x4�x5

M(x(0,3))

M(x(1,3))

M(x(2,3))

M(x(1,5))

(c)
Figure 3. (a) Relationship between patterns of different order. (b) Difference between a word of length
2 and order 4 and the pattern of order 5. (c) Difference between a word of length 3 and order 3 and the
pattern of order 5.

3.3. Computation of Ordinal Words

Ordinal words of length m combine the ordinal information of m successive patterns.
Again, the scheme of atomic information shows the difference between one pattern of order d
and two patterns of order d− 1 which form a word of length 2. In the example seen in Figure 3b,
the order between x0 and x5 is taken into account in w(0,5,1) = p(0,5) but not in w(0,4,2) = (p(0,4), p(1,4)).
Therefore, the corresponding bit 1x0�x5 in w(0,5,1) can be set to zero in pursuance of uniting all patterns
that are the same except for 1x0�x5 . The result corresponds with w(0,4,2). In the next step, 1x0�x4 and
1x1�x5 are set to zero to deduce w(0,3,3) (see Figure 3c). For general k ∈ {1, . . . , d} we have

w(n,d−m,1+m)
k =

{
w(n,d,1)

k for k ≤ d−m,

(w(n,d,1)
k � k− (d−m))� k− (d−m) for k > d−m.

(4)

In direct consequence of the results in Section 3.2, for ordinal words we have

w(n,d,m+1)
k =

{
w(n,d,1)

k for 1 ≤ k ≤ d,

∑d
l=1 1xk−l�xk 2k−l for d + 1 ≤ k ≤ d + m + 1.

(5)

Since ordinal words can be treated as special ordinal patterns in our representation, we will often
refer to both as patterns.
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4. Implementation

In this part, we describe our algorithm that computes a whole series of Shannon entropies based
on ordinal words of different word length and pattern order. Specifically, for a given maximal order
D ∈ N, the algorithm computes all Shannon entropies H(d,m) as defined in (1), where d + m ≤ D + 1
with 1 ≤ d, m ≤ D. When arranged in an array by pattern order d and word length m, this corresponds
to all entries above, left, and on the main antidiagonal. These are the entropies regarding all ordinal
words which contain information on at most D consecutive data points from x.

In Section 4.1, we will discuss different approaches and our choice. The following Section 4.2 is
concerned with the algorithm’s structure. Section 4.3 is dedicated to an analysis of the complexity of
our algorithm. In the end we apply our algorithm on randomly generated artificial data and analyze
its speed in Section 4.4.

4.1. Discussion of Methods

There are several possible approaches for computing the entropy of a given data vector,
which differ in terms of time and memory consumption dependent on the maximal order D, data length
N. For these parameters, we have usually N significantly larger than D but smaller than D!.

To compute the empirical entropy, we need the frequencies of the occurring patterns. Here,
we will discuss different ways to compute them. We demand the methods to be adaptable to the
transformations (4) and (5) in a sense that the data structure should not be recomputed completely
after transforming the patterns.

A first method is to iterate through all patterns and increment a frequency counter when the
respective pattern occurs. It has the advantage that there is no need to store all patterns at once; instead,
each pattern can be computed separately. A naïve approach is to prepare an array, which length is the
number of all possible patterns, and increment its corresponding entries when a certain pattern occurs.
Since the number of possible patterns increases factorially in the pattern order D, this method is only
practical for small orders. Overall, the array would be very sparse: on the one hand, the data length N
is far smaller than D! and thus the number of nonzero entries is relatively small. On the other hand,
it was shown by Amigó [18] that the amount of forbidden patterns (i.e., patterns that cannot occur due
to the inner structure of the underlying dynamics) also increases superexponentially, leading to further
zero entries.

To avoid these zero entries, only the occurring patterns could be counted. This generally requires
hashing for the key-value pairing that connects each pattern to its frequency. As an again simple
and collision-free example, the hash can be chosen such that the patterns are indexed by their first
occurrence. The disadvantage of this method is clearly that the indexing is not gained from information
about the pattern itself; to achieve the hash value, it is necessary to search through all hashed patterns
to find out whether the current pattern is new or did already occur. Other hash functions can be more
effective, but also more complicated and not collision-free. However, it is not immediately clear how
to construct them. In addition, the pattern transformations (4) and (5) would make it necessary to
recompute all hashes in each step.

Since the problem is basically a searching problem, where the current pattern has to be found
in the data structure for the frequencies, more advanced data structures such as search trees are
promising approaches. Possible structures are B trees, AVL trees, where searching an element happens
inO(D · log N) time. An extensive discussion can be found e.g., in standard text books such as the book
by Cormen et al. [19]. However, search trees need an underlying total preorder on the set of ordinal
patterns. Though all considered representations can be equipped with a total preorder, comparisons
will typically have O(d) time complexity. This would lead to O(D · N · log N) time complexity for
each entropy, or O(D3 · N · log N) for all desired entropies.

For our computations, we have chosen a different approach where all patterns are given
(or computed) beforehand with a total time complexity of O(D2 · N · log N). The choice is based
on our idea to compute entropies for different pattern orders and word lengths by manipulating the
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representation of the patterns. We explain this idea in the following subsections in detail. Specifically
by considering all patterns at once our method allows computing the entropies (H(d,m))D+1−d

m=1 in one
run, which reduces the complexity magnitude of D by one. Though our methods result in the same
asymptotic complexity for a single entropy, our experiments show that our approach is faster due to
the possibility to vectorize the operations.

4.2. Structure of the Algorithm

We present the design of our algorithm in different ways. First we give a short overview of its
structure with schematic illustrations. In the following four parts of the section, we explain key ideas of
the algorithm in detail. A pseudocode implementation is provided in Algorithm A1 in the Appendix A.
An implementation for MATLAB 2018b is provided by the authors on MATLAB File Exchange [14].

In Figure 4, the algorithm is depicted as a workflow diagram. The basic idea is to precompute all
the words w(·,D,1) and use them to compute all other word configurations by (4) and (5), i.e., w(·,d,m)

with d ≤ D and m ≤ D− d + 1. For each word configuration we then compute the respective entropy.
We start with w(·,D,1) = p(·,D) since this is the word which contains all atomic information about
the D + 1 considered points. As shown in the preceding section, other word configurations can be
obtained by successively removing the atomic information through bit manipulations.

Input:
data x,

max. order D

pad data
with zeros

compute
patterns

adjust
the last
patterns

sort patterns
lexicographically

cut of last
element to
transform

w(·,d,m) → w(·,d,m−1)

compute
pattern

frequencies

compute
H(d,m)

using the
frequency

trick

cut of bits
to transform

w(·,d,m) → w(·,d−1,m+1)

resort
patterns

Precomputation of Patterns

Iterate over decreasing word length m = D + 1− d, . . . , 2, 1

Iterate over decreasing pattern order d = D, . . . , 2, 1

Figure 4. Schematic overview ofr our algorithm. The colors of the steps refer to different aspects of the
algorithm discussed in the following subsections: The initial pattern computation (red), the processing
of these patterns to other word configurations (yellow), the calculation of the pattern frequencies
(purple) and the modifications to include all lower order patterns (green).

4.2.1. Initial Pattern Computation

The initial computation of the p(·,D) is shown schematically in Figure 5. The corresponding
pseudocode implementation can be found in Algorithm A2 in the Appendix A. It follows the idea of
Tasklist 3, but operates in a different sequence. Here, at first the last entry p(·,D)

D is computed for all

patterns. The penultimate elements p(·,D)
D−1 are computed by performing a right bit shift on these last

entries (using k = D− 1 in (3)). Sequentially all prior elements p(·,D)
D−2 , . . . , p(·,D)

2 , p(·,D)
1 get computed

in this way. In comparison to computing all patterns consecutively, the computation steps of this
methods are highly parallelizable and vectorizable and thereby faster to perform.



Entropy 2019, 21, 547 10 of 24

p(0,D)
D

p(0,D)
D−1

p(0,D)
D−2

...

p(0,D)
2

p(0,D)
1

p(1,D)
D

p(1,D)
D−1

p(1,D)
D−2

...

p(1,D)
2

p(1,D)
1

p(2,D)
D

p(2,D)
D−1

p(2,D)
D−2

...

p(2,D)
2

p(2,D)
1

· · ·

· · ·

· · ·

· · ·

· · ·

p(N−D−2,D)
D

p(N−D−2,D)
D−1

p(N−D−2,D)
D−2

...

p(N−D−2,D)
2

p(N−D−2,D)
1

p(N−D−1,D)
D

p(N−D−1,D)
D−1

p(N−D−1,D)
D−2

...

p(N−D−1,D)
2

p(N−D−1,D)
1

p(N−D,D)
D

p(N−D,D)
D−1

p(N−D,D)
D−2

...

p(N−D,D)
2

p(N−D,D)
1

� 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1

Figure 5. Computation scheme for the ordinal patterns, where each column corresponds to a binary
vector. Each color shows one iteration step. The bold elements are computed directly while all other
elements are derived from them by bit shifts. These are indicated by the arrows.

4.2.2. Obtaining other Word Configurations

The way our main algorithm processes through the different word configurations after computing
the p(·,D) = w(·,D,1) is illustrated in Figure 6. In the main iteration using (4) the pattern order gets
successively decreased while the word length gets increased. For a fixed pattern order d and word
length m, all words with length smaller than m can be computed by simply cutting of last elements of
the binary vectors as (5) indicates.

w(·,D,1)

w(·,D−1,1) w(·,D−1,2)

w(·,D−2,1) w(·,D−2,2) w(·,D−2,3)

w(·,2,1) w(·,2,2) · · · w(·,2,D−1)

w(·,1,1) w(·,1,2) · · · w(·,1,D−1) w(·,1,D)

Figure 6. Computation of the different words in the algorithm. Red arrows denote applications of (4),
while blue arrows mean usage of (5).

4.2.3. Computation of the Pattern Frequencies

With each list of words, we compute the word frequencies. In short, the frequencies are determined
by sorting the patterns and by computing the length of blocks of the same pattern. Thus, as the first
step, all words are sorted lexicographically. Next, we compute the elementwise differences

w(n,d,m) −w(n−1,d,m) =
(

w(n,d,m)
1 − w(n−1,d,m)

1 w(n,d,m)
2 − w(n−1,d,m)

2 · · · w(n,d,m)
d − w(n−1,d,m)

d

)T

between successive patterns. Since the patterns are sorted, the difference vectors are zero vectors
for identical patterns and have positive entries for different patterns. The signs of the cumulated
differences within the patterns, given by

(
sgn

(
k

∑
l=1

(
w(n,d,m)

l − w(n−1,d,m)
l

)))d

k=1
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indicate a pattern change for all word lengths 1, . . . , d. The cumulation reflects the property that—due
to the lexicographic order—changes in prior entries imply different patterns for all higher pattern
lengths. As the positive signs indicate a change of patterns, the pattern frequencies for the words of
length m can be determined by taking the difference between the indices of patterns that have positive
signs in the m-th element. With the computed absolute frequencies hp, the corresponding entropy can
be computed with (1). Refer to Algorithm A3 in the Appendix A for a pseudocode implementation.

4.2.4. Inclusion of Missing Lower Order Patterns—The Frequency Trick

Not all ordinal words can be computed by transforming the p(·,D) into other word configurations.
This is due to the fact that applying (4) and (5) does not change the total number of patterns although
the number of patterns contained in the data increases for other configurations. With a total data
length N + 1, we get N + 1− D patterns (p(n,D))N−D

n=0 in the beginning. For arbitrary pattern order
d and word length m, we get N − d− m + 2 words (w(n,d,m))N−d−m+1

n=0 . Since d + m− 1 ≤ D holds
by assumption, we have N − d−m + 1 ≥ N − D. Thus, the last D− d−m + 1 patterns cannot be
derived from the p(·,D). We illustrate the missing patterns in Figure 7.

The procedure would become complicated if all the missing different sized patterns are computed
and stored separately. Instead, we desire to compute all patterns by our methods. We achieve this
by expanding the data vector with artificial data such that now the missing patterns of the enlarged
data vector contain only artificial data and can be neglected. The word w(N−1,1,1) is the last occurring
ordinal word in x of all configurations; it contains the ordinal information between the last points xN−1

and xN . By going backwards through the computation process, it can be seen that w(N−1,1,1) is obtained
from w(N−1,D,1). This pattern is determined by the points x(N−1) = (xk)

N+D
k=N−1 which are yet undefined

for N + 1 ≤ k ≤ N + D. Therefore it suffices to pad these N + D− (N + 1) = D− 1 elements to x.
With the padded data, we get N patterns in total, which is sufficient for each word configuration.

∞

∞

∞

xN

xN−1

xN−2

xN−3

xN−4

xN−5

...

p(N−5,4) p(N−5,3) p(N−5,2) p(N−5,1) p(N−4,4) p(N−4,3) p(N−4,2) p(N−4,1) p(N−3,3) p(N−3,2) p(N−3,2) p(N−2,1) p(N−2,1) p(N−1,1)x

Figure 7. The patterns which are not covered by p(·,D) for D = 4 and m = 1. The blue patterns are the
two last patterns of p(·,D) and the derived patterns of smaller order. The red patterns are the missing
patterns. They can be derived from the dashed patterns constructed by padding D− 1 = 3 elements
with value ∞ at the end of x.

For convenience, we define an element ∞ /∈ X to be the unique value such that ∞ � y for all
y ∈ X . By padding x with ∞, each atomic information about artificial elements as well as the regarding
bit in the binary vector representation is always set to zero.

When the patterns are computed based on the padded data, each required word can be
deduced from the N initially computed patterns. As stated above, we have to consider only
the first N − d−m + 2 words (w(n,d,m))N−d−m+1

n=0 for the entropies. The last d − m + 2 words
(w(n,d,m))N−1

n=N−d−m+2 partly contain ordinal information regarding the artificial data and have to
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be excluded from the entropy computations. Nonetheless, the latter are still needed for deducing
words with other configurations and, thus, they cannot simply be deleted.

To prevent these words from distorting the word frequencies without removing them, we use a
property of the entropy formula that we call the frequency trick. When the entropy is written in terms of
absolute frequencies as in (1), patterns of absolute frequency 1 have no effect to the summation due to
ln 1 = 0. We take advantage of this by adjusting the binary vectors such that

hw(n,d,m) = 1 for N − d−m + 2 ≤ n ≤ N − 1. (6)

Thus, we can keep these patterns in our computing procedure. We can use the entropy Formula (1),
although the number of pattern ∑w∈Wd,m

hw = N − 1 is higher than the expected number of patterns
N − d−m + 2.

We can make all words deduced from the initial patterns satisfy (6) only by adjusting the additional
patterns (p(n,D))N−1

n=N−D+1. This can be done by replacing the artificial zero entries as follows:

p(N−D+1) =
(

p(N−D+1)
1 p(N−D+1)

2 p(N−D+1)
3 · · · p(N−D+1)

d−2 p(N−D+1)
d−1 2D

)
,

p(N−D+2) =
(

p(N−D+1)
1 p(N−D+2)

2 p(N−D+2)
3 · · · p(N−D+2)

d−2 2D−1 2D
)

,

...

p(N−2) =
(

p(N−2)
1 p(N−2)

2 23 · · · 2D−2 2D−1 2D
)

,

p(N−1) =
(

p(N−1)
1 22 23 · · · 2D−2 2D−1 2D

)
.

The values are chosen in a way that they are larger than the greatest possible value for each entry.
Indeed, in the binary vector representation the k-th entry is an integer based on k bits, which reaches
its maximum with all bits being ones, which is ∑0≤l<k 2l = 2k − 1. This choice makes it possible to
identify any of the additional patterns independent from the data. Thus, each of the additional patterns
is fully unique.

On top, each word that is deduced from one of the additional patterns is unique, as long as
it contains ordinal information about artificial data points. Recall that the entries with artificial
information has values larger than all entries with real information at the same index. Since bit shifts
are monotonously increasing functions, applying (4) to each entry keeps the values of the artificial
entries to be larger. Furthermore, by (5), only the last elements are removed. After applying both
transformations, p(N−D+1) contains no more artificial ordinal information. This is consistent with the
increase of the number of patterns when m decreases. The other patterns p(N−D+2), . . . , p(N−1) stay
unique. In summary, both transformations keep the uniqueness of the patterns as long as artificial
information remains and (6) is satisfied.

4.3. Complexity Analysis

In the following, we analyze our algorithms both theoretically and practically. First we give an
analysis in terms of Landau Big-O notation dependent on the parameters N and D. It is summarized
in Figure 8. Take into account that in general it is not trivial to extend Big-O notation to the
multidimensional case (c. f. [20]). Nonetheless, since D � N holds, the asymptotics of our algorithm
is mainly determined by N. Therefore, the one dimensional definitions of Big-O notation apply.
Further note that in terms of complexity, the base of considered logarithms has no influence. Therefore
we denote the logarithm with the generic log in this section.

We analyze the algorithm on the individual parts as divided in Figure 4. In terms of time
complexity, the initial computation of the patterns discussed in Section 4.2.1 needs N − D + 1
comparisons for the last pattern row. For each of the D− 2 following rows, one additional comparison
and N − D− 1 bit shifts are performed, which leads to DN − D2 + 2D− 2N + 2 bit shifts and N − 1
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comparisons. Assuming both operations can be performed in constant time, we get a time complexity
of O(D2 + D · N). Since usually N is significantly larger that D, it can be simplified to O(D · N).
In comparison, the naïve approach of finding all ordinal patterns in the binary vector representation
by performing all (D

2 ) comparisons for each pattern has a worse total time complexity of O(D2 · N).
For computing the other representations presented in Section 2 patternwise, there exist

O(D log D · N) algorithms; the permutation representation can be obtained by sorting the data, for the
inversion vector representation Knuth [21] gave an O(D log D) conversion from permutations. It is
known that D log D is a lower boundary for sorting algorithms based on comparisons [19]. Thus in
terms of complexity, these algorithms are optimal for these representations when computing each
pattern by itself. Adapting information from previous patterns allowed us to achieve the improvement
in terms of linear time complexity in D. In similar ways, there are ways to obtain linear time complexity
for permutations and inversion vectors. The latter was shown by Keller et al. [16], their idea can be
adapted for the former straightforward.

Precomputation of Patterns




D · NPadding D
Pattern Computation D · N
Pattern Adjustments D2

Pattern Sorting D · N · log N
Iteration over d





D2 · N log N

Iteration over m




D · NTransform w(·,d,m) → w(·,d,m−1) −
Compute Frequencies N
Compute Entropies N

Transform w(·,d,m) → w(·,d−1,m+1) D · N
Resort Patterns D · N log N

Figure 8. Complexity Analysis of our Algorithm, where D describes the maximal pattern order and N
describes the length of the data vector.

The padding of the artificial data can be realized in O(D) insertions which amortized needs
O(D) time. the data is stored in a dynamic array. The adjustment of the last patterns concerns
1
2 D(D− 1) ∈ O(D2) elements. In total, the precomputation of the patterns happens in O(D · N) time.

In the next step, the patterns get sorted. For this, typical sorting algorithms can be used.
Pattern comparisons need D comparisons of their elements in the worst case. Hence the sorting needs
O(D · N log N). Please note that in practice, there are less comparisons needed. The probabilities of
the first k elements being equal is quickly decreasing in k; in particular, it is given by ∑w∈Wd,m

Pr(w)2,
where Pr denotes the (usually) unknown probability of the word w.

The inner loop takes O(N) time: The transformation takes no additional time since it can be
reached by simply ignoring the respective last elements. To attain the changes between the sorted
patterns and thereby the frequencies, an iteration through all patterns is needed; for the entropy, all the
O(N) pattern frequencies must be processed. All iterations need O(D · N) time altogether. Each of
the subsequent transformations of the patterns consists of D bit shifts. Together with the resorting of
the transformed patterns, all O(D) iterations take O(D2 · N log N) time in total.

In summary, our algorithm has a time complexity of O(D2 · N log N) for 1
2 D(D + 1) entropies.

In principle, for a single entropy each of the loops has to be performed only once, leading to the
complexity of O(D · N log N).

4.4. Runtime Analysis

In this section, we test our algorithm on artificial data in order to evaluate its performance
and compare it to other available programs. The artificial data is generated by a simple random
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number generator which gives uniformly distributed random numbers on [0, 1]. The data is chosen
to be uniformly distributed because under this assumption also the ordinal patterns are uniformly
distributed. This corresponds to the Shannon entropy taking its maximum. In this sense, the case
of uniformly distributed data can be considered as the worst case scenario from the computational
viewpoint. In contemplation of investigating the independence of the results from the distribution,
we additionally performed our algorithms on normally distributed data. Our computations were
performed on MATLAB 2018b on a Windows 10 computer equipped with an Intel Core i7-3770 CPU
and 16 GB RAM. We repeated the computations fifty times in order to exclude external distortions and
took the mean value of the results.

4.4.1. Computational Time for Pattern and Entropy Computation

First, we restrict our analysis to the pattern computation. We compare our binary vector approach
with implementations which determines the inversion and permutation vector representations. For all
three representations, we compare the naïve, patternwise approach with the successive methods
introduced in Section 3.

As shown in the prior section, the computational time depends on the data length N and the
maximal pattern order D. In our implementation in MATLAB, both parameters are limited due to
the following reasons. In a binary vector of order D, its elements are integers with up to D bits.
Since arithmetic computations are needed when the bit shifts are performed, D is physically limited to
64 when using unsigned long integers. In practice, it is even limited to 51 since internally, all arithmetic
calculations are performed on floating-point numbers in MATLAB. From the 64 bits only 52 bits are
reserved for the mantissa from which one bit is needed for the frequency trick. Recall that the maximal
possible precision in Matlab is given by approximately 2.2204 · 10−16.

The data length is in our implementation limited by the machine’s memory. In our case, a 16 GB
RAM leads to approximately 4 · 109 array elements. Therefore, to store all N patterns of order D,
N ≈ 108 data points are possible to process on our machine.

Clearly, for MATLAB or other programming languages there are several possibilities for memory
management and high-precision integer arithmetics (c. f. the vpi toolbox [22]), which are offered either
by the maintainer or by third-party programs. Anyhow, we restricted ourselves to basic methods
of MATLAB.

We tested the runtime of our algorithm for varying N and D on randomly generated data vectors
by usage of MATLABs tic and toc commands, which measure the time between both function calls.
The results can be seen in Figure 9a–d. We compare uniformly distributed Figure 9a,b and normal
distributed Figure 9c,d data. Both distributions lead to similar results. For both, the asymptotic
tendency found in the previous section is observable in the graphs: All implementations have linear
tendency in N. The successive implementations are also linear in D, whereas a superlinear behavior
can be examined on the naïve approaches. For each representation, the successive implementation is
significantly higher than its naïve counterpart. In addition, the successive binary vector approach is
the fastest in total. On average, it is 5.38 times faster than the successive algorithm for the inversion
vectors and 5.89 times faster than the respective permutation vector algorithm.

In addition to the runtime tests for the patterns, we tested the time consumption of the whole
program. Again, the theoretical considerations of Section 4.3 are confirmed. For increasing data length
N, the runtime follows an N · log N curve. We assume that the deviation for small N is due to the
strictly linear time complexity of pattern computation. The proportion of computing time for the
patterns tends to 10%. For varying order D, the quadratic regression we did on our results for the
parameter D gives an almost perfect fit (compare Figure 9f). With increasing maximal pattern order
D, the proportion of computing time for the pattern calculation relative to the total time decreases
considerably. Most of the computation time is spent on the frequency computation and the sorting of
the patterns. Therefore, this part seems to be a promising starting point for future improvements.
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(a) Runtime of pattern computation for fixed D = 10 and uniformly
distributed random data with changing length N.
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(b) Runtime of pattern computation for changing D and
uniformly distributed random data with fixed length N = 106.
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(c) Runtime of pattern computation for fixed D = 10 and normal
distributed random data with changing data length N.
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(d) Runtime of pattern computation for changing D and normal
distributed random data with fixed data length N = 106.
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(e) Runtime of entropy computation for fixed D = 10 and uniformly
distributed random data with changing data length N (blue dots).
For comparison, the yellow curve marks the time for the pattern
computation. The red line is a nonlinear fit with the fitting model
a · N ln N + b and a = −3.3 · 10−3 and b = 5.8615 · 10−7; MSC =

3.925 · 10−3.
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(f) Runtime of entropy computation for changing D and
uniformly distributed random data with fixed data length N = 106

(blue dots). For comparison, the yellow curve marks the time for
the pattern computation. The red line is a quadratic fit with the
fitting model a · D2 + b · D + ·c and a = 0.04789, b = 0.2983 · 10−7

and c = 0.1667; SSE = 1.4487, R2 = 1.

Figure 9. Runtime analysis of the entropy and pattern computation dependent on the data length N
and the maximal pattern order D. The resulting runtimes are averaged over 50 trials.
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4.4.2. Comparison with Other Implementations

We compare our algorithm to the implementations by V. Unakafova (see PE.m, [23],
detailed explanations in the accompanying literature [24]), G. Ouyang (pec.m, [25]) and A. Müller
(petropy.m [26], description in [9]) in the context in which the programs are comparable. None of the
other implementations can compute entropies for ordinal words. The program pec.m computes a single
entropy for a given pattern order and supports time delays. petropy.m again gives only one entropy,
but allows multiple time delays. In addition it offers several ways to treat equal values in the data.
The implementation in PE.m computes the permutation entropy for sliding windows over the data set,
giving the entropy for each window.

Therefore we restrict our comparisons to the case of simple ordinal patterns (m = 1). Though our
algorithms can be extended easily to support time delays, we will not use time delays in any
implementation. At last the sliding window in PE.m was chosen such that the number of windows
equals one.

For further comparability, we divide the runtime for our algorithm by the number of computed
entropies 1

2 D · (D + 1) to get an approximation for the mean time needed for a single entropy.
In addition, we tested a modified version of our algorithm that computes the entropy for a single word
configuration.

Figure 10 shows the results of our analysis. Again, we analyzed the runtime in dependence of the
data length N on the left and pattern order D on the right.
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(a) Runtime comparison of different implementations for permutation
entropy with fixed D = 8 and uniformly distributed random data with
changing data length N. Measurements of pec.m were only performed
up to N = 104 due to the long runtimes.

(b) Runtime comparison of different implementations for
permutation entropy with changing D and uniformly distributed
random data with fixed data length N = 106. Again, the runtime of
pec.m was only measured for D < 8 because of its bad performance.
PE.m is only implemented for D < 9; petropy.m works only if
D · log10 D > 15 which means D < 14.

Figure 10. Comparision of the performance of different MATLAB scripts for permutation entropy
computation. The blue curve is the total runtime of our approach while the red curve gives the runtime
per entropy. The modified version for a single entropy is marked yellow. Both are compared with the
approaches from V. Unakafova (purple), G. Ouyang (green) and A. Müller (cyan).

In pec.m, the first method from our discussion in Section 4.1 was chosen. This led to very long
computing times even for small N and D, making it by far the slowest approach (the green line in
Figure 10).

The performance of PE.m (purple line) varies. It is clearly the fastest of the compared approaches
for small pattern orders. Though, for d = 8, bigger data sets are needed to compete with the
theoretical average time per entropy of our method. Responsible for the high computation speed
is mainly the usage of lookup tables to determine succeeding patterns. While this method clearly
reduces computation time, these tables have to be available and increase superexponentially in size,



Entropy 2019, 21, 547 17 of 24

which limits its usage to pattern orders of size 8 or smaller. With increasing size of the lookup table,
its speed advantages decrease.

The implementation of petropy.m (cyan line) has a similar performance to our modified
one-entropy-programm, mainly because the program uses a similar approach to ours. It uses the same
method of frequency determination. However, it uses the factorial number representation for the
ordinal patterns. This choice leads to the upper limit of the pattern order since these numbers can be
as high as D!. With an maximal possible integer value of 253 in MATLAB, this results in D = 13 as the
largest possible pattern order, a slightly higher range for D than PE.m.

In direct comparison, our approach that computes all D·(D+1)
2 entropies takes (apart of the by far

slowest pec.m) the most time for computing. On the other hand, the average time per entropy is on
wide parameter ranges the fastest. Only for small d, the approach of V. Unakova is faster. The modified
version competes well with the other approaches. Nevertheless it is slower than the average computing
time per entropy since the structures used for optimizing the computation of multiple entropies cannot
be exploited.

Clearly, the main advantage of our algorithm lies in the extended parameter range for the pattern
order d. If over the top the behavior of the entropy in dependence of d is from particular interest,
our approach saves much time compared to computing alls the entropies serially.

5. Limits of Ordinal Pattern Based Entropies

As already mentioned in the introduction, most complexity measures for dynamical systems are
strongly linked to the Kolmogorov-Sinai entropy (abbrev KSE). In our following discussion of ordinal
pattern-based entropies in that context, we forgo to give detailed definitions of this concept. Instead,
we refer for details and more background of the following to [13]. Furthermore we restrict the following
considerations to the most simple case of a one-dimensional dynamical system. Please note that with
the appropriate generalizations, stochastic processes could be included in the discussion withal.

By a (measurable) dynamical system (X ,A, T, µ) we understand a probability space (X ,A, µ)

equipped with a map T : X ←↩ being measurable with respect to A, where µ is invariant with respect
to T. The latter means that µ(T−1(A)) = µ(A) for all events A ∈ A and describes stationarity of
the system. X is considered as the state space and T provides the dynamics. A dynamical system as
given produces a time series x = (xn)N

n=0, when x0 ∈ X is given and xn is the n-th iterate of x0 with
respect to T for n = 1, 2, . . . , N. If the probability measure is ergodic, as we assume in the following,
statistical properties of the given system can be assessed from such time series for sufficiently large N.
In particular, probabilities of patterns can be estimated by their relative frequencies within the time
series. With this setting there are several ways for estimating the Kolmogorov-Sinai entropy from
ordinal pattern-based entropies given a time series from the system.

In theory, the following quantifiers had shown to be good estimators of the Kolmogorov-Sinai
entropy for sufficiently large N, d and m:

1
d H(d,1) if T is an interval map with countably many monotone pieces, (7)
1
m H(d,m) and H(d,m+1) − H(d,m) generally. (8)

Please note that 1
d H(d,1) is called the empirical Permutation entropy of order d (abbrev. ePE) and

H(d,2) − H(d,1) the Empirical Conditional entropy of Ordinal Patterns of order d (abbrev. eCE). Both are
estimators of the respective entropies of the dynamical system which base on the time series x and
whose precise definitions are specified in the given literature.

For (7) the statement follows directly from a recent result of Gutjahr and Keller [10] generalizing
the celebrated result of Bandt et al. [3] that for piecewise monotonous interval maps the KSE and
the Permutation entropy are coinciding. As reported in [12,13], the latter entropy seems to be a
good estimator of the KSE for sufficiently large d with some plausible reasoning, but this point is not
completely understood.
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The problem in the statement above is what sufficiently large means. First of all, in the case
of existence of many different ordinal patterns in a system, N must be extremely large in order to
realize them all in a time series (for practical recommendations relating N and d, see e.g., [8,9]). Even if
arbitrarily long time series would be possible, there would be serious problems to reach the KSE. Let us
demonstrate this for the ePE (compare (7)).

For d ∈ N it holds
1
d H(d,1) ≤ ln((d + 1)!)

d
=

∑d+1
k=1 ln k

d
(9)

since maximal Shannon entropy is given for the uniform distribution. The right side of this formula
is very slowly increasing. For example, for d = 100 it is less than 4, saying that for maps with KSE
larger than 4 one needs ordinal patterns of order larger than 140 to be able to get a sufficiently good
estimation. The larger the KSE is, the larger the d for its reliable estimation theoretically must be,
and the KSE can be arbitrarily large. One reason for this is that if a map T has some KSE c, then its n-th
iterate T◦n has KSE n · c (see e.g., [27]).

Formula (9) is also interesting from the simulation viewpoint. Given an (one-dimensional)
dynamical system and some precision, then usually simulations stick to the precision: Given a value
in its precision, the further iterates in their precision are determined. This shows that the precision
bounds the number of possible ordinal patterns independent of d.

For example, consider the state space [0, 1] and the usage of double-precision IEEE 754
floating-point numbers, which is the standard data type for numerical data in the most programming
languages. Recall that these numbers have the form s ·m · 2e, where s, m and e are coded within 64 bits
of information. One bit is reserved for the sign s and 11 bits are used for the exponent e. The remaining
52 bits are left for the fraction value (mantissa) m. The exponent generally ranges from −1022 to 1023,
for our particular state space, only negative exponents are needed. For each choice for the exponent,
there are 252 possible values of the mantissa. Therefore, there are in total 1022 · 252 ≈ 4.6 · 1018 distinct
numbers possible in a simulation, and more distinct ordinal patterns cannot be found. Since already
for d = 20 there are 21! ≈ 5.1 · 1019 > 4.6 · 1018 possible ordinal patterns, simulations do not provide
an ePE larger than ln 21!

d ≤ ln 21!
20 ≤ 2.269. Because there are one-dimensional maps with arbitrary KSE,

this limits the estimation of the KSE by the simulation.
The kind of simulation described, which we refer to as the naïve simulation, does not reproduce

the real-world situation. The measuring process itself goes hand in hand with precision loss and
therefore measuring errors occur. By iterating through these erroneous values, the error cumulates.
In consequence due to the chaotic behavior, the values obtained after a few iterations have nothing left
in common with the real values. For example, when identifying a real-world system with a dynamical
model, the simulation can in consequence produce periodic sequences of values, although the sequence
of measured values does not contain periodicities. This can reduce the number of ordinal patterns and
so corresponding entropies.

In real-world systems, the measuring process and its belonging errors have no influence to the
system. There—under assumption of other sources of noise—the system generates its time-dependent
values of arbitrary accuracy exactly. Only in the moment where we want to know a certain iterate,
we measure it with the given limited precision. Therefore, we desire to have a simulation where the
iteration itself can be performed exactly for starting values of unlimited precision.

Here for demonstration purposes we are especially interested in the system ([0, 1],B, L, µ),
where B are the Borel sets on [0, 1], L is the logistic map defined by L(x) = 4x(1− x) for x ∈ [0, 1] and
µ is the probability measure on B with a density p on [0, 1] given by p(x) = 1

π
√

x(1−x)
for x ∈ ]0, 1[.

To mimic the real situation, we generate a sequence x′0, x′1, x′2, . . . by using other systems that
are topologically (semi-)conjugated to the logistic map. These systems show to be suitable to our
simulation requirements.

In the first step, we take advantage of the well-known fact that the system ([0, 1],B, L, µ) is
semi-conjugated to the angle doubling map on [0, 2π] which is given by A(β) = 2β mod 2π equipped
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with the Lebesgue measure (compare [28] for this and the following statements). The semi-conjugacy
is given by the map ψ with

ψ(β) = sin2(β)

for β ∈ [0, 2π]. This means that
L(ψ(β)) = ψ(A(β)) (10)

for all β ∈ [0, 2π], i.e., applying L on [0, 1] corresponds to doubling the arc length of a segment on the
unit cycle and thereby doubling the angle. Furthermore, µ is the image of λ, i.e., µ(B) = λ(φ−1(B))
for all B ∈ B. The relationship is illustrated in Figure 11.

β0
β1

β2
β3

β4

−1 −1/2 0 1/2 1 x0 1

√
|x|

0

1

√ ·
( · )2

x0 1/2 1

L(x)

x0x1 x2 x3 x4

1
x

Figure 11. Semi-Conjugacy between the orbits of the logistic map L and the angle-doubling function.

As the second step, we use another conjugacy, namely that the angle doubling map is conjugated
to the shift function on all infinite 0-1-sequences, i.e., {0, 1}∞ equipped with the ( 1

2 , 1
2 )-Bernoulli

measure ν. The latter assigns to each cylinder set of size n of {0, 1}∞ the measure 2−n. The shift is
defined as

S : {0, 1}∞ ←↩ , (b1, b2, b3, . . . ) 7→ (b2, b3, b4, . . . ).

The conjugation between a 0-1-sequence (bj)j∈N and an angle β ∈ [0, 2π] is given by the
binary expansion

β = φ((bj)j∈N) = 2π
∞

∑
j=1

bj2−j.

Please note that φ is only almost everywhere bijective, for example φ((1, 0, 0, . . .)) =

φ((0, 1, 1, . . .)) = π. Analogously to (10), it follows that

A(φ((bj)j∈N)) = φ(S((bj)j∈N)) (11)

for all (bj)j∈N ∈ {0, 1}∞. Concluding (10) and (11), the following diagram commutes:

({0, 1}∞, ν) ([0, 1], λ) ([0, 1], µ)

({0, 1}∞, ν) ([0, 1], λ) ([0, 1], µ)

φ

S

ψ

A L
φ ψ

We can generate an orbit x0, x1, x2, . . . for L as follows: Take a random sequence b1, b2, b3, . . . ,
of elements in {0, 1} meaning that each bn is taken from the symbols {0, 1} with equal probability and
in an independent way and let

xn = ψ(φ(S◦n((bj)j∈N))) = sin2

(
2π

∞

∑
j=1

bj+n2−j

)
.
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Let p ∈ N be the number of binary digits defined by a given precision. The approximation up to
precision p given by

x′n = sin2

(
2π

p

∑
j=1

bj+n2−j

)
.

provides a sequence x′0, x′1, x′2, . . . as desired. The pleasant point is that in the simulation we can start
from b1, b2, . . . , bp and than can append bp+1 by random choice and delete b1, then add bp+2 and delete
b2, then add bp+3 and delete b3, etc. We refer to this simulation (see Algorithm 1) as the advanced one.

Algorithm 1: LOGISTIC-MAP-SIMULATION

Input: number of iterations n, precision p.
Output: array L with simulated values of the logistic map.
begin

choose start value α ∼ U(0, 1) randomly ; // β = 2π · α
αp ←− b2p · αc · 2−p ; // round to precision
L[0]←− sin2(2π · αp);
for k = 1, . . . , n do

b ∼ B(1, 1
2 ) chosen randomly ;

αp ←− (2αp mod 1) + b · 2−p ; // add new precision digit
L[k]←− sin2(2π · αp);

end
end

We have determined the ePE and the eCE for time series related to the logistic map L and its
iterates L◦2 = L ◦ L, L◦3 = L ◦ L ◦ L in dependence on the order d. The results based on time series of
length 107 are presented by Figure 12. The time series behind the pictures on the left side ((a) and (c))
was obtained by the naïve simulation and on the right side ((b) and (d)) by the advanced simulation,
both under the double precision described above. In (a) and (b), we have added blue colored curves
showing the upper bound of the ePE (9) for d. Please note that the results were obtained by our
algorithm from Section 4. It allowed to compute all values at once for each curve.

First of all, for L and L◦2 (red and yellow colored curves) with KSE ln 2 ≈ 0.693147 and 2 ln 2 ≈
1.38629, respectively, the values of eCE restore the KSE much better than the ePE. For a very good
performance of the eCE, consider d in the interval between 6 and 16 for L and between 6 and 9 for
L◦2. For d left of the intervals, the ordinal patterns seem to be too short to capture the full complexity,
for d right of the intervals the time series seem to be to short relative to d to capture the ordinal pattern
complexity. As already reported in [12,13] for L, convergence of the ePE seems to be too slow to get
good estimations for moderately long time series.

It is not excluded that for L or L◦2 the naïve algorithm sometimes runs in a loop or, more general,
reduces variety of ordinal patterns. For L◦3, we see such behavior in Figure 12 (cf. the purple curves),
namely larger empirical entropies are reached for the advanced simulation than for the naïve one. It is
remarkable that the eCE for d = 8 is near to the KSE 3 ln 2 ≈ 2.07944, it seems however that the set
of too small and the set of too large d as described above are overlapping, such that the KSE is not
reached completely.
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Figure 12. ePE (a,b) and empirical conditional entropy of ordinal patterns (c,d) for the logistic map
L = L◦1 and its iterates L◦2, L◦3 in dependence on the pattern order d: Left side pictures (a,c) show
results based on the naïve simulation and right side pictures (b,d) on the advanced simulation,
each based on N = 107 iterates. For comparison, in (a,b) the upper bound of the ePE (9) for d
was added (blue curves).

Our exemplary considerations underline that some deeper thinking about the (mathematical)
structure of systems and measurements, possibly also on the base of symbolic dynamics, is important
for simulating data and beyond. To develop powerful and reliable tools for data analysis, moreover,
a better understanding of ordinal pattern-based entropies for complexity quantification and their
relationship to other complexity measures remains a permanent challenge.
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Appendix A. Algorithms

Algorithm A1: GET-ENTROPIES

Input: Data array x ∈ X N+1, pattern order D.
Output: Array H of Shannon entropies.
begin

; /* Infinity padding for lower order patterns */
x[N + 1 : N + D− 1]←− ∞ ;
p←− COMPUTE-BINARY-PATTERNS[x, D];
; /* adjustments for the frequency trick */
for k = 1, . . . , D− 2 do

for l = D + 1− k, . . . , D do
p[N − D + k, l]←− 2l ;

end
end
sort the rows of p in lexicografical order ;
for d = D, D− 1, . . . , 1 do // iterate over pattern orders

for m = D + 1− d, D− d, . . . , 1 do // iterate over word lengths
h←− GET-PATTERN-FREQUENCIES[p, d, m] ;
H[d, m]←− ln(N − d−m + 2)− 1

N−d−m+2 hT ln[h];
end
; /* Transform the patterns to lower order words by Equation (4) */
for n = 0, . . . , N − 2 do

for k = 1, . . . , D− d + 1 do
p[n, d + k− 1]←− (p[n, d + k− 1]� k)� k

end
end
resort the rows of p in lexicografical order ;

end
end

Algorithm A2: COMPUTE-BINARY-PATTERNS

Input: Data array x ∈ X N+1, pattern order D.
Output: Array of patterns p ∈ NN+1−D×D.
begin

N ←− length[x]− 1;
for n = 0, . . . , N − D do

p[n, D] = ∑D−1
l=0 1xn+l�xn+D 2l ;

end
for k = D− 1, . . . , 0 do

p[0, k]←− ∑k−1
l=0 1xl�xk 2l ;

p[1 : N − D, k]←− p[0 : N − D− 1, k + 1]� 1 ;
end

end
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Algorithm A3: GET-PATTERN-FREQUENCIES

Input: Array of patterns p ∈ NN+1−D×D, pattern order d, word length m.
Output: Array of frequencies h.
begin

i←− 0 ;
for n = 0, . . . , N − D do

if ‖p[n + 1, 0 : D− 1]− p[n, 0 : D− 1]‖ > 0 then
i←− i + 1 ;

end
h[i]←− h[i] + 1 ;

end
end
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