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Abstract: In this paper, we consider a surrogate modeling approach using a data-driven
nonparametric likelihood function constructed on a manifold on which the data lie (or to which
they are close). The proposed method represents the likelihood function using a spectral expansion
formulation known as the kernel embedding of the conditional distribution. To respect the geometry
of the data, we employ this spectral expansion using a set of data-driven basis functions obtained
from the diffusion maps algorithm. The theoretical error estimate suggests that the error bound of
the approximate data-driven likelihood function is independent of the variance of the basis functions,
which allows us to determine the amount of training data for accurate likelihood function estimations.
Supporting numerical results to demonstrate the robustness of the data-driven likelihood functions
for parameter estimation are given on instructive examples involving stochastic and deterministic
differential equations. When the dimension of the data manifold is strictly less than the dimension of
the ambient space, we found that the proposed approach (which does not require the knowledge of the
data manifold) is superior compared to likelihood functions constructed using standard parametric
basis functions defined on the ambient coordinates. In an example where the data manifold is not
smooth and unknown, the proposed method is more robust compared to an existing polynomial chaos
surrogate model which assumes a parametric likelihood, the non-intrusive spectral projection. In fact,
the estimation accuracy is comparable to direct MCMC estimates with only eight likelihood function
evaluations that can be done offline as opposed to 4000 sequential function evaluations, whenever
direct MCMC can be performed. A robust accurate estimation is also found using a likelihood
function trained on statistical averages of the chaotic 40-dimensional Lorenz-96 model on a wide
parameter domain.

Keywords: Bayesian inference; MCMC; diffusion maps; nonparametric likelihood function; surrogate
modeling; reproducing kernel Hilbert space; kernel embedding of the conditional distribution

1. Introduction

Bayesian inference is a popular approach for solving inverse problems with far-reaching
applications, such as parameter estimation and uncertainty quantification (see for example [1–3]).
In this article, we will focus on a classical Bayesian inference problem of estimating the conditional
distribution of hidden parameters of dynamical systems from a given set of noisy observations.
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In particular, let x(t; θ) be a time-dependent state variable, which implicitly depends on the parameter
θ through the following initial value problem,

ẋ = f (x, θ), x(0) = x0. (1)

Here, for any fixed θ, f can be either deterministic or stochastic. Our goal is to estimate the conditional
distribution of θ, given discrete-time noisy observations y† = {y†

1, . . . , y†
T}, where:

y†
i = g(x†

i , ξ i), i = 1, . . . , T. (2)

Here, x†
i ≡ x(ti; θ†) are the solutions of Equation (1) for a specific hidden parameter θ†, g is the

observation function, and ξ i are unbiased noises representing the measurement or model error.
Although the proposed approach can also estimate the conditional density of the initial condition x0,
we will not explore this inference problem in this article.

Given a prior density, p0(θ), Bayes’ theorem states that the conditional distribution of the
parameter θ can be estimated as,

p(θ|y†) ∝ p(y†|θ)p0(θ), (3)

where p(y†|θ) denotes the likelihood function of θ given the measurements y† that depend on a hidden
parameter value θ† through (2). In most applications, the statistics of the conditional distribution
p(θ|y†) are the quantity of interest. For example, one can use the mean statistic as a point estimator
of θ† and the higher order moments for uncertainty quantification. To realize this goal, one draws
samples of p(θ|y†) and estimates these statistics via Monte Carlo averages over these samples. In this
application, Markov Chain Monte Carlo (MCMC) is a natural sampling method that plays a central
role in the computational statistics behind most Bayesian inference techniques [4].

In our setup, we assume that for any θ, one can simulate:

yi(θ) = g(xi(θ), ξ i), i = 1, . . . , T. (4)

where xi(θ) ≡ x(ti; θ) denote solutions to the initial value problem in Equation (1). If the observation
function has the following form,

g(xi(θ), ξ i) = h(xi(θ)) + ξ i, (5)

where ξ i are i.i.d. noises, then one can define the likelihood function of θ, p(y†|θ), as a product of the
density functions of the noises ξ i,

p(y†|θ) ≡
T

∏
i=1

p(ξ i) =
T

∏
i=1

p(y†
i − h(xi(θ))). (6)

When the observations are noise-less, ξ i = 0, and the underlying system is an Itô diffusion process
with additive or multiplicative noises, one can use the Bayesian imputation to approximate the
likelihood function [5]. In both parametric approaches, it is worth noting that the dependence of the
likelihood function on the parameter is implicit through the solutions xi(θ). Practically, this implicit
dependence is the source of the computational burden in evaluating the likelihood function since it
requires solving the dynamical model in (1) or every proposal in the MCMC chain. In the case when
simulating yi(θ) is computationally feasible, but the likelihood function is intractable, then one can use,
e.g., the Approximate Bayesian Computation (ABC) rejection algorithm [6,7] for Bayesian inference.
Basically, the ABC rejection scheme generates the samples of p(θ|y†) by comparing the simulated
yi(θ) to the observed data, y†

i , with an appropriate choice of metric comparison for each proposal
θ ∼ p0(θ). In general, however, repetitive evaluation of (4) can be expensive when the dynamics
in (1) is high-dimensional and/or stiff, or when T is large, or when the function g is an average of
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a long time series. Our goal is to address this situation in addition to not knowing the approximate
likelihood function.

Broadly speaking, the existing approaches to overcome repetitive evaluation of (4) require
knowledge of an approximate likelihood function such as in (6). They can be grouped into two
classes. The first class consists of methods that improve/accelerate the sampling strategy; for example,
the Hamiltonian Monte Carlo [8], adaptive MCMC [9], and delay rejection adaptive Metropolis [10],
just to name a few. The second class consists of methods that avoid solving the dynamical model in (1)
when running the MCMC chain by replacing it with a computationally more efficient model on a known
parameter domain. This class of approach, also known as surrogate modeling, includes Gaussian process
models [11], polynomial chaos [12,13], and enhanced model error [14]; for example, the non-intrusive
spectral projection [13] approximate xi(θ) in (6) with a polynomial chaos expansion. Another related
approach, which also avoids MCMC on top of integrating (1), is to employ a polynomial expansion
on the likelihood function [15]. This method represents the parametric likelihood function in (6) with
orthonormal basis functions of a Hilbert space weighted by the prior measure. This choice of basis
functions makes the computation for the statistics of the posterior density straightforward, and thus,
MCMC is not needed.

In this paper, we consider a surrogate modeling approach where a nonparametric likelihood
function is constructed using a data-driven spectral expansion. By nonparametric, we mean that
our approach does not require any parametric form or assume any distribution as in (6). Instead,
we approximate the likelihood function using the kernel embedding of conditional distribution
formulation introduced in [16,17]. In our application, we will extend their formulation onto a Hilbert
space weighted by the sampling measure of the training dataset as in [18]. We will rigorously
demonstrate that using orthonormal basis functions of this data-driven weighted Hilbert space,
the error bound is independent of the variance of the basis functions, which allows us to determine the
amount of training data for accurate likelihood function estimations.

Computationally, assuming that the observations lie on (or close to) a Riemannian manifold
N embedded in Rn with sampling density q(y), we apply the diffusion maps algorithm [19,20] to
approximate orthonormal basis functions ϕk ∈ L2(N , q) using the training dataset. Subsequently,
a nonparametric likelihood function is represented as a weighted sum of these data-driven basis
functions, where the coefficients are precomputed using the kernel embedding formulation. In this
fashion, our approach respects the geometry of the data manifold. Using this nonparametric likelihood
function, we then generate the MCMC chain for estimating the conditional distribution of hidden
parameters. For the present work, our aim is to demonstrate that one can obtain accurate and robust
parameter estimation by implementing a simple Bayesian inference algorithm, the Metropolis scheme,
with the data-driven nonparametric likelihood function. We should also point out that the present
method is computationally feasible on low-dimensional parameter space, like any other surrogate
modeling approach. Possible ways to overcome this dimensionality issue will be discussed.

This paper is organized as follows: In Section 2, we review the formulation of the reproducing
kernel Hilbert space to estimate conditional density functions. In Section 3, we discuss the error
estimate of the likelihood function approximation. In Section 4, we discuss the construction of the
analytic basis functions for the Euclidean data manifold, as well as the data-driven basis functions
with the diffusion maps algorithm for data that lie on embedded Riemannian geometry. In Section 5,
we provide numerical results with parameter estimation application on instructive examples. In
one of the examples where the dynamical model is low-dimensional and the observation is in
the form of (5), we compare the proposed approach with the direct MCMC and non-intrusive
spectral projection method (both schemes use likelihood of the form (6)). In addition, we will also
demonstrate the robustness of the proposed approach on an example where g is a statistical average of
a long-time trajectory (in which the likelihood is intractable) and the dynamical model has relatively
high-dimensional chaotic dynamics such that repetitive evaluation of (4) is numerically expensive. In
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Section 6, we conclude this paper with a short summary. We accompany this paper with Appendices
for treating large amount of data and more numerical results.

2. Conditional Density Estimation via Reproducing Kernel Weighted Hilbert Spaces

Let y ∈ N ⊆ Rn, where N is a smooth manifold with intrinsic dimension d ≤ n.
In practice, we measure the observations in the ambient coordinates and denote their components
as y = {y1, . . . , yn}. For the parameter θ space, M has a Euclidean structure with components,
θ = {θ1, . . . , θm}, soM is assumed to be either an m-dimensional hyperrectangle or Rm. For training,
we are given M number of training parameters

{
θj
}

j=1,...,M = {θ1
j , . . . , θm

j }j=1,...,M. For each
training parameter θj, we generate a discrete time series of length N for noisy observation data{

yi,j
}
= {y1

i,j, . . . , yn
i,j} ∈ Rn for i = 1, . . . , N, and j = 1, . . . , M. Here, the sub-index i and the sub-index

j of yi,j correspond to the ith observation data for the jth training parameter θj. Our goal for training

is to learn the conditional density p(y|θ) from the training dataset
{

θj
}

j=1,...,M and
{

yi,j
}i=1,...,N

j=1,...,M for

arbitrary y and θ within the range of
{

θj
}

j=1,...,M.

The construction of the conditional density p(y|θ) is based on a machine learning tool known
as the kernel embedding of the conditional distribution formulation introduced in [16,17]. In their
formulation, the representation of conditional distributions is an element of a Reproducing Kernel
Hilbert Space (RKHS).

Recently, the representation using a Reproducing Kernel Weighted Hilbert Space (RKWHS) was
introduced in [18]. That is, let Ψk := ψkq be the orthonormal basis of L2(N , q−1), where they are
eigenbasis of an integral operator,

K f (y) =
∫
N

K(y, y′) f (y′)q−1(y′)dV, f ∈ L2(N , q−1), (7)

that is, KΨk = λkΨk.
In the case where N is compact and K is Hilbert–Schmidt, the kernel can be written as,

K(y, y′) =
∞

∑
k=1

λkΨk(y)Ψk(y
′), (8)

which converges in L2(N , q−1). Define the feature map Φ :M→ `2 as,

Φ(y) :=
{

Φk(y) =
√

λkΨk(y) : k ∈ Z+, y ∈ N
}

. (9)

Therefore, any f ∈ L2(N , q−1) can be represented as f = ∑∞
k=1 f̂kΨk = ∑∞

k=1
f̂k√
λk

Φk, where f̂k =

〈 f , Ψk〉q−1 = 〈 f , ψk〉 :=
∫
N f (y)ψk(y)dV and provided that ∑k | f̂k|2/λk < ∞. If we define 〈 f , g〉Hq−1 :=

∑∞
k=1

f̂k ĝk
λk

, we can write the kernel in (8) as K(y, y′) = 〈Φ(y), Φ(y′)〉Hq−1 . Throughout this manuscript,

we denote the RKHSHq−1(N ) generating the feature map Φ in (9) as the space of square integrable
functions with a reproducing property,

f (y) = 〈 f , K(·, y)〉Hq−1 :=
∞

∑
k=1

f̂k〈K(·, y), Ψk〉q−1

λk
=

∞

∑
k=1

f̂k√
λk

Φk(y) = 〈 f , Φ(y)〉Hq−1 , ∀y ∈ N ,

induced by the basis of Ψk ∈ L2(N , q−1). While this definition deceptively suggests that Hq−1(N )

is similar to L2(N , q−1), we should also point out that the RKHS requires that the Dirac functional
δx : Hq−1(N ) → R defined as δx f = f (x) be continuous. Since L2 contains a class of functions, it is
not an RKHS andHq−1(N ) ⊂ L2(N , q−1). See, e.g., Chapter 4 of [21] for more details. Using the same
definition, we denoteHq̃−1(M) as the RKHS induced by orthonormal basis of L2(M, q̃−1) of functions
of the parameter θ.
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In this work, we will represent conditional density functions using the RKWHS induced by the
data, where the bases will be constructed using the diffusion maps algorithm. The outcome of the
training is an estimate of the conditional density, p̂(y|θ), for arbitrary y and θ within the range of{

θj
}

j=1,...,M.

2.1. Review of Nonparametric RKWHS Representation of Conditional Density Functions

We first review the RKWHS representation of conditional density functions deduced in [18].
Let ψk (y) be the orthonormal basis functions of L2 (N , q), where N contains the domain of the
training data yi,j, and the weight function q (y) is defined with respect to the volume form inherited
by N from the ambient space Rn. Let ϕl (θ) ∈ L2 (M, q̃) be the orthonormal basis functions in the
parameter θ space, where the training parameters are θj ∈ M, with weight function q̃ (θ). For finite
modes, k = 1, . . . , K1, and l = 1, . . . , K2, a nonparametric RKWHS representation of the conditional
density can be written as follows [18]:

p̂ (y|θ) =
K1

∑
k=1

ĉY|θ,kψk (y) q (y) , (10)

where p̂ (y|θ) denotes an estimate of the conditional density p (y|θ) ∈ Hq−1(N ), and the expansion
coefficients are defined as:

ĉY|θ,k =
K2

∑
l=1

[
CYΘC−1

ΘΘ

]
kl

ϕl (θ) . (11)

Here, the matrix CYΘ is K1 × K2, and the matrix CΘΘ is K2 × K2, whose components can be
approximated by Monte Carlo averages [18]:

[CYΘ]ks = EYΘ [ψk ϕs] ≈
1

MN

M

∑
j=1

N

∑
i=1

ψk
(
yi,j
)

ϕs
(
θj
)

, (12)

[CΘΘ]sl = EΘΘ [ϕs ϕl ] ≈
1
M

M

∑
j=1

ϕs
(
θj
)

ϕl
(
θj
)

, (13)

where the expectations E are taken with respect to the sampling densities of the training dataset{
yi,j
}i=1,...,N

j=1,...,M and
{

θj
}

j=1,...,M. The equation for the expansion coefficients in Equation (11) is based
on the theory of kernel embedding of the conditional distribution [16–18]. See [18] for the detailed
proof of Equations (11)–(13). Note that for RKWHS representation, the weight functions q and q̃ can be
different from the sampling densities of the training dataset

{
yi,j
}i=1,...,N

j=1,...,M and
{

θj
}

j=1,...,M, respectively.
This generalizes the representation in [18], which sets the weights q and q̃ to be the sampling densities
of the training dataset

{
yi,j
}

and
{

θj
}

, respectively. If the assumption of p (y|θ) ∈ Hq−1(N ) is
not satisfied, then CΘΘ can be singular. In such a case, one can follow the suggestion in [16,17] to
regularize the linear regression in (11) by replacing C−1

ΘΘ with (CΘΘ + λIK2)
−1, where λ ∈ R is an

empirically-chosen parameter and IK2 denotes an identity matrix of size K2 × K2.
Incidentally, it is worth mentioning that the conditional density in (10) and (11) is represented as

a regression in infinite-dimensional spaces with basis functions ψk (y) and ϕl (θ). The expression (10)
is a nonparametric representation in the sense that we do not assume any particular distribution for
the density function p (y|θ). In this representation, only training dataset

{
yi,j
}i=1,...,N

j=1,...,M and
{

θj
}

j=1,...,M
with appropriate basis functions are used to specify the coefficients ĉY|θ,k and the densities p̂ (y|θ). In
Section 4, we will demonstrate how to construct the appropriate basis completely from the training
data, motivated by the theoretical result in Section 3 below.
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2.2. Simplification of the Expansion Coefficients (11)

If the weight function q̃ (θ) is the sampling density of the training parameters
{

θj
}

j=1,...,M,
the matrix CΘΘ in (13) can be simplified to a K2 × K2 identity matrix,

[CΘΘ]sl = EΘΘ [ϕs ϕl ] =
∫
M

ϕs(θ)ϕl(θ)q̃(θ)dθ = δsl . (14)

where δsl is the Kronecker delta function. Here, the second equality follows from the weight q̃ (θ) being
the sampling density, and the third equality follows from the orthonormality of ϕl (θ) ∈ L2 (M, q̃)
with respect to the weight function q̃. Then, the expansion coefficients ĉY|θ,k in (11) can be simplified to,

ĉY|θ,k =
K2

∑
l=1

[CYΘ]kl ϕl (θ) , (15)

with the K1 × K2 matrix CYΘ still given by (12). In this work, we always take the weight function
q̃ (θ) to be the sampling density of the training parameters

{
θj
}

j=1,...,M for the simplification of the
expansion coefficients ĉY|θ,k in (15). This assumption is not too restrictive since the training parameters
are specified by the users.

Finally, the formula in (10) combined with the expansion coefficients ĉY|θ,k in (15) and the matrix
CYΘ in (12) forms an RKWHS representation of the conditional density p (y|θ) for arbitrary y and
θ. Numerically, the training outcome is the matrix CYΘ in (12), and then, the conditional density
p̂ (y|θ) can be represented by (10) with coefficients (15) using the basis functions {ψk (y)}

K1
k=1 and

{ϕl (θ)}K2
l=1. From above, one can see that two important questions naturally arise as a consequence

of the usage of RKWHS representation: first, whether the representation p̂ (y|θ) in (10) is valid in
estimating the conditional density p (y|θ); second, how to construct the orthonormal basis functions
ψk (y) ∈ L2 (N , q) and ϕl (θ) ∈ L2 (M, q̃). We will address these two important questions in the next
two sections.

3. Error Estimation

In this section, we focus on the error estimation of the expansion coefficient ĉY|θj ,k and, later,
the conditional density p̂

(
y|θj

)
at the training parameter θj. The notation ĉY|θj ,k is defined as the

expansion coefficient ĉY|θ,k in (15), evaluated at the training parameter θj. Let the total number of
basis functions in parameter space, K2, be equal to the total number of training parameters, M, that is,
K2 = M. Denoting Φ = [~ϕ1, . . . , ~ϕM] ∈ RM×M, where the jth component of ~ϕl approximates the basis
function evaluated at the training data ϕl(θj), we can write the last equality in (14) in a compact form
as M−1Φ>Φ = IM. This also means that, M−1ΦΦ> = IM, the components of which are,

1
M

M

∑
l=1

ϕl (θs) ϕl
(
θj
)
= δsj. (16)

For the training parameter θj, we can simplify the expansion coefficient ĉY|θj ,k by substituting Equation
(12) into Equation (15),

ĉY|θj ,k =
M

∑
l=1

[CYΘ]kl ϕl
(
θj
)
≈

M

∑
l=1

[
1

MN

M

∑
s=1

N

∑
i=1

ψk (yi,s) ϕl (θs)

]
ϕl
(
θj
)
=

1
N

N

∑
i=1

ψk
(
yi,j
)

, (17)

where the last equality follows from (16).
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3.1. Error Estimation Using Arbitrary Bases

We first study the error estimation for the expansion coefficient ĉY|θj ,k. For each training parameter
θj, the conditional density function p(y|θj) ∈ Hq−1 (N ) can be analytically represented in the form,

p(y|θj) =
∞

∑
k=1

cY|θj ,kψk(y)q(y), (18)

due to the completeness of L2 (N , q). Here, the analytic expansion coefficient cY|θj ,k is given by,

cY|θj ,k =
〈

p
(
·|θj
)

, ψk
〉

. (19)

Note that the estimator ĉY|θj ,k in (17) is a Monte Carlo approximation of the expansion coefficient cY|θj ,k
in (19), i.e.,

cY|θj ,k =
〈

p
(
·|θj
)

, ψk
〉
= EY|θj

[ψk (Y)] ≈
1
N

N

∑
i=1

ψk
(
yi,j
)

, (20)

where the last equality follows from the training dataset
{

yi,j
}

i=1,...,N , which admits a conditional
density p

(
y|θj

)
. Note also that in the following theorems and propositions, the condition p(y|θj) ∈

Hq−1 (N ) is required. In Section 5.2 and Appendix B, we will provide an example to discuss this
condition in detail. Next, we provide the unbiasedness and consistency of the estimator ĉY|θj ,k.

Proposition 1. Let
{

yi,j
}

i=1,...,N be i.i.d. samples of Y|θj with density p(y|θj). Let p(y|θj) ∈ Hq−1 (N ) and
{ψk(y)} form a complete orthonormal basis of L2 (N , q). Assume that VarY|θj

[ψk (Y)] is finite, then ĉY|θj ,k
defined in (17) is an unbiased and consistent estimator for cY|θj ,k in (19).

Proof. The estimator ĉY|θj ,k is unbiased,

EĉY|θj ,k =
1
N

N

∑
i=1

EY|θj
ψk
(
Yi,j
)
= cY|θj ,k. (21)

where the expectation is taken with respect to the conditional density p
(
y|θj

)
. If the variance,

VarY|θj
[ψk (Y)], is finite, then the variance of ĉY|θj ,k converges to zero as the number of training

data N → ∞,

Var
(

ĉY|θj ,k

)
=

1
N

VarY|θj
[ψk (Y)]→ 0, as N → ∞. (22)

Then, we can obtain that the estimator ĉY|θj ,k is consistent,

Pr

(∣∣∣ĉY|θj ,k − cY|θj ,k

∣∣∣ > ε
)
≤

Var
(

ĉY|θj ,k

)
ε2 → 0, as N → ∞, for ∀ε > 0,

where Chebyshev’s inequality has been used.

If the estimator of p(y|θj) is given by the representation with an infinite number of basis functions,
p̃(y|θj) = ∑∞

k=1 ĉY|θj ,kψk(y)q(y), then the estimator p̃(y|θj) is pointwise unbiased for every observation
y. However, in the numerical implementation, only a finite number of basis functions can be used in
the representation (10). Numerically, the estimator of p(y|θj) is given by the representation (10) at the
training parameter θj,

p̂(y|θj) =
K1

∑
k=1

ĉY|θj ,kψk(y)q(y).
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Then, the pointwise error of the estimator, ê(y|θj), can be defined as:

ê(y|θj) ≡ p(y|θj)− p̂(y|θj)

=
∞

∑
k=K1+1

cY|θj ,kψk(y)q(y) +
K1

∑
k=1

(
cY|θj ,k − ĉY|θj ,k

)
ψk(y)q(y). (23)

It can be seen that the estimator p̂(y|θj) is no longer unbiased or consistent due to the first error term
in (23) induced by modes k > K1. Next, we estimate the expectation and the variance of an L2-norm
error of p̂(y|θj) for all training parameters θj.

Theorem 1. Let the condition in Proposition 1 be satisfied for all
{

θj
}

j=1,...,M, and VarY|θj
[ψk (Y)] be finite

for all k ∈ N+. Define the L2-norm error,

êL2 =

(
M

∑
j=1

∫
N

∣∣ê(y|θj)
∣∣2 q−1(y)dV

)1/2

, (24)

where ê(y|θj) is the pointwise error in (23), and dV is the volume form inherited by the manifold N from the
ambient space Rn [18,20]. Then,

E [êL2 ] ≤
(

M

∑
j=1

∞

∑
k=K1+1

[
cY|θj ,k

]2
+

1
N

M

∑
j=1

K1

∑
k=1

VarY|θj
[ψk(Y)]

) 1
2

, (25)

Var [êL2 ] ≤
M

∑
j=1

∞

∑
k=K1+1

[
cY|θj ,k

]2
+

1
N

M

∑
j=1

K1

∑
k=1

VarY|θj
[ψk(Y)] , (26)

where E and Var are defined with respect to the joint distribution of p(y|θj) for all
{

θj
}

j=1,...,M. Moreover,
E [êL2 ] and Var[êL2 ] converge to zero as K1 → ∞ and then N → ∞, where the limiting operations of K1 and N
are not commutative.

Proof. The expectation of êL2 can be estimated as,

(E [êL2 ])
2 ≤ E

[
M

∑
j=1

∫
N

∣∣ê(y|θj)
∣∣2 q−1(y)dV

]

= E
[ M

∑
j=1

∫
N

( ∞

∑
k=K1+1

cY|θj ,kψk(y) +
K1

∑
k=1

(
cY|θj ,k − ĉY|θj ,k

)
ψk(y)

)2
q(y)dV

]
, (27)

where the first inequality follows from Jensen’s inequality. Here, the randomness comes from the
estimators ĉY|θj ,k. Due to the orthonormality of basis functions, ψk ∈ L2 (N , q), the error estimation
in (27) can be simplified as,

(E [êL2 ])
2 ≤

M

∑
j=1

∞

∑
k=K1+1

[
cY|θj ,k

]2
+

M

∑
j=1

K1

∑
k=1

EY|θj

[(
cY|θj ,k − ĉY|θj ,k

)2
]

,

=
M

∑
j=1

∞

∑
k=K1+1

[
cY|θj ,k

]2
+

1
N

M

∑
j=1

K1

∑
k=1

VarY|θj
[ψk(Y)] , (28)

where the inequality follows from the linearity of expectation, and the equality follows from EĉY|θj ,k =

cY|θj ,k in (21) and Var
(

ĉY|θj ,k

)
= 1

N VarY|θj
[ψk (Y)] in (22). In error estimation (28), the first term is
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deterministic, and the second term is random. We have so far proven that the expectation E [êL2 ] is
bounded by (25). Similarly, we can prove that the variance Var[êL2 ] is bounded by (26).

Next, we prove that the expectation E [êL2 ] converges to zero as K1 → ∞ and then N → ∞.
Parseval’s theorem states that:

∞

∑
k=1

[
cY|θj ,k

]2
=
∫
N

p(y|θj)
2q−1 (y) dV < +∞, for all θj, (29)

where the inequality follows from p(y|θj) ∈ Hq−1(N ) ⊂ L2 (N , q−1) for all θj. For ∀ε > 0, there exists

an integer K̃1
(
θj
)

for θj such that:

∞

∑
k=K̃1(θj)

[
cY|θj ,k

]2
<

ε

2M
. (30)

Let:
K1 = max

{
K̃1 (θ1) , . . . , K̃1 (θM)

}
, (31)

then the first term in (28) can be bounded by: ε/2,

M

∑
j=1

∞

∑
k=K1+1

[
cY|θj ,k

]2
<

ε

2
. (32)

Since the variance VarY|θj
[ψk(Y)] is assumed to be finite for all k and j, there exists a constant D > 0

such that VarY|θj
[ψk(Y)] can be bounded above by this constant D,

VarY|θj
[ψk(Y)] ≤ D, for all k = 1, . . . , K1 and j = 1, . . . , M. (33)

Then, for ∀ε > 0, there exists a sufficiently large number of training data:

Nmin =
2MK1D

ε
. (34)

such that whenever N > Nmin, then:

1
N

M

∑
j=1

K1

∑
k=1

VarY|θj
[ψk(Y)] <

ε

2
. (35)

Since ε > 0 is arbitrary, by substituting Equation (32) and Equation (35) into the error estimation (28),
we obtain that E [êL2 ] converges to zero as K1 → ∞ and then N → ∞. Note that, we first take K1 → ∞
to ensure the first error term in (28) vanishes and then take N → ∞ to ensure the second error term in
(28) vanishes. Thus, the limiting operations of K1 and N are not commutative. Similarly, we can prove
that the variance Var[êL2 ] converges to zero as K1 → ∞ and then N → ∞.

Theorem 1 provides the intuition for specifying the number of training observation data N to
achieve any desired accuracy ε > 0 given fixed M-parameters and sufficiently large K1. It can be seen
from Theorem 1 that numerically, the expectation E [êL2 ] in (25) and the variance Var[êL2 ] in (26) can be
bounded within arbitrarily small ε by choosing sufficiently large K1 and N. Specifically, there are two
error terms in Equations (25) and (26), the first being deterministic, induced by modes k > K1, and
the second random, induced by modes k ≤ K1. For the deterministic term (k > K1), the error can be
bounded by ε/2 by choosing sufficiently large K1 satisfying (31). In our implementation, the number
of basis functions K1 is empirically chosen to be large enough in order to make the first error term in
Equations (25) and (26) for k > K1 as small as possible.
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For the random term (k ≤ K1), the error can be bounded by ε/2 by choosing sufficiently large
N satisfying N > Nmin = 2MK1D/ε (Equation (34)). The minimum number of training data, Nmin,
depends on the upper bound of VarY|θj

[ψk(Y)], D. However, the upper bound D may not exist
for some problems. This means that for some problems, the assumption for finite VarY|θj

[ψk(Y)] in
Theorem 1 may not be satisfied. Even if the upper bound D exists, it is typically not easy to evaluate
its value given an arbitrary basis ψk ∈ L2 (N , q) since one needs to evaluate VarY|θj

[ψk(Y)] for all
k = 1, . . . , K1 and j = 1, . . . , M. Note that Theorem 1 holds true for representing p̂(y|θj) with an
arbitrary basis {ψk} ∈ L2 (N , q) as long as p(y|θj) ∈ Hq−1 (N ) for all θj and VarY|θj

[ψk(Y)] is finite for
k ≤ K1 and j = 1, . . . , M. Next, we provide several cases in which VarY|θj

[ψk(Y)] is finite for k and j.

Remark 1. If the weighted Hilbert space L2 (N , q) is defined on a compact manifold N and has smooth basis
functions ψk, then VarY|θj

[ψk (Y)] is finite for a fixed k ∈ N+ and j = 1, . . . , M. This assertion follows
from the fact that continuous functions on a compact manifold are bounded. The smoothness assumption is
not unreasonable in many applications since the orthonormal basis functions are obtained as solutions of an
eigenvalue problem of a self-adjoint second-order elliptic differential operator. Note that the bound here is not
necessarily a uniform bound of ψk (Y) for all k ∈ N+ and j = 1, . . . , M. As long as VarY|θj

[ψk (Y)] is finite for
k ≤ K1 and j = 1, . . . , M, the upper bound D is finite, and then, Theorem 1 holds.

Remark 2. If the manifold N is a hyperrectangle in Rn and the weight q is a uniform distribution on N , then
VarY|θj

[ψk (Y)] is finite for a fixed k ∈ N+ and j = 1, . . . , M. This assertion is an immediate consequence of
Remark 1.

In Theorem 1, Nmin depends on the upper bound of VarY|θj
[ψk(Y)], D, as shown in (34). In the

following, we will specify a Hilbert space, referred to as a data-driven Hilbert space, so that Nmin is
independent of D and is only dependent of M, K1, and ε. As a consequence, we can easily determine
how many training data N for bounding the second error term in Equations (25) and (26).

3.2. Error Estimation Using a Data-Driven Hilbert Space

We now turn to the discussion of a specific data-driven Hilbert space L2 (N , q) with orthonormal
basis functions ψk. Our goal is to specify the weight function q such that the minimum number of
training data, Nmin, only depends on M, K1, and ε. Here, the overline · corresponds to the specific
data-driven Hilbert space. The second error term in (28) can be further estimated as,

1
N

M

∑
j=1

K1

∑
k=1

VarY|θj

[
ψk(Y)

]
≤ 1

N

K1

∑
k=1

M

∑
j=1

EY|θj

[
ψ

2
k(Y)

]
=

M
N

K1

∑
k=1

∫
N

ψ
2
k(y)

(
1
M

M

∑
j=1

p(y|θj)

)
dV, (36)

where the basis functions are substituted with the specific ψk. Notice that ψk(y) are orthonormal basis
functions with respect to the weight q in L2 (N , q). One specific choice of the weight function q (y) is:

q (y) =
1
M

M

∑
j=1

p(y|θj), (37)

where q (y) has been normalized, i.e.,

∫
N

q (y) dV =
∫
N

1
M

M

∑
j=1

p(y|θj)dV = 1. (38)
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For the data-driven Hilbert space, we always use a normalized weight function q (y). Note that
the weight function q (y) in (37) is a discretization of the marginal density function of Y with Θ

marginalized out,

q (y) =
1
M

M

∑
j=1

p(y|θj) ≈
∫
M

p(y|θ)q̃ (θ) dθ =
∫
M

p(y, θ)dθ, (39)

where p(y, θ) denotes the joint density of (Y, Θ). Essentially, the weight function q (y) in (37) is the
sampling density of all the training data

{
yi,j
}i=1,...,N

j=1,...,M, which motivates us to refer to L2 (N , q) as
a data-driven Hilbert space.

Next, we prove that by specifying the data-driven basis functions ψk ∈ L2 (N , q), the variance
VarY|θj

[
ψk(Y)

]
is finite for all k ∈ N+ and j = 1, . . . , M. Subsequently, we can obtain the minimum

number of training data, Nmin, to only depend on M, K1, and ε, such that the expectation E [êL2 ] in
(25) and the variance Var[êL2 ] in (26) are bounded above by any ε > 0.

Proposition 2. Let
{

yi,j
}

i=1,...,N be i.i.d. samples of Y|θj with density p(y|θj). Let p(y|θj) ∈ Hq−1(N ) for
all
{

θj
}

j=1,...,M with weight q specified in (37), and let
{

ψk
}

be the complete orthonormal basis of L2 (N , q).

Then, VarY|θj

[
ψk (Y)

]
is finite for all k ∈ N+ and j = 1, . . . , M.

Proof. Notice that for all k ∈ N+, we have:

1
M

M

∑
j=1

VarY|θj

[
ψk(Y)

]
≤ 1

M

M

∑
j=1

EY|θj

[
ψ

2
k(Y)

]
=
∫
N

ψ
2
k(y)

1
M

M

∑
j=1

p(y|θj)dV

=
∫
N

ψ
2
k(y)q (y) dV = 1, (40)

where the last equality follows directly from the orthonormality of basis functions ψk(y) ∈ L2 (N , q).
From Equation (40), we can obtain that for all k ∈ N+ and j = 1, . . . , M, the variance VarY|θj

[
ψk (Y)

]
is finite.

Theorem 2. Given the same hypothesis as in Proposition 2, then:

E [êL2 ] ≤
(

M

∑
j=1

∞

∑
k=K1+1

[
cY|θj ,k

]2
+

MK1

N

) 1
2

, (41)

Var [êL2 ] ≤
M

∑
j=1

∞

∑
k=K1+1

[
cY|θj ,k

]2
+

MK1

N
. (42)

where êL2 is defined by (24) and cY|θj ,k is given by (19). Moreover, E [êL2 ] and Var[êL2 ] converge to zero as
K1 → ∞ and then N → ∞, where the limiting operations of K1 and N are not commutative.

Proof. According to Proposition 2, we have that the variance VarY|θj

[
ψk (Y)

]
is finite for all k ∈ N+

and j = 1, . . . , M. According to Proposition 1, since VarY|θj

[
ψk (Y)

]
is finite, we have that the estimator

ĉY|θj ,k is both unbiased and consistent for cY|θj ,k. All conditions in Theorem 1 are satisfied, so that we
can obtain the error estimation of the expectation E [êL2 ] in (25) and the error estimation of the variance
Var[êL2 ] in (26). Moreover, the second error term in E [êL2 ] (25) and Var[êL2 ] (26) can be both bounded
by Equation (40), so that we can obtain our error estimations (41) and (42).
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Choose K1 as in (31) such that the first term in (41) and (42) is bounded by ε/2. The second term
MK1/N in (41) and (42) can be bounded by an arbitrarily small ε/2 if the number of training data
N satisfies:

N > Nmin ≡ 2MK1/ε. (43)

Then, both the expectation E [êL2 ] and the variance Var[êL2 ] can be bounded by ε. Since ε > 0 is
arbitrary, the proof is complete.

Recall that by applying arbitrary basis functions to represent p̂ (y|θ) in (10), it is typically not
easy to evaluate the upper bound D in (33), which implies that it is not easy to determine how
many observation data, Nmin (Equation (34)), should be used for training. However, by applying the
data-driven basis functions ψk to represent p̂ (y|θ) in (10), the minimum number of training data, Nmin

(Equation (43)), becomes independent of D, and is only dependent of M, K1, and ε, as can be seen from
Theorem 2. To let the error induced by modes k ≤ K1 be smaller than a desired ε/2, we can easily
determine how many observation data, Nmin (Equation (43)), should be used for training. In this sense,
the specific data-driven Hilbert space L2 (N , q) with the corresponding basis functions ψk is a good
choice for representing (10).

We have so far theoretically verified the validity of the representation (10) in estimating the
conditional density p(y|θj) (Theorem 1). In particular, using the data-driven basis ψk ∈ L2 (N , q),
we can easily control the error of conditional density estimation by specifying the number of training
data N (Theorem 2). To summarize, the training procedures can be outlined as follows:

(1-A) Generate the training dataset, including training parameters
{

θj
}

j=1,...,M and observations{
yi,j
}i=1,...,N

j=1,...,M. The length of training data N is empirically determined based on the criteria (34)
or (43).

(1-B) Construct the basis functions for parameter θ space and for observation y space by using the
training dataset. For y space, we need to empirically choose the number of basis functions K1 to
let the error induced by modes k > K1 be as small as possible. In particular, for the data-driven
Hilbert space, we will provide a detailed discussion on how to estimate the data-driven basis
functions of L2(N , q) with the sampling density q from the training data in the following Section
4. Note that this basis estimation will introduce additional errors beyond the results in this
section, which assumed the data-driven basis functions to be given.

(1-C) Train the matrix CYΘ in (12) and then estimate the conditional density p̂ (y|θ) by using the
nonparametric RKWHS representation (10) with the expansion coefficients ĉY|θ,k (15).

(1-D) Finally, for new observations y† = {y†
1, . . . , y†

T}, define the likelihood function as a product of
the conditional densities of new observations y† given any θ,

p(y†|θ) ≡
T

∏
t=1

p̂(y†
t |θ). (44)

Next, we address the second important question for the RKWHS representation (Procedure (1-B)): how
to construct basis functions for θ and y. Especially, we focus on how to construct the data-driven basis
functions for y.

4. Basis Functions

This section will be organized as follows. In Section 4.1, we discuss how to employ analytical
basis functions for parameter θ and for observation y as in the usual polynomial chaos expansion.
In Section 4.2, we discuss how to construct the data-driven basis functions ψk ∈ L2 (N , q) with N
being the manifold of the training dataset

{
yi,j
}i=1,...,N

j=1,...,M and the weight q by (37) being the sampling

density of
{

yi,j
}i=1,...,N

j=1,...,M.
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4.1. Analytic Basis Functions

If no prior information about the parameter space other than its domain is known, we can
assume that the training parameters are uniformly distributed on the parameter θ space. In particular,
we choose M number of well-sampled training parameters

{
θj
}

j=1,...,M = {θ1
j , . . . , θm

j }j=1,...,M in
an m-dimensional boxM⊂ Rm,

M≡ [θ1
min, θ1

max]× · · · × [θm
min, θm

max], (45)

where × denotes a Cartesian product and the two parameters θs
min and θs

max are the minimum and
maximum values of the uniform distribution for the sth coordinate of θ space. Here, the well-sampled
uniform distribution corresponds to a regular grid, which is a tessellation of m-dimensional Euclidean
space Rm by congruent parallelotopes. Two parameters θs

min and θs
max are determined by:

θs
min = min

j=1,...,M

{
θs

j

}
− γ

(
max

j=1,...,M

{
θs

j

}
− min

j=1,...,M

{
θs

j

} )
, (46)

θs
max = max

j=1,...,M

{
θs

j

}
+ γ

(
max

j=1,...,M

{
θs

j

}
− min

j=1,...,M

{
θs

j

} )
.

For M regularly-spaced grid points θs
j , we set γ = .5(Ms − 1)−1 in all of our numerical examples

below, where Ms is the number of training parameters in the sth coordinate. For example, see Figure 1
for the 2D well-sampled uniformly-distributed data {(5, 5), (6, 5), . . . , (12, 12)} (blue circles). In this
case, the two-dimensional boxM is [4.5, 12.5]2 (red square).

4 6 8 10 12
4

6

8

10

12

σ
2

X1

σ
2 X

2

Figure 1. (Color online) An example of well-sampled 2D uniformly-distributed data points (blue
circles). The boundary of the uniform distribution is depicted with a red square. Furthermore, these
well-sampled data points correspond to the training parameters in Example I in Section 5. In this
example, the well-sampled uniformly-distributed training parameters are (σ2

X1
, σ2

X2
) ∈ {(i, j)}j=5,...,12

i=5,...,12
(blue circles). The equal spacing distances of both coordinates are one. The two-dimensional boxM is
[4.5, 12.5]2 (red square).

On this simple geometry, we will choose ϕk to be the tensor product of the basis functions on
each coordinate. Notice that we have taken the weight function q̃ to be the sampling density of the
training parameters in order to simplify the expansion coefficient ĉY|θ,k in (15). In this case, the weight
q̃ is a uniform distribution onM. Then, for the sth coordinate of the parameter, θs, the weight function
q̃s (θs) is a uniform distribution on the interval [θs

min, θs
max], and one can choose the following cosine

basis functions,

Φks(θs) =

{
1, if ks = 0,√

2 cos
(

ksπ
θs−θs

min
θs

max−θs
min

)
, else,

(47)
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where Φks(θs) form a complete orthonormal basis of L2 ([θs
min, θs

max], q̃s). This choice of basis functions
corresponds to exactly the data-driven basis functions produced by the diffusion maps algorithm
on the uniformly-distributed dataset on a compact interval, which will be discussed in Section 4.2.
Although other choices such as the Legendre polynomials can be used, this choice will lead to a larger
value of constant D in (34) that controls the minimum number of training data for accurate estimation.

Subsequently, we set L2 (M, q̃) =
⊗m

s=1 L2 ([θs
min, θs

max], q̃s), where ⊗ denotes the Hilbert
tensor product, and q̃ (θ) =

⊗m
s=1 q̃s(θs) is the uniform distribution on the m-dimensional boxM.

Correspondingly, the basis functions ϕk (θ) are a tensor product of Φks(θs) for s = 1, . . . , m,

ϕk (θ) =
m⊗

s=1

Φks(θs) = Φk1(θ1)⊗ . . .⊗Φkm(θm), (48)

where k =
(
k1, . . . , km) and θ =

(
θ1, . . . , θm). Based on the property of the tensor product of Hilbert

spaces, {ϕk (θ)} forms a complete orthonormal basis of L2 (M, q̃).
We now turn to the discussion of how to construct analytic basis functions for y. The approach is

similar to the one for parameter θ, except that the domain of the data is specified empirically and the
weight function is chosen to correspond to some well-known analytical basis functions, independent of
the sampling distribution of the data y. That is, we assume the geometry of the data has the following
tensor structure, N = N 1 × . . .×N n, where N s will be specified empirically based on the ambient
space coordinate of y. Let ys be the sth ambient component of y; we can choose a weighted Hilbert
space L2 (N s, qs(ys; αs)) with the weight qs depending on the parameters αs and being normalized
to satisfy

∫
R qs(ys; αs)dys = 1. For each coordinate, let Ψks(ys; αs) be the corresponding orthonormal

basis functions, which possess analytic expressions. Subsequently, we can obtain a set of complete
orthonormal basis functions ψk ∈ L2 (N , q) for y by taking the tensor product of these Ψks as in (48).

For example, if the weight qs is uniform,N s ⊂ R is simply a one-dimensional interval. In this case,
we can choose the cosine basis functions Ψks for y as in (47) such that the parameters αs correspond to
the boundaries of the domain N s, which can be estimated as in (46). In our numerical experiments
below, we will set γ = 0.1. Another choice is to set the weight qs(ys; αs) to be Gaussian. In this case,
the domain is assumed to be the real line, N s = R. For this choice, the corresponding orthonormal
basis functions Ψks are Hermite polynomials, and the parameters αs, corresponding to the mean and
variance of the Gaussian distribution, can be empirically estimated from the training data.

In the remainder of this paper, we will always use the cosine basis functions for θ. The application
of (10) using cosine basis functions for y is referred to as the cosine representation. The application of
(10) using Hermite basis functions for y is referred to as the Hermite representation.

4.2. Data-Driven Basis Functions

In this section, we discuss how to construct a set of data-driven basis functions ψk ∈ L2 (N , q)
withN being the manifold of the training dataset

{
yi,j
}i=1,...,N

j=1,...,M and weight q in (37) being the sampling

density of
{

yi,j
}

for all i = 1, . . . , N, and j = 1, . . . , M. The issues here are that the analytical expression
of the sampling density q is unknown and the Riemannian metric inherited by the data manifold N
from the ambient space Rn is also unknown. Fortunately, these issues can be overcome by the diffusion
maps algorithm [18–20].

4.2.1. Learning the Data-Driven Basis Functions

Given a dataset yi,j ∈ N ⊆ Rn with the sampling density q(y) (37), defined with respect to the
volume form inherited by the manifold N from the ambient space Rn, one can use the kernel-based
diffusion maps algorithm to construct an MN×MN matrix L that approximates a weighted Laplacian
operator, L = ∇ log (q) · ∇+4, that takes functions with Neumann boundary conditions for the
compact manifold N with the boundary if the manifold has a boundary. The eigenvectors ψk of
the matrix L are discrete approximations of the eigenfunctions ψk (y) of the operator L, which form
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an orthonormal basis of the weighted Hilbert space L2 (N , q). Connecting to the discussion on the
RKWHS in Section 2, the eigenfunctions of L∗ = −div(∇ log q ) + ∆, that is {Ψk := ψkq}, can be
approximated using an integral operator in (7) with the appropriate kernel constructed by the diffusion
maps algorithm, up to a diagonal conjugation. Basically, Hq̄−1(N ) is the data-driven reproducing
kernel Hilbert space defined with the feature map in (9), induced by eigenfunctions of L∗.

Each component of the eigenvector ψk ∈ RMN is a discrete estimate of the eigenfunction ψk
(
yi,j
)
,

evaluated at the training data point yi,j. The sampling density q defined in (37) is estimated using a
kernel density estimation method [22]. In contrast to the analytic continuous basis functions in the
above Section 4.1, the data-driven basis functions ψk ∈ L2 (N , q) are represented nonparametrically by
the discrete eigenvectors ψk ∈ RMN using the diffusion maps algorithm. The outcome of the training
is a discrete estimate of the conditional density, p̂

(
yi,j|θ

)
, which estimates the representation p̂ (y|θ)

(10) on each training data point yi,j.
In our implementation, we use the Variable-Bandwidth Diffusion Maps (VBDM) algorithm

introduced in [20], which extends the diffusion maps to non-compact manifolds without a boundary.
See the supplementary material of [23] for the MATLAB code of this algorithm. We should point out
that this discrete approximation induces errors in the basis function, which are estimated in detail
in [24]. These errors are in addition to the error estimations in Section 3.

We note that if the data are uniformly distributed on a one-dimensional bounded interval, then the
VBDM solutions are the cosine basis functions, which are eigenfunctions of the Laplacian operator
on bounded interval with Neumann boundary conditions. This means that the cosine functions in
(47) that are used to represent each component of θ are analogous to the data-driven basis functions.
The difference is that with the parametric choice in (47), one avoids VBDM at the expense of specifying
the boundaries of the domain, [θs

min, θs
max]. In the remainder of this paper, we refer to an application of

(10) with cosine basis functions for θ and VBDM basis functions for y as the VBDM representation.
However, a direct application of the VBDM algorithm suffers from the expensive computational

cost for large training data. Basically, we need an algorithm that allows us to subsample from the
training dataset while preserving the sampling distribution of the full dataset. In Appendix A,
we provide a simple box-averaging method to achieve this goal. In the remainder of this paper, we
will denote the reduced data obtained via the box-averaging method in Appendix A by {yb}b=1,...,B,
where B� MN. We refer to them as the box-averaged data points. When the number of training data
is too large, we apply the VBDM algorithm on these box-averaged data to obtain the discrete estimate
of the eigenfunctions ψk (yb).

The second issue arises from the discrete representation of the conditional density in the
observation y space using the VBDM algorithm. Notice that the VBDM representation, p̂

(
yi,j|θ

)
,

is only estimated at each training data point yi,j. A natural problem is to extend the representation

onto new observations yt /∈
{

yi,j
}i=1,...,N

j=1,...,M that are not part of the training dataset (Procedure (1-D)).
Next, we address this issue.

4.2.2. Nyström Extension

We now discuss an extension method to evaluate basis functions ψk on a new data point that does
not belong to the training dataset. Given such an extension method, we can proceed with Procedure
(1-D) by evaluating ψk (yt) on new observations yt /∈

{
yi,j
}i=1,...,N

j=1,...,M, which in turn give p̂ (yt|θ). Second,
this extension is also needed in the training Procedure (1-C) when MN is large. More specifically, for
training the matrix CYΘ in (12), we need to know the estimate of the eigenfunction ψk

(
yi,j
)

for all the
original training data yi,j. Computationally, however, we can only construct the discrete estimate of
the eigenfunction ψk (yb) at the reduced box-averaged data points yb. This suggests that we need to
extend the eigenfunctions ψk (yb) onto all the original training data

{
yi,j
}i=1,...,N

j=1,...,M.
For the convenience of discussion, the training data that are used to construct the eigenfunctions

are denoted by
{

yold
r
}

r=1,...,R, and all the data that are not part of
{

yold
r
}

r=1,...,R are denoted by ynew.
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To extend the eigenfunctions ψk
(
yold

r
)

onto the data point ynew /∈
{

yold
r
}

r=1,...,R, one approach would
be to use the Nyström extension [25] that is based on the basic theory of RKHS [26]. LetHq̄ (N ) be the
RKWHS with a symmetric positive kernel T̂ : N ×N→ R defined as,

T̂ (y, y′) =
∞

∑
k=1

λkψk(y)ψk(y
′),

where λk is the corresponding eigenvalue of L associated with eigenfunction ψk. Then, for any function
f ∈ Hq (N ), the Moore–Aronszajn theorem states that one can evaluate f at a ∈ N with the following

inner product, f (a) =
〈

f , T̂ (a, ·)
〉
Hq

. In our application, this amounts to evaluating,

ψk (y
new) =

1
R

R

∑
r=1
T
(

ynew, yold
r

)
ψk

(
yold

r

)
, (49)

where the non-symmetric kernel function T : N ×N→ R (constructed by the diffusion maps
algorithm) is related to the symmetric kernel T̂ by,

T
(
yi, yj

)
= q−1/2 (yi) T̂

(
yi, yj

)
q1/2 (yj

)
with q (yi) being the sampling density of

{
yold

r
}

r=1,...,R at yi. See the detailed evaluation of the kernels

T̂ and T for the Nyström extension in [27]. After obtaining the estimate of the eigenfunction ψk (y
new)

using the Nyström extension, we can train the matrix CYΘ in (12) for large MN and then obtain the
representation of the conditional density on arbitrary new observation yt, p̂ (yt|θ).

To summarize this section, we have constructed two different sets of basis functions for y, the
analytic basis functions of L2 (N , q) such as the Hermite and cosine basis functions, which assume that
the manifold is Rn or hyperrectangle, respectively, and the data-driven basis functions of L2 (N , q) ,
with N being the data manifold and q being the sampling density that are computed using the
VBDM algorithm.

5. Parameter Estimation Using the Metropolis Scheme

First, we briefly review the Metropolis scheme for estimating the posterior density p(θ|y†) given
new observations y† = {y†

1, . . . , y†
T} for a specific parameter θ†. The key idea of the Metropolis scheme

is to construct a Markov chain such that it converges to samples of conditional density p(θ|y†) as the
target density. In our application, the parameter estimation procedures can be outlined as follows:

(2-A) Suppose we have θ0 ∼ p(θ0|y†) > 0, then for i ≥ 1, we can sample θ∗ ∼ κ (θi−1, θ∗). Here,
κ is the proposal kernel density. For example, use the random walk Metropolis algorithm
to generate proposals, κ (θi−1, θ∗) = N (θi−1, C), where C, the proposal covariance, and is
a tunable nuisance parameter.

(2-B) Accept the proposal, θi = θ∗ with probability min( p(θ∗ |y†)
p(θi−1|y†)

, 1), otherwise set θi = θi−1. Repeat

Procedures (2-A) and (2-B) above. Notice that the posterior p(θ|y†) can be determined from
the prior p0(θ) and the likelihood p(y†|θ) based on Bayes’ theorem (3). The likelihood function
p(y†|θ) is defined as a product of conditional densities of new observations y† = {y†

1, . . . , y†
T}

in (44) (Procedure (1-D)). The conditional densities of new observations y† given θ are obtained
from the training Procedure (1-C).

(2-C) Generate a sufficiently long chain and use the chain’s statistic as an estimator of the true parameter
θ†. Take multiple runs of the chain started at different initial θ0, and examine whether all these
runs converge to the same distribution. The convergence of all the examples below has been
validated using 10 randomly-chosen different initial conditions.
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In the remainder of this section, we present numerical results of the Metropolis scheme using
the proposed data-driven likelihood function on various instructive examples, where the likelihood
function is either explicitly known, or can be approximated as in (6), or is intractable. In an example
where the explicit likelihood is known, our goal is to show that the approach numerically converges to
the true posterior estimate. In the second example, where the dimension of the data manifold is strictly
less than the ambient dimension, we will show that the RKHS framework with the knowledge of the
intrinsic geometry is superior. When the intrinsic geometrical information is unknown, the proposed
data-driven likelihood function is competitive. In the third example with a low-dimensional dynamic
and observation model of the form (5), we compare the proposed approach with standard methods,
including the direct MCMC and nonintrusive spectral projection (both use the likelihood function of
the form (6)). In our last example, we consider an observation model where the likelihood function is
intractable and the cost of evaluating the observation model in (4) is numerically expensive.

5.1. Example I: Two-Dimensional Ornstein–Uhlenbeck Process

Consider an Ornstein–Uhlenbeck (OU) process as follows:

dX = −1
2

Xdt + Σ1/2dWt, (50)

where X ≡ (X1, X2)
> denotes the state variable, Wt = (W1, W2)

> denotes two-dimensional Wiener
processes, and Σ ∈ R2×2 is a diagonal matrix with main diagonal components σ2

X1
and σ2

Xs
to be

estimated. In the stationary process, the solution of Equation (50) X = (X1, X2)
> admits a Gaussian

distribution X ∼ N (0, Σ),

p(X|Σ) = det (2πΣ)−
1
2 exp

[
−1

2
X>Σ−1X

]
. (51)

Our goal here is to estimate the posterior density and the posterior mean of the parameters
(σ2

X1
, σ2

X2
), given a finite number, T, of observations, X† ≡ (X1†, . . . , XT†), for hidden true parameters

((σ2
X1
)†, (σ2

X2
)†) = (6.5, 6.3), where each Xt† is an i.i.d. sample of (51) for Σ = Σ†. This example is

shown here to verify the validity of the framework of our RKWHS representations for parameter
estimation application.

One can show that the likelihood function for this problem is the inverse matrix gamma
distribution, Σ ∼ IMG

(
T
2 −

3
2 , 2, Ψ

)
, where Ψ = X†(X†)> ∈ R2×2. If a prior is defined to be also

the inverse matrix gamma distribution, Σ ∼ IMG (α0, 2, 0), for some value of α0, then the posterior
density p(Σ|X†) can be obtained by applying Bayes’ theorem,

p(Σ|X†) ∼ IMG
(

α0 +
T
2

, 2, Ψ

)
. (52)

The posterior mean can thereafter be obtained as,

(Σ)PM =

 (
σ2

X1

)
PM

0

0
(

σ2
X2

)
PM

 =
Ψ

T + 2α0 − 3
. (53)

To compare with the analytic conditional density p(X|Σ) (51), we trained three RKWHS
representations of the conditional density function, p̂ (X|Σ), by using the same training dataset.
For training, we used M = 64 well-sampled uniformly-distributed training parameters (shown in
Figure 1), (σ2

X1
, σ2

X2
), where σ2

Xj
∈ {5, 6, . . . , 12}, which are denoted by

{
Σj
}M

j=1. For each training
parameter Σj, we generated N = 640,000 well-sampled normally distributed observation data of
density in (51) with Σ = Σj. For Hermite and cosine representations, we used 20 basis functions
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for each coordinate, and then, we could construct K1 = 400 basis functions of two-dimensional
observation, X, by taking the tensor product. For the VBDM representation, we first reduced the data
from MN = 8× 640,000 to B = B1 × B2 = 100× 100 by the box-averaging method (Appendix A).
Subsequently, we trained K1 = 400 data-driven basis functions from the B box-averaged data using
the VBDM algorithm [20].

Figure 2a displays the analytic conditional density (51), and Figure 2b–d display the pointwise
errors of the conditional densities ê (X|Σ) ≡ p (X|Σ)− p̂ (X|Σ) for the training parameter (σ2

X1
, σ2

X2
) =

(5, 5). It can be seen from Figures 2b–d that all the pointwise errors are small compared to the
analytic p(X|Σ) in Figure 2a, so that all representations of conditional densities p̂ (X|Σ) are in excellent
agreement with the analytic p(X|Σ) (Figure 2a). This suggests that for the Hermite representation,
the upper bound D (33) in Theorem 1 is finite so that the representation is valid in estimating the
conditional density, as can be seen from Figure 2b. On the other hand, the upper bounds D (33) for the
cosine and the VBDM representations are always finite, as mentioned in Remark 2 and Proposition
2, respectively. We should also point out that for this example, the VBDM representation performed
the worst with errors of order 10−4 compared to the Hermite and cosine representations whose errors
were on the order of 10−6. This larger error in the VBDM representation was because the data-driven
basis functions were estimated by discrete eigenvectors ψk ∈ RB, so additional errors [20] were
introduced through this discrete approximation (especially on the high modes) on the box-averaged
data, {yb}b=1,...,B, B = 10,000. On the other hand, for Hermite and cosine representations, their analytic
basis functions are known, so that the errors could be approximated by (25) in Theorem 1.

Figure 2. (Color online) (a) The analytic conditional density p(X|Σ) (51). For comparison, plotted are
the pointwise errors of conditional density functions ê (X|Σ) ≡ p (X|Σ)− p̂ (X|Σ) for (b) Hermite, (c)
cosine, and (d) VBDM representations. The density and all the error functions are plotted on the B =

10,000 box-averaged data points. The training parameter Σ ≡ (σ2
X1

, σ2
X2
) = (5, 5).

We now estimate the posterior density (52) and mean (53) by using the MCMC method (Procedures
(2-A)–(2-C)). We generated T = 400 well-sampled normally-distributed data as the observations from
the true values of variance Σ† = ((σ2

X1
)

†, (σ2
X2
)

†
) = (6.5, 6.3). From the analytical Formula (53),

we obtained the posterior mean as (σ2
X1

, σ2
X2
)PM = (6.03, 5.84). Here, the posterior mean deviated

greatly from the true value since we only used T = 400 normally-distributed observation data as new
observations. If using much more new observation data, the analytical posterior mean (53) will get
closer to the true value, ((σ2

X1
)†, (σ2

X2
)†). In our simulation, we set the parameter in the prior, α0 = 1,

and the proposal covariance, C = 0.01I. For each chain, the initial condition
(

σ2
X1,0, σ2

X2,0

)
was drawn

randomly from U[5, 12]2, and 800,000 iterations are generated for the chain.
Figure 3b,c,d display the densities of the chain by using Hermite, cosine, and VBDM representation,

respectively. The densities are plotted using the kernel density estimate on the chain ignoring the first
10,000 iterations. For comparison, Figure 3a displays the analytic posterior density (52). It can be seen
from Figure 3 that the posterior densities by the three representations were in excellent agreement with
each other and with the analytic posterior density (52). Figure 3 also shows the comparison between
the posterior mean (53) and the MCMC mean estimates. From our numerical results, MCMC mean
estimates by all representations and the analytic posterior mean (53) were identical within numerical
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accuracy. Therefore, for this 2D OU-process example, all representations were valid in estimating the
posterior density and posterior mean of parameter Σ.

1

(a) analytic (b) Hermite (c) Cosine (d) VBDM
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Figure 3. (Color online) Comparison of the posterior density functions p(Σ|X†). (a) Analytical posterior
density p(Σ|X†) (52). (b) Hermite representation. (c) Cosine representation. (d) VBDM representation.
The true value Σ† ≡ (σ2

X1
, σ2

X2
) = (6.5, 6.3) (blue plus). The analytic posterior mean is (σ2

X1
, σ2

X2
)PM =

(6.03, 5.84) (green cross). The MCMC mean estimate using Hermite representation is (σ2
X1

, σ2
X2
) =

(6.05, 5.87) (black square). The MCMC mean estimate using Cosine representation is (σ2
X1

, σ2
X2
) =

(6.05, 5.87) (black triangle). The MCMC mean estimate using VBDM representation is (σ2
X1

, σ2
X2
) =

(6.04, 5.86) (black circle).

Next, we will investigate a system for which the intrinsic dimension d of the data manifold where
the observations lie is smaller than the dimension of ambient space n.

5.2. Example II: Three-Dimensional System of SDE’s on a Torus

Consider a system of SDE’s on a torus defined in the intrinsic coordinates (θ, φ) ∈ [0, 2π)2:

d

(
θ

φ

)
= a (θ, φ) dt + b (θ, φ)

(
dW1

dW2

)
, (54)

where W1 and W2 are two independent Wiener processes, and the drift and diffusion coefficients are:

a (θ, φ) =

(
1
2 + 1

8 cos (θ) cos (2φ) + 1
2 cos (θ + π/2)

10 + 1
2 cos (θ + φ/2) + cos (θ + π/2)

)
,

b (θ, φ) =

(
D + D sin (θ) 1

4 cos (θ + φ)
1
4 cos (θ + φ) 1

40 + 1
40 sin (φ) cos (θ)

)
.

The initial condition is (θ, φ) = (π, π). Here, D is a parameter to be estimated. This example exhibits
non-gradient drift, anisotropic diffusion, and multiple time scales. Both the observations and the
training dataset were generated by numerically solving the SDE on appropriate parameters D in (54)
with a time step ∆t = 0.1 and then mapping this data into the ambient space, R3, via the standard
embedding of the torus given by:

x ≡ (x, y, z) = ((2 + sin (θ)) cos (φ) , (2 + sin (θ)) sin (φ) , cos (θ)) . (55)

Here, x ≡ (x, y, z) are observations. This system on a torus satisfies d < n, where d = 2 is the intrinsic
dimension of x and n = 3 is the dimension of ambient space Rn. Our goal is to estimate the posterior
density and the posterior mean of parameter D given discrete-time observations of x†, which are the
solutions of (54) for a specific parameter D†.

For training, we used M = 8 well-sampled uniformly-distributed training parameters,{
Dj = j/4

}8
j=1. For each training parameter Dj, we generated N = 54,000 observations of x by

solving the SDE’s in (54) for parameter Dj. For Hermite and cosine representation, we constructed
10 basis functions for each x, y, z coordinate in Euclidean space. After taking tensor product of these
basis functions, we could obtain K1 = 1000 basis functions on the ambient space R3. For VBDM
representation, we first computed B = B1 × B2 × B3 = 303 box-averaged data points by the data
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reduction method in Appendix A. However, we found that some of the B box-averaged data points
were far away from the torus. After ignoring these points, we eventually chose B̃ = 26,020 of
the box-averaged data points that were close enough to the torus for training. Then, we trained
K1 = 1000 data-driven basis functions on N from these 26,020 box-averaged data points using the
VBDM algorithm.

Unlike the previous example, the derivation of the analytical expression for the likelihood function
p(x|Dj) was not trivial. This difficulty is due to the fact that the diffusion coefficient, b(θ, φ), is
state dependent. While direct MCMC with an approximate likelihood function constructed using
the Bayesian imputation [5] can be done in principle, we neglected this numerical computation
since the cost in generating the path {xi} for i = 1, . . . , T on each sampling step was too costly in
our setup below (where T = 10,000, and we would generate a chain of length 400,000 samples).
For diagnostic comparisons, we constructed another representation p̂(x|Dj), named the intrinsic
Fourier representation, which can be regarded as an accurate approximation of p(x|Dj), as it used the
basis functions defined on the intrinsic coordinates (θ, φ) instead of x ∈ R3. See Appendix B for the
construction and the convergence of the intrinsic Fourier representation in detail. We should point out
that this intrinsic representation is not available in general since one may not know the embedding of
the data manifold.

Figure 4 displays the comparison of the density estimates. It can be observed from Figure 4
that the VBDM representation was in good agreement with the intrinsic Fourier representation,
whereas Hermite and cosine representations of p̂(x|Dj) deviated significantly from the intrinsic Fourier
representation. The reason in short was that if the density p(θ, φ|D) in (θ, φ) coordinate were in
H([0, 2π)2) ⊂ L2 ([0, 2π)2), then the corresponding VBDM representation with respect to dV(x)
would be inHq−1(N ). However, the representation (Hermite and cosine) with respect to dx, x ∈ R3 is

not inHq−1(R3). A more detailed explanation of this assertion is presented in Appendix B.

We now compare the MCMC estimates with the true value, D† = 0.9, from T = 10,000
observations. For this simulation, we set the prior to be uniformly distributed and empirically chose
C = 0.01 for the proposal. Figure 5 displays the posterior densities of the chains for all representations
(each plot of the density estimate was constructed using KDE on a chain of length 400,000). Displayed
also is the comparison between the true value D† and the MCMC mean estimates by all representations.
Here, the mean estimate by the intrinsic Fourier representation nearly overlaps with the true value
D† = 0.9, as shown in Figure 5. The mean estimate by the VBDM representation is closer to the true
value D† compared to the estimates by Hermite and cosine representations. Moreover, it can be seen
from Figure 5 that the posterior by the VBDM representation is close to the posterior by intrinsic
Fourier representation, whereas the posterior densities by Hermite and cosine representation are not.
We should point out that this result is encouraging considering that the training parameter domain
is rather wide, Dj ∈ [1/4, 2]. This result suggests that when the intrinsic dimension is less than the
ambient space dimension, d < n, the VBDM representation (which does not require the knowledge of
the embedding function in (55)) with data-driven basis functions in L2 (N , q) is superior compared to
the representations with analytic basis functions defined on the ambient coordinates R3.
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1

Figure 4. (Color online) Comparison of the conditional densities p̂(x|Dj) estimated by using Hermite
representation (first row), cosine representation (second row), VBDM representation (third row), and
intrinsic Fourier representation (fourth row). The left (a,d,g,j), middle (b,e,h,k), and right (c,f,i,l)
columns correspond to the densities on the training parameters D1 = 0.25, D4 = 1.00, and D7 = 1.75,
respectively. K1 = 1000 basis functions are used for all representations. For fair visual comparison,
all conditional densities are plotted on the same box-averaged data points and normalized to satisfy
1
B̃ ∑B̃

b=1 p̂(xb|Dj)/q (xb) = 1 with q being the estimated sampling density of the box-averaged data

{xb}B̃
b=1.
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Figure 5. (Color online) Comparison of the posterior density functions by all representations. Plotted
also are mean estimates by Hermite representation D̂ = 0.78 (blue triangle), cosine representation
D̂ = 0.79 (red square), VBDM representation D̂ = 0.88 (black circle), the intrinsic Fourier representation
D̂ = 0.90 (green circle), and the true parameter value D† = 0.9 (magenta asterisk).
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5.3. Example III: Five-Dimensional Lorenz-96 Model

Consider the Lorenz-96 model [28]:

dxj

dt
= xj−1

(
xj+1 − xj−2

)
− xj + F, j = 1, . . . , J, (56)

with periodic boundary, xj+J = xj. For the example in this section, we set J = 5. The initial condition
was xj(0) = sin(2π j/5). Our goal here was to estimate the posterior density and posterior mean of the
hidden parameter F given a time series of noisy observations y† =

(
y†

1, y†
2, y†

3, y†
4, y†

5
)
, where:

y†
j (tm) = x†

j (tm) + εm,j, εm,j ∼ N
(

0, σ2
)

, m = 1, . . . , T,

with noise variance σ2 = 0.01. Here, x†
j (tm) denotes the approximate solution (with the Runge–Kutta

method) with a specific parameter value F† at discrete times tm = ms4t, where 4t = 0.05 is the
integration time step and s is the observation interval. Since the embedding function of the observation
data is unknown, we do not have a parametric analog to the intrinsic Fourier representation as in the
previous example.

In this low-dimensional setting, we can compare the proposed method with basic techniques,
including the direct MCMC and the Non-Intrusive Spectral Projection (NISP) method [13]. By
direct MCMC, we refer to employing the random walk Metropolis scheme directly on the following
likelihood function,

p
(

y†|F
)

∝ exp

−∑T
m=1 ∑5

j=1

(
y†

j (tm)− xj (tm; F)
)2

2σ2

 , (57)

where σ2 is the noise variance and xj (tm; F) is the solution of the initial value problem in Equation (56)
with the parameter F at time tm. Note that evaluating xj (tm; F) is time consuming if the model time
Ts∆t is long or the MCMC chain has many iterations. In our implementation, we generated the chain
for 4000 iterations. This amounts to 4000 sequential evaluations of the likelihood function in (57),
where each evaluation requires integrating the model in (56) with the proposal parameter value F∗

until model unit time Ts∆t. We used a uniform prior distribution and C = 0.1 for the proposal.
For the NISP method [13], we used the same Gaussian likelihood function (57) with approximated

xj. In particular, we approximated the solutions xj with x̃j (t, F) for j = 1, . . . , 5 in the form of:

x̃j (t, F) =
K

∑
k=1

x̂j,k (t) ϕk (F) , (58)

where ϕk (F) are chosen to be the orthonormal cosine basis functions, x̂j,k (t) are the expansion
coefficients, and K is the number of basis functions. Subsequently, we prescribe a fixed set of nodes{

Fj = 7.55 + 0.1j
}8

j=1 to be used for training x̂j,k(t). Practically, this training procedure only requires
eight model evaluations that can be done in parallel, where each evaluation involves integrating the
model with the specified Fj until model unit time Ts∆t. The number of basis functions is K = 8. After
specifying the coefficients x̂j,k (t) such that x̃j (t, F) = xj (t; F), we obtain the approximation of the
solutions x̃j (t, F) for all parameters F. Using these approximated x̃j (t, F), in place of xj(tm, F) in (57),
we can generate the Markov chain using the Metropolis scheme. Again, we used a uniform prior
distribution and C = 0.1 for the proposal. In our MCMC implementation, we generated the chain for
40,000 iterations; this involved only evaluating (58) instead of integrating the true dynamical model in
(56) on the proposal parameter value F∗.

For RKWHS representations, we also used M = 8 uniformly-distributed training parameters,{
Fj = 7.55 + 0.1j

}8
j=1. As in the NISP, this training procedure required only eight model integrations
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with parameter value Fj until the model unit time Ts∆t, resulting in a total of MN = 8Ts training
data. In this example, we did not reduce the data using the box-averaging method in Appendix A.
In fact, for some cases, such as s = 1 and T = 50, the total of training data were only MN = 400,
which was too few for estimation of the eigenfunctions. Of course, one can consider more training
parameters to increase this training dataset, but for a fair comparison with NISP, we chose to just
add 10 i.i.d. Gaussian noises to each dataset, resulting in a total of MN = 4000 for training dataset.
This configuration (with a small dataset) is a tough setting for the VBDM since the nonparametric
method is advantageous in the limit of a large dataset. When 8Ts is sufficiently large, we do not need
to increase the dataset by adding multiple i.i.d Gaussian noises.

For Hermite and Cosine representation, we constructed five Hermite and cosine basis functions
for each coordinate, which yielding a total of K1 = 55 = 3125 basis functions in R5. For the VBDM
representation, we directly applied the VBDM algorithm to train K1 = 3125 data-driven basis functions
on manifold N from the MN = 4000 training dataset. From the VBDM algorithm, the estimated
intrinsic dimension was d ≈ 2, which was smaller than the dimension of the ambient space n = 5.
Then, we applied a uniform prior distribution and C = 0.01 for the proposal. As in NISP, we generated
the chain for 40,000 iterations, which amounted to evaluating (44) instead of integrating the true
dynamical model in (56) on each iteration.

We now compare the posterior densities and mean estimates for the case of s = 1 and T = 50
noisy observations y† (tm) corresponding to the true parameter value F† = 8. Figure 6 displays the
posterior densities of the chains and mean estimates for the direct MCMC method, NISP method, and
all representations. It can be seen from Figure 6 that the mean estimate by VBDM representation was
in good agreement with the true value F†. In contrast, the mean estimates by Hermite and cosine
representations deviated substantially from the true value. Based on this numerical result, where the
estimated intrinsic dimension d ≈ 2 of the observations was lower than the ambient space dimension
n = 5, the data-driven VBDM representation was superior compared to the Hermite and cosine
representations. It can be further observed that direct MCMC, NISP, and VBDM representation can
provide good mean estimates to the true value. However, notice that we only ran the model M = 8
times for the NISP method and VBDM representation, whereas we ran the model 4000 times for the
direct MCMC method.
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Figure 6. (Color online) Comparison of the posterior density functions among the direct MCMC
method, NISP method, and all RKWHS representations. Plotted also are the true parameter value
F† = 8 (black cross), mean the estimate by the direct MCMC method F̂ = 8.00 (green circle), the
mean estimate by the NISP method F̂ = 8.00 (magenta square), and the mean estimates by Hermite
representation F̂ = 8.21 (blue triangle), cosine representation F̂ = 8.10 (red square), and VBDM
representation F̂ = 7.99 (black circle). The noisy observations are yj† (tm) for s = 1, T = 50.

In real applications where the observations are not simulated by the model, we expect the
observation configuration to be pre-determined. Therefore it is important to have an algorithm that
is robust under various observation configurations. In our next numerical experiment, we checked
such robustness by comparing the direct MCMC method, NISP method, and VBDM representation for
different cases of s and T (Figure 7a). It can be observed from Figure 7a that both the direct MCMC
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method and VBDM representation can provide reasonably accurate mean estimates for all cases of s
and T. However, again notice that we need to run the model much more times for the direct MCMC
method than for VBDM representation. It can be further observed that the NISP method can only
provide a good mean estimate for observation time up to Ts∆t = 200∆t when eight uniform nodes{

Fj = 7.55 + 0.1j
}8

j=1 are used. The reason was that the approximated solution by NISP method was
only accurate for observation time up to 200∆t (see the green and red curves in Figure 7b). This result
suggests that our surrogate modeling approach using the VBDM representation can provide accurate
and robust mean estimates under various observation configurations.
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Figure 7. (Color online) (a) Comparison of the mean estimates among the direct MCMC method, NISP
method, and VBDM representation for different cases of s and T. Plotted also is the true parameter
value F† = 8 (green curve). (b) Comparison of the exact solution by numerical integration and the
approximated solution by the NISP method at the training parameter F = 7.65 and at the parameter
value F = 8, which is not in the training parameter.

5.4. Example IV: The 40-Dimensional Lorenz-96 Model

In this section, we consider estimating the parameter F in the Lorenz-96 model in (56), but of
a J = 40 dimensional system. We now consider observing the autocorrelation function of several
energetic Fourier modes of the system phase-space variables. In particular, let {x̂k(tm; F)}k=−J/2+1,...,J/2
be the kth discrete Fourier mode of {xj(tm; F)}k=1...,J , where tm = m∆t with ∆t = 0.05. Let the
observation function be defined as in (4) with four-dimensional {ym(F)}m=0,...,T , whose components
are the autocorrelation function of Fourier mode k j,

ym,j(F) = E[x̂kj
(tm; F)x̂kj

(t0; F)], m = 0, . . . , T, j = 1, . . . , 4,

of the energetic Fourier modes, k j ∈ {7, 8, 9, 14}. See [29] for the detailed discussion of the statistical
equilibrium behavior of this model for various values of F. Such observations arise naturally since
some of the model parameters can be identified from non-equilibrium statistical information via the
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linear response statistics [30,31]. In our numerics, we will approximate the correlation function by
averaging over a long trajectory,

E[x̂kj
(tm; F)x̂kj

(t0; F)] ≈ 1
L

L

∑
`=1

x̂kj
(tm+`; F)x̂kj

(t`; F), (59)

with L = 106. Here, each of these Fourier modes is assumed to have zero empirical mean. We will
consider observing the autocorrelation function up to time T = 50 (corresponding to 2.5 unit time).

With this setup, the corresponding likelihood function for p(ym|F) is not easily approximated
(since it is not in the form of (6)), and it is computationally demanding to generate ym,j(F) since
each evaluation requires integration of the 40-dimensional Lorenz-96 model up to time index L =

106. This expensive computational cost makes either the direct MCMC or approximate Bayesian
computation infeasible. We should also point out the fact that a long trajectory is needed in the
evaluation of (59), making this problem intractable with NISP even if a parametric likelihood function
becomes available. This issue is because the approximated trajectory by polynomial chaos expansion in
NISP is only accurate for short times, as shown in the previous example. We will consider constructing
the likelihood function from a wide range of training parameter values, Fi = 6 + 0.1(i − 1), i =

1, . . . , M = 31. This parameter domain is rather wide and includes the weakly chaotic regime (F = 6)
and strongly chaotic regime (F = 8). See [32] for a complete list of chaotic measures in these regimes
including the largest Lyapunov exponent and the Kolmogorov–Sinai entropy.

In this setup, we had a total of MN = M(T + 1) = 31× 51 = 1581 of ym(Fi) ∈ R4 for training.
We will consider an RKHS representation with K1 = 500 basis functions. We will demonstrate the
performance on 30 sets of observations ym(F†

s ), where in each case, F†
s does not belong to the training

parameter set, namely F†
s = 6.05 + 0.1(s− 1), s = 1, . . . , 30. In each simulation, the MCMC initial

chain will be set to be random, F ∼ U (6.5, 8.5); the prior is uniform; and C = 0.01 for the proposal.
In Figure 8, we show the mean estimates and an error bar (based on one standard deviation) computed
from averaging the MCMC chain of length 40,000 in each case. Notice the robustness of these estimates
on a wide range of true parameter values F† using a likelihood function constructed using a single set
of training parameter values on [6, 9].
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Figure 8. (Color online) Mean error estimates and error bars for various true values of F that are not in
the training parameters.
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6. Conclusions

We have developed a framework of a parameter estimation approach where MCMC was employed
with a nonparametric likelihood function. Our approach approximated the likelihood function using
the kernel embedding of conditional distribution formulation based on RKWHS. By analyzing the
error estimation in Theorem 1, we have verified the validity of our RKWHS representation of the
conditional density as long as p(y|θj) ∈ Hq−1 (N ) induced by the basis in L2(N , q) and VarY|θj

[ψk(Y)]
is finite. Furthermore, the analysis suggests that if the weight q is chosen to be the sampling density
of the data, the VarY|θj

[ψk(Y)] is always finite. This justifies the use of Variable Bandwidth Diffusion
Maps (VBDM) for estimating the data-driven basis functions of the Hilbert space weighted by the
sampling density on the data manifold.

We have demonstrated the proposed approach with four numerical examples. In the first example,
where the dimension of the data manifold was exactly the dimension of the ambient space, d = n, the
RKHS representation with VBDM basis yielded a parameter estimate as accurate as using other analytic
basis representation. However, in the examples where the dimension of the data manifold was strictly
less than the dimension of the ambient space, d < n, only VBDM representation could provide more
accurate estimation of the true parameter value. We also found that VBDM representation produced
mean estimates that were robustly accurate (with accuracies that were comparable to the direct MCMC)
on various observation configurations where the NISP was not accurate. This numerical comparison
was based on using only eight model evaluations, which can be done in parallel for both VBDM and
NISP, whereas the direct MCMC involved 4000 sequential model evaluations. Finally, we demonstrated
robust accurate parameter estimation on an example where the analytic likelihood function was
intractable and computationally demanding, even if it became available. Most importantly, this
result was based on training on a wide parameter domain that included different chaotic dynamical
behaviors.

From our numerical experiments, we conclude that the proposed nonparametric representation
was advantageous in any of these configurations: (1) when the parametric likelihood function was not
known, such as in Example IV; (2) when the observation time stamp was long (such as in Example II
or for large sT in Example III and Example IV). Ultimately, the only real advantage of this method (as
a surrogate model) was when the direct MCMC or ABC, which require sequential model evaluation,
was computationally not feasible.

While the theoretical and numerical results were encouraging as a proof the concept for using
the VBDM representation in many other parameter estimation applications, there were still practical
limitations that need to be overcome. As in the other surrogate modeling approaches, one needs to
have knowledge of the feasible domain for the parameters. Even when the parameter domain is given
and wide, it is practically not feasible to generate training dataset by evaluating the model on the
specified training grid points on this domain when the dimension of the parameter space is large (e.g.,
order 10), even if the Smolyak sparse grid is used. One possible way to simultaneously overcome
these two issues is to use “crude” methods, such as ensemble Kalman filtering or smoothing, to obtain
the training parameters. We refer to such a method as “crude” since the parameter estimation with
ensemble Kalman filtering is sensitive to the initial conditions, especially when the persistent model
is used as the dynamical model for the parameters [23]. However, with such crude methods, we can
at least obtain a set of parameters that reflect the observational data, instead of specifying training
parameters uniformly or in a random fashion, which can lead to unphysical training parameters.
Another issue that arises in the VBDM representation is the expensive computational cost when the
amount of data MN is large. When the dimension of the observations is low (as in the examples in this
paper), the data reduction technique described in Appendix A is sufficient. For larger dimensional
problems, a more sophisticated data reduction is needed. Alternatively, one can explore representations
using other orthonormal data-driven basis, such as the QR factorized basis functions as a less expensive
alternative to the eigenbasis [27].
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Abbreviations

The following abbreviations are used in this manuscript:

VBDM Variable Bandwidth Diffusion Maps
RKHS Reproducing Kernel Hilbert Space
RKWHS Reproducing Kernel Weighted Hilbert Space
MCMC Markov Chain Monte Carlo
ABC Approximate Bayesian Computation
NISP Non-Intrusive Spectral Projection

Appendix A. Data Reduction

When MN is very large, the VBDM algorithm becomes numerically expensive since it involves
solving an eigenvalue problem of matrix size MN × MN. Notice that the number of training
parameters M grows exponentially as a function of the dimension of parameter, m, if well-sampled
uniformly distributed training parameters are used. To overcome this large training data problem,
we employ an empirical data reduction method to reduce the original MN training data points{

yi,j
}i=1,...,N

j=1,...,M to a small B (� MN) number of training data points yet preserving the sampling
density q (y) in (37). Subsequently, we apply the VBDM algorithm on these reduced training data
points. It is worthwhile to mention that this data reduction method is numerically applicable for
low-dimensional dataset although in the following we will introduce this reduction method for any
n-dimensional dataset.

The basic idea of our method is that we first cluster the training dataset
{

yi,j
}i=1,...,N

j=1,...,M into B
number of boxes and then take the average of data points in each box as a reduced training data
point. First, we cluster the training data

{
yi,j
}

, based on the ascending order of the 1st coordinate

of the training data,
{

y1
i,j

}
, into B1 number of groups such that each group has the same number(

= MN/B1) of data points. After the first clustering, we obtain B1 groups with each group denoted
by G1

k1
for k1 = 1, . . . , B1. Here, the super-index 1 denotes the first clustering and the sub-index k1

denotes the kth
1 group. Second, for each group G1

k1
, we cluster the training data

{
yi,j
}

inside G1
k1

, based

on the ascending order of the second coordinate of the training data,
{

y2
i,j

}
, into B2 number of groups

such that each group has the same number
(
= MN/B1B2) of data points. After the second clustering,

we obtain totally B1B2 groups with each group denoted by G2
k1k2

for k1 = 1, . . . , B1, and k2 = 1, . . . , B2.
We can operate such clustering n times, where n is the dimension of the observation y ambient space.
After n times clustering, we obtain B ≡ ∏n

s=1 Bs groups with each group denoted by Gn
k1k2 ...kn

with
ks = 1, . . . , Bs, for all s = 1, . . . , n. Each group is a box [see Figure A1 for example]. After taking
the average of the data points in each box Gn

k1k2 ...kn
, we obtain B number of reduced training data

points. In the remainder of this paper, we denote these B number of reduced training data points by
{yb}b=1,...,B and refer to them as the box-averaged data points. Intuitively, this algorithm partitions the
domain into hyperrectangle such that Pr(y ∈ Gn

k1 ...kn
) ≈ 1/B. Note that the idea of our data reduction

method is analogous to that of multivariate k-nearest neighbor density estimates [33,34]. The error
estimation can be found in the Refs. [33,34].
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To examine whether the distribution of these box-averaged data points is close to the sampling
density q (y) of the original dataset, we apply our reduction method to several numerical examples
in the following. Figure A1a shows the reduction result for few number (= 64) of uniform data in
[0, 1]× [0, 1]. Here, B1 = 4 and B2 = 4 so that there are total B = 16 boxes and inside each box there are
4 uniform data points (blue circles). It can be seen that the box-averaged data points (red circles) are far
away from the well-sampled uniform data points (cyan crosses). However, when uniform data points
(blue circles) increase to a large number (= 6400), box-average data points (red circles) are very close
to well-sampled uniform data points (cyan crosses) as shown in Figure A1b. This suggests that these
box-averaged data points nearly admit the uniform distribution when there are a large number of
original uniform data points. Figures A1c and d show the comparison of the kernel density estimates
applied on the box-averaged data for different B for standard normal distribution and the distribution
proportional to exp

[
−
(
−X2

1 + X3
1 + X4

1
)]

, respectively. It can be seen that the reduced box-averaged
data points nearly preserve the distribution of the original large dataset, N = 640, 000.

Figure A1. (Color online) Data reduction for (a) few number (= 64) of uniformly distributed data, and
(b) many number (= 6400) of uniformly distributed data. The 64 blue circles correspond to uniformly
distributed data, 16 cyan crosses correspond to well-sampled uniformly distributed data, and 16
red circles correspond to box-averaged data. Boxes are partitioned by horizontal and vertical black
lines. The vertical black lines correspond to the first clustering and the horizontal lines correspond
to the second clustering. Panels (c) and (d) display the comparison of kernel density estimates on the
box-averaged data for different number B for (c) standard normal distribution, and (d) the distribution
proportional to exp[−(−X2

1 + X3
1 + X4

1)], respectively. For comparison, also plotted is the analytic
probability density of the distribution. The total number of the points is 640, 000. It can be seen that the
reduced box-averaged data points nearly preserve the distribution of the original dataset.
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When MN is very large, the VBDM algorithm for the construction of data-driven basis functions
[Procedure (1-B)] can be outlined as follows. We first use our data reduction method to obtain
B (� MN) number of box-averaged data {yb}b=1,...,B ⊆ N ⊆ Rn with sampling density q (y) ≈
1
M ∑M

j=1 p(y|θj) in (37). The sampling density q is estimated at the box-averaged data yb using all
the box-averaged data points {yb}b=1,...,B by a kernel density estimation method. Implementing the
VBDM algorithm, we can obtain orthonormal eigenvectors ψk ∈ RB, which are discrete estimates of
the eigenfunctions ψk (y) ∈ L2 (N , q). The bth component of the eigenvector ψk is a discrete estimate of
the eigenfunction ψk (yb), evaluated at the box-averaged data point yb. Due to the dramatic reduction
of the training data, the computation of these eigenvectors ψk ∈ RB becomes much cheaper than the
computation of the eigenvectors ψk ∈ RMN using the original training dataset

{
yi,j
}i=1,...,N

j=1,...,M. Then we
can obtain a discrete representation (10) of the conditional density at the box-averaged data points yb,
p̂ (yb|θ).

Appendix B. Additional Results on Example II

In this section, we discuss the intrinsic Fourier representation constructed for numerical
comparisons in Example II and provide more detailed discussion on the numerical results.

We first discuss the construction for the intrinsic Fourier representation of the true conditional
density, p (x|D), defined with respect to the volume form inherited by N from the ambient space Rn

for the system on the torus (54) in Example II. By noticing the embedding (55) of (θ, φ) in x ≡ (x, y, z),
we can obtain the following equality,

1 =
∫
N

p (x|D) dV (x) =
∫
[0,2π)2

p (x (θ, φ) |D)
∣∣xθ × xφ

∣∣ dθdφ

≡
∫
[0,2π)2

pIC (θ, φ|D) dθdφ, (A1)

where dV (x) =
∣∣xθ × xφ

∣∣ dθdφ is the volume form, pIC denotes the true conditional density as
a function of the intrinsic coordinates, (θ, φ). Assuming that pIC (θ, φ|D) ∈ H([0, 2π)2) ⊂ L2([0, 2π)2),
and the relation in (A1), we can construct the intrinsic Fourier representation as follows,

p̂ (x|D) =
p̂IC (θ, φ|D)∣∣xθ × xφ

∣∣ , (A2)

where p̂IC (θ, φ|D) is a RKWHS representation (10) of the conditional density pIC (θ, φ|D) with a set of
orthonormal Fourier basis functions ψk (θ, φ) ∈ L2 ([0, 2π)2). Here, ψk (θ, φ) are formed by the tensor

product of two sets of orthonormal Fourier basis functions
{

1,
{√

2 cos (mθ)
}

,
{√

2 sin (mθ)
}}

and
{

1,
{√

2 cos (mφ)
}

,
{√

2 sin (mφ)
}}

for m ∈ N+. Note that for intrinsic Fourier representation,

we need to know the embedding (55) and know the data of (θ, φ) in intrinsic coordinates for training,
which is available for this example. Nevertheless, for Hermite, Cosine, and VBDM representations,
we only need to know the observation data x for training.

The convergence of p̂ (x|D) to the true density can be explained as follows. For the system (54)
in the intrinsic coordinates (θ, φ), where pIC (θ, φ|D) ∈ H

(
[0, 2π)2) for all parameter D, the statistics

Var(θ,φ)|D [ψk (θ, φ)] are bounded for all D and all k ∈ N+, by the compactness of [0, 2π)2 and the
uniform boundedness of ψk (θ, φ) for all k. According to Theorem 1, we can obtain the convergence
of the representation p̂IC (θ, φ|D). Then by noticing the smoothness of

∣∣xθ × xφ

∣∣ on the torus, we can
obtain the convergence of the intrinsic Fourier representation p̂ (x|D) in (A2).

Next, we give an intuitive explanation for the reason why in the regime d < n, VBDM
representation can provide a good approximation whereas Hermite and Cosine representations cannot.
Essentially, the VBDM representation uses basis functions of the weighted Hilbert space of functions
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defined with respect to a volume form Ṽ that is conformally equivalent to the volume form V that is
inherited by the data manifold N from the ambient space, Rn. That is, the weighted Hilbert space,
L2(N , q−1), means,

L2(N , q−1) =
{

f :
∫
N
| f (x)|2dṼ(x) < ∞

}
,

where dṼ(x) = q(x)−1dV(x) denotes the volume form that is conformally changed by the sampling
density q. We should point out that the key point of the diffusion maps algorithm [19] is to introduce an
appropriate normalization to avoid biased in the geometry induced by the sampling density q when the
data are not sampled according to the Riemannian metric inherited by N from the ambient space Rn.
Furthermore, the orthonormal basis functions of the Hilbert space L2(N , q−1) are the eigenfunctions
of the adjoint (with respect to L2(N )) of the operator, L = ∇ log(q) · ∇+ ∆, that is constructed by the
VBDM algorithm. Incidentally, the adjoint operator L∗ is the Fokker-Planck operator of a gradient
system forced by stochastic noises. The point is that this adjoint operator takes density functions of
the weighted Hilbert space L2(N , q−1). Since the Hilbert space L2

(
N , q−1

)
is a function space of

some Fokker-Planck operator that acts on densities defined with respect to the geometry of data, then
representing the conditional density with basis functions of the weighted Hilbert space L2

(
N , q−1

)
is

a natural choice. Thus, the error estimation in Theorem 2 is valid in controlling the error of the estimate.
Next, we will show that the representation of the true density pEX in the ambient space R3

is not a function of Hq−1(R) ⊂ L2 (R, q−1), where for Hermite representation R is R3 and q is a
normal distribution, and for Cosine representationR is a hyperrectangle containing the torus and q is
a uniform distribution. Recall that the torus is parametrized by:

x ≡ (x, y, z) = ((2 + r sin (θ)) cos (φ) , (2 + r sin (θ)) sin (φ) , r cos (θ)) , (A3)

where θ, φ are angles which make a full circle, and r is the radius of the tube known as the minor
radius. All observation data are located on the torus with r = 1. Then, the generalized conditional
density p(r, θ, φ|D) in (r, θ, φ) coordinate can be defined using the Dirac delta function as follows,

p (r, θ, φ|D) = pIC (θ, φ|D) δ (r− 1) , (A4)

where pIC, defined in (A1), denotes the conditional density function in the intrinsic coordinate, (θ, φ),
and δ is the Dirac delta function. After coordinate transformation, the density pEX : R3 → R can be
obtained as

pEX (x|D) =
p (r, θ, φ|D)

J
=

pIC (θ, φ|D) δ (r− 1)
J

, (A5)

where J is the Jacobian determinant det [∂ (x, y, z) /∂ (r, θ, φ)]. It can be examined that pEX (x|D) is
a generalized conditional density, that is,

∫
R3 pEX(x|D)dx = 1. Now it can be clearly seen that due to

the Dirac delta function δ (r− 1) in (A5), the density pEX(x|D) is no longer in the weighted Hilbert
space, pEX(x|D) /∈ Hq−1 (R). Consequently, the error estimation in Theorem 1 becomes invalid in
controlling the error of the conditional density.

Here, the key point is that for Cosine and Hermite representations, the volume integral is with
respect to dx. The complete basis functions are obtained from tensor product of three sets of basis
functions in (x, y, z) coordinates. In order to represent a conditional density function pEX(x|D) defined
only on an intrinsically 2D torus domain, theoretically infinite number of basis functions are needed.
However, numerically only finite number of basis functions can be used. Then, the density pEX(x|D) in
(A5) cannot be well approximated for Hermite and Cosine representations (10). Moreover, if only finite
number of Hermite or Cosine basis functions are used for representations, typically Gibbs phenomenon
can be observed, i.e., the Dirac delta function δ (r− 1) in (A5) will be approximated by a function
having a single tall spike at r = 1 with some oscillations at two sides along the r direction. On the
other hand, the data-driven basis functions obtained via the diffusion maps algorithm are smooth
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functions defined on the data manifold N . Therefore, while the Gibbs phenomenon still occurs in this
spectral expansion, it is due to finite truncation in representing a positive smooth functions (densities)
on the data manifold, and not due to the singularity that occurs in the ambient direction as in (A5).
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