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Abstract: We established a universality of logarithmic loss over a finite alphabet as a distortion
criterion in fixed-length lossy compression. For any fixed-length lossy-compression problem under
an arbitrary distortion criterion, we show that there is an equivalent lossy-compression problem
under logarithmic loss. The equivalence is in the strong sense that we show that finding good
schemes in corresponding lossy compression under logarithmic loss is essentially equivalent to
finding good schemes in the original problem. This equivalence relation also provides an algebraic
structure in the reconstruction alphabet, which allows us to use known techniques in the clustering
literature. Furthermore, our result naturally suggests a new clustering algorithm in the categorical
data-clustering problem.

Keywords: categorical data clustering; fixed-length lossy compression; logarithmic loss;
rate-distortion

1. Introduction

Logarithmic loss is a unique distortion measure in the sense that it allows a “soft” estimation (or
reconstruction) of the source. Although logarithmic loss plays a crucial role in learning theory, not
much work has been published regarding lossy compression until recently. A few exceptions are a line
of work on multiterminal source coding [1–3], the single-shot approach to lossy source coding under
logarithmic loss [4], and several universal properties of logarithmic loss in information theory [5–7].
In [4], Shkel and Verdú focused on the lossy-compression problem when the distortion measure is
given by logarithmic loss. On the other hand, Jiao et al. justified logarithmic loss by showing it is
the only loss function that satisfies a natural data-processing requirement [5]. Painsky and Wornell
provided a universal property of logarithmic loss in the context of classification. In [7], No focused
on the universal property of logarithmic loss in the successive refinement problem. We would also
like to point out that the information bottleneck method [8–11] is related to lossy compression under
logarithmic loss. Indeed, it is equivalent to the noisy lossy-compression problem under logarithmic
loss [12].

In this paper, we present a new universal property of logarithmic loss in fixed-length
lossy-compression problems. Consider an arbitrary fixed-length lossy-compression problem, where
source and reconstruction alphabets X and X̂ are discrete. Suppose arbitrary distortion measure
d : X × X̂ is given. Then, we show that there exists a corresponding fixed-length lossy-compression
problem where the source alphabet remains the same, but the reconstruction alphabet is a set of
distributions on X , and the distortion measure is logarithmic loss. This implies that there is a
correspondence between any fixed-length lossy-compression problem under an arbitrary distortion
measure and that under logarithmic loss. The correspondence is in the following strong sense:
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• optimal schemes for the two problems are the same; and
• a good scheme for one problem is also a good scheme for the other.

We are more precise about the “optimal” and “goodness” of the scheme in later sections.
This finding essentially implies that it is enough to consider the lossy-compression problem under
logarithmic loss.

The above correspondence provides new insights into the fixed-length lossy-compression
problem. In general, the reconstruction alphabet in the lossy-compression problem does not have
any well-defined operations. However, in the corresponding lossy compression under logarithmic
loss, reconstruction symbols are probability distributions that have their own algebraic structure.
Thus, under the corresponding setting, we can apply various techniques, such as the information
geometric approach, clustering with Bregman divergence, and relaxation of the optimization problem.
Furthermore, the equivalence relation suggests a new algorithm in the categorical data-clustering
problem, where data are not in the continuous space.

The remainder of the paper is organized as follows. In Section 2, we revisit some of the known
results of logarithmic loss and fixed-length lossy compression. Section 3 is dedicated to the equivalence
between lossy compression under arbitrary distortion measures and that under logarithmic loss. In
Section 4, we present the geometric interpretation of our result. We provide the log-convex relaxation
of lossy compression and connection to the clustering problems in Section 5. Finally, we conclude in
Section 6.

Notation: Uppercase X denotes a random variable, where X denotes a set of alphabet. On the
other hand, lowercase x denotes a specific possible realization of random variable X, i.e., x ∈ X .
Similarly, Xn denotes an n-dimensional random vector (X1, X2, . . . , Xn) while lowercase xn denotes a
realization of Xn. The absolute value of function | f | denotes a size of image of function f : X → Y ,
i.e., |{ f (x) : x ∈ X}|. If it was clear from the context, we used ∑x instead of ∑x∈X . We used a natural
logarithm and nats instead of bits.

2. Preliminaries

2.1. Logarithmic Loss

Suppose X is a finite set of discrete symbols, andM(X ) is the set of probability measures on X .
For x ∈ X and q ∈ M(X ), the definition of logarithmic loss ` : X ×M(X )→[0, ∞] is given by

`(x, q) = log
1

q(x)
.

2.2. Fixed-Length Lossy Compression

In this section, we briefly introduce the basic settings of the fixed-length lossy-compression
problem [13]. In a fixed-length lossy-compression setting, we have a source X with finite alphabet
X = {1, . . . , r} and source distribution pX. An encoder f : X → {1, . . . , M} maps the source
symbol to one of M messages. On the other side, a decoder g : {1, . . . , M} → X̂ maps the message
to actual reconstruction X̂, where the reconstruction alphabet is also finite X̂ = {1, . . . , s}. Let
d : X × X̂ → [0, ∞) be a distortion measure between source and reconstruction.

First, we can define the code that the expected distortion is lower than a given distortion level.

Definition 1 (Average distortion criterion). An (M, D) code is a pair of an encoder f with | f | ≤ M and a
decoder g, such that

E [d(X, g( f (X)))] ≤ D.
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The minimum number of codewords required to achieve average distortion not exceeding D is defined by

M?(D) = min{M : ∃(M, D) code}.

Similarly, we can define the minimum achievable average distortion given number of codewords M.

D?(M) = min{D : ∃(M, D) code}.

One may consider a stronger criterion that restricts the probability of exceeding a given
distortion level.

Definition 2 (Excess distortion criterion). An (M, D, ε) code is a pair of an encoder f with | f | ≤ M and a
decoder g such that

Pr [d(X, g( f (X))) > D] ≤ ε.

The minimum number of codewords required to achieve excess distortion probability ε, and distortion D is
defined by

M?(D, ε) = min{M : ∃(M, D, ε) code}.

Similarly, we can define the minimum achievable excess distortion probability given target distortion D
and number of codewords M.

ε?(M, ε) = min{ε : ∃(M, D, ε) code}.

Given target distortion D and pX , the information rate-distortion function is defined by

R(D) = inf
pX̂|X :E[d(X,X̂)]≤D

I(X; X̂) (1)

We make the following benign assumptions:

• There exists a unique rate-distortion function achieving conditional distribution p?
X̂|X .

• We assume that p?
X̂
(x̂) > 0 for all x̂ ∈ X̂ since we can always discard the reconstruction symbol

with zero probability.
• If d(x, x̂1) = d(x, x̂2) for all x ∈ X , then x̂1 = x̂2. (If d(x, x̂1) = d(x, x̂2) for all x, then, there is no

difference between x̂1 and x̂2 in terms of loss. Thus, we can always discard x̂2 without loss of
generality.)

2.3. D-Tilted Information

Define the information density of joint distribution pX,X̂ by

ıX;X̂(x; x̂) = log
pX,X̂(x, x̂)

pX(x)pX̂(x̂)
.

Then, we are ready to define D-tilted information that plays a key role in fixed-length lossy
compression.

Definition 3 ([13] (Definition 6)). The D-tilted information in x ∈ X is defined as

X(x, D) = log
1

E
[
exp

(
λ?D− λ?d(x, X̂?)

)]
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where the expectation is with respect to the marginal distribution of X̂? and λ? = −R′(D).

Note that X̂? is a random variable that has a marginal distribution of pX × p?
X̂|X , and R′(D) is the

first derivative of rate-distortion function R(D).

Theorem 1 ([14] (Lemma 1.4)). For all x̂ ∈ X̂ ,

X(x, D) = ıX;X̂?(x; x̂) + λ?d(x, x̂)− λ?D; (2)

therefore, we have

R(D) = E [(X, D)].

Let p?
X|X̂ be the induced conditional probability from p?

X̂|X. Then, (2) can equivalently be
expressed as

log
1

p?
X|X̂(x|x̂)

= log
1

pX(x)
− X(x, D) + λ?d(x, x̂)− λ?D. (3)

The following lemma shows that p?
X|X̂(·|x̂) are all distinct.

Lemma 1 ([7] (Lemma 2)). For all x̂1 6= x̂2, there exists x ∈ X such that p?
X|X̂(x|x̂1) 6= p?

X|X̂(x|x̂2).

3. One-to-One Correspondence Between General Distortion and Logarithmic Loss

3.1. Main Results

Consider fixed-length lossy compression under arbitrary distortion d(·, ·), as described in
Section 2.2. We have a source X with finite alphabet X = {1, . . . , r}, source distribution pX, and
finite reconstruction alphabet X̂ = {1, . . . , s}. For a fixed number of messages M, let f ? and g? be the
encoder and decoder that achieve optimal average distortion D?(M), i.e.,

E [d(X, g?( f ?(X)))] = D?(M).

Let p?
X̂|X denote the rate-distortion function achieving conditional distribution at distortion

D = D?(M). In other words, pX × p?
X̂|X achieves the infimum in

R(D?(M)) = inf
pX̂|X :E[d(X,X̂)]≤D?(M)

I(X; X̂). (4)

Note that R(D?(M)) may be strictly smaller than log M in general since R(·) is an information
rate-distortion function that does not characterize the best achievable performance for the “one-shot”
setting in which D?(M) is defined.

Now, we define the corresponding fixed-length lossy-compression problem under logarithmic
loss. In the corresponding problem, source alphabet X = {1, . . . , r}, source distribution pX, and
number of messages M remain the same. However, we have a different reconstruction alphabet
Y = {p?

X|X̂(·|x̂) : x̂ ∈ X̂ } ⊂ M(X ) where p? pertains to the achiever of the infimum in Equation (4)

associated with the original loss function. Recall thatM(X ) is the set of all probability measures on X .
Let the distortion of the corresponding problem be the logarithmic loss.
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We now further connect the encoding and decoding schemes between the two problems. Suppose
f : X → {1, . . . , M} and g : {1, . . . , M} → X̂ are an encoder and decoder pair in the original problem.
When f and g are given in the original problem, we define the corresponding encoder and decoder in
the corresponding problem as follows. We let the encoder be the same f` = f , and define the decoder
g` : {1, . . . , M} → Y by

g`(m) = p?X|X̂(·|g(m)).

Then, f` and g` are a valid encoder and decoder pair for the corresponding fixed-length
lossy-compression problem under logarithmic loss. Conversely, given f` and g`, we can find
corresponding f and g because Lemma 1 guarantees that pX|X̂(·|x̂) are distinct.

The following result shows the relation between the corresponding schemes.

Theorem 2. For any encoder–decoder pair ( f`, g`) for the corresponding fixed-length lossy-compression problem
under logarithmic loss, we have

E [`(X, g`( f`(X)))]

= H(X|X̂?) + λ? (E [d(X, g( f (X)))]− D?(M))

≥ H(X|X̂?)

where ( f , g) is the corresponding encoder–decoder pair for the original lossy-compression problem. Note that
H(X|X̂?) and the expectations are with respect to distribution pX × p?

X̂|X . Moreover, equality holds if and only
if f` = f ? and g`(m) = p?

X|X̂(·|g
?(m)).

Proof. We have

E [`(X, g`( f`(X)))]

= E
[
`
(

X, p?X|X̂(·|g( f (X)))
)]

= E
[

log
1

p?
X|X̂(X|g( f (X)))

]
.

Then, Equation (3) implies that

E [`(X, g`( f`(X)))]

= E
[

log
1

pX(X)
− X(X, D?(M))

]
+E [λ?d(X, g( f (X)))− λ?D?(M)]

= H(X|X̂?) + λ? (E [d(X, g( f (X)))]− D?(M)) (5)

≥ H(X|X̂?) (6)

where Equation (5) is because E [X(X, D?(M))] = R(D?(M)) = I(X; X̂?) with respect to distribution
pX × p?

X̂|X. Inequality (6) is because D?(M) is the minimum achievable average distortion with M
codewords. Equality holds if and only if E [d(X, g( f (X)))] = D?(M), which can be achieved by the
optimal scheme for the original lossy-compression problem. In other words, the equality holds if

f ?` = f ?

g?` (m) =p?X|X̂(·|g
?(m)).
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In the above theorem, distortion D?(M) plays a critical role, which is the minimal achievable
distortion in the one-shot setting. We also used p?

X|X̂ in the corresponding problem, which is the
rate-distortion-achieving conditional distribution. This might be confusing since the rate-distortion
function provides the optimal rate in the asymptotic setting. However, recall that the minimal mutual
information between X and X̂ in Equation (1) is the “information” rate-distortion function. The
“information” rate-distortion function is equal to the optimum rate in the asymptotic case if the source
is independent and identically distributed.

On the other hand, we viewed the “information” rate-distortion function differently. We
considered the one-shot setting where source X and reconstruction X̂ are single variables. Given
number of messages M, the minimal achievable distortion is given by D?(M). Under this setting,
we focused on minimal mutual information between X and X̂ when the distortion between X and X̂
is restricted by D?(M). Our theorem implies that minimal achieving distribution p?

X|X̂ provides the
corresponding one-shot lossy-compression problem under logarithmic loss.

Remark 1. In the corresponding fixed-length lossy-compression problem under logarithmic loss, the minimal
achievable average distortion given number of codewords M is

D?
` (M) = H(X|X̂?)

where the conditional entropy is with respect to distribution pX × p?
X̂|X .

Remark 2. From now on, we denote the original lossy-compression problem under given distortion measure
d(·, ·) with reconstruction alphabet X̂ by “original problem”. On the other hand, we denote the corresponding
lossy-compression problem under logarithmic loss with reconstruction alphabet Y by “corresponding problem”.

3.2. Example: Memoryless Bernoulli Source with Hamming Distortion Measure

In this section, we consider the memoryless Bernoulli source under Hamming distortion measure
as an example of the above equivalence. Let X = Un be a memoryless Bernoulli source with probability
α, where X = Un = {0, 1}n, and reconstruction X̂ = Vn is also an n-dimensional binary vector where
X̂ = Vn = {0, 1}n. Note that block length n is fixed, so the problem is in the one-shot setting.
Distortion measure d is separable Hamming distortion, i.e.,

d(X, X̂) = dH(Un, Vn) =
1
n

n

∑
i=1

dH(Ui, Vi)

where dH(u, v) = 1 if u 6= v and dH(u, v) = 0 if u = v. Let M be the number of messages. Then, we
are interested in optimal encoding and decoding schemes that achieve distortion D = D?(M).

In this scenario, the information rate-distortion function is not hard to compute [15]:

R(D) = inf
pX̂|X :E[d(X,X̂)]≤D

I(X; X̂)

= inf
pUn |Vn :E[dH(Un ,Vn)]≤D

I(Un; Vn)

=n inf
pU|V :E[dH(U,V)]≤D

I(U; V) (7)

=n(h2(α)− h2(D)), (8)

where h2(·) is the binary entropy function. Let p?U|V be the distribution that achieves the infimum in
Equation (7). We have an analytic formula for rate-distortion-achieving distribution p?

X|X̂ . For x = un

and x̂ = vn, we have



Entropy 2019, 21, 580 7 of 16

p?X|X̂(x|x̂) =
n

∏
i=1

p?U|V(ui|vi)

=
n

∏
i=1

DdH(ui ,vi)(1− D)1−dH(ui ,vi)

=(1− D)n
(

D
1− D

)ndH(un ,vn)

=(1− D)n
(

D
1− D

)nd(x,x̂)
.

Then, the corresponding problem is the rate-distortion problem under logarithmic loss where the
set of reconstruction symbols is

Y ={p?X|X̂(·|x̂) : x̂ ∈ Vn}.

Remark 3. We can rewrite Equation (3) in this case.

`(x, p?X|X̂(·|x̂)) = log
1

p?
X|X̂(x|x̂)

=n log
1

1− D
+ nd(x, x̂) log

1− D
D

.

The above equation explicitly shows the correspondence between logarithmic loss and the original
distortion measure.

3.3. Discussion

3.3.1. One-to-One Correspondence

Theorem 2 implies that, for any fixed-length lossy-compression problem, we can find an equivalent
problem under logarithmic loss where optimal encoding schemes are the same. Thus, without loss
of generality, we can restrict our attention to the problem under logarithmic loss with reconstruction
alphabet Y = {q(1), . . . , q(s)} for some q(1), . . . , q(s) ∈ M(X ).

3.3.2. Scheme Suboptimality

Suppose f and g are a suboptimal encoder and decoder for the original fixed-length
lossy-compression problem. Then, the theorem implies

E [`(X, g`(X))]− H(X|X̂?)

= λ? (E [d(X, g( f (X)))]− D?(M)) . (9)

The left-hand side of Equation (9) is the cost of suboptimality for the corresponding
lossy-compression problem. On the other hand, the right-hand side is proportional to the cost of
suboptimality for the original problem. In Section 3.3.1, we discussed that the optimal schemes of the
two problems coincide. Equation (9) shows stronger equivalence in which costs of suboptimalities are
linearly related. This implies that a good code for one problem is also good for the other.

3.3.3. Operations on the Reconstruction Alphabet

In general, reconstruction alphabet X̂ does not have an algebraic structure. However, in the
corresponding rate-distortion problem, the reconstruction alphabet is the set of probability measures
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where we have natural operations such as convex combinations of elements or projection to a convex
hull. We discuss such operations closer in Section 5.

3.4. Exact Performance of Optimal Scheme

In the previous section, we showed that there is a corresponding lossy-compression problem
under logarithmic loss that shares the same optimal coding scheme. In this section, we investigate
the exact performance of the optimal scheme for the fixed-length lossy-compression problem under
logarithmic loss, when the reconstruction alphabet is the set of all probability measures on X , i.e.,
M(X ). (Recently, Shkel and Verdu [4] independently proposed similar results. The result was also
presented in our conference version of the paper [16].) We also characterize minimal average distortion
D?(M) when we have a fixed number of messages M. Note that this is a single-letter version of
([2], [Lemma 1]). Although the optimal scheme associated withM(X ) may differ from the optimal
scheme with restricted reconstruction alphabets Y , it provides an insight, as we show in Section 4. In
this section, we restrict our attention to deterministic schemes. However, it is not hard to show that the
same result holds even if we allow a stochastic encoder and decoder.

Let an encoder and a decoder be f : X → {1, . . . , M} and g : {1, . . . , M} → M(X ) where
g(m) = q(m) ∈ M(X ). Then, we have

E [`(X, g( f (X)))]

= ∑
x∈X

pX(x) log
1

q( f (x))(x)

= H(X) +
M

∑
m=1

∑
x∈ f−1(m)

pX(x) log
pX(x)

q(m)(x)

= H(X) +
M

∑
m=1

um log um

+
M

∑
m=1

um ∑
x∈ f−1(m)

pX(x)
um

log
pX(x)/um

q(m)(x)
,

where f−1(m) = {x ∈ X : f (x) = m} and um = ∑x∈ f−1(m) pX(x). Since pX| f (X)(x|m) = pX(x)
um

for all
x ∈ f−1(m), we have

E [`(X, g( f (X)))]

= H(X)− H( f (X))

+
M

∑
m=1

umD
(

pX| f (X)(·|m)
∥∥∥ q(m)

)
≥ H(X)− H( f (X)).

Equality can be achieved by choosing q(m) = pX| f (X)(·|m), which can be done no matter what f
is. Thus, we have

D?(M) = H(X)− max
f :| f |≤M

H( f (X)).

This implies that the optimal encoder is function f that maximizes H( f (X)), and the optimal
decoder is given by g(m) = pX| f (X)(·|m). The above result provides a trivial lower bound:

D?(M) ≥ H(X)− log M.

The optimal scheme under an excess distortion criterion is given in Appendix A.
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4. Geometrical Interpretation

In this section, we present another geometrical interpretation of the decoder in lossy-compression
problems. Consider the original lossy-compression problem with discrete reconstruction alphabet X̂
and distortion measure d(·, ·). Suppose encoding function f is given that may or may not be optimal,
where | f | = M. Let Am = f−1(m) = {x ∈ X : f (x) = m}, which is the set of source symbols that are
mapped to message m. Then, optimal reconstruction g(m) is given by

g(m) = argmin
x̂∈X̂

E [d(X, x̂) | X ∈ Am]. (10)

Now, consider the corresponding lossy-compression problem under logarithmic loss. Recall that
the set of reconstruction alphabets is given by

Y = {p?X|X̂(·|x̂) : x̂ ∈ X̂ }

where Y ⊂ M(X ). As we have seen in Section 3.4, the optimal reconstruction is gE
` (m) = pX| f (X)(·|m)

if we have extended set of reconstruction alphabetM(X ). Thus, it is natural to find the probability
distribution in Y , which is the nearest distribution from gE

` (m). We propose Kullback–Leibler
divergence to measure the distance between probability distributions. In other words, we want
to find g̃`(m) ∈ Y , such that

g̃`(m) = argmin
q∈Y

D(gE
` (m)‖q). (11)

This can be viewed as projecting the optimal solution from extended setM(X ) to original feasible
set Y . Since q ∈ Y , there exists x̂ ∈ X̂ , such that q(·) = p?

X|X̂(·|x̂). Then, the above Kullback–Leibler
divergence is given by

D(pX| f (X)(·|m)‖p?X|X̂(·|x̂))

= ∑
x∈Am

pX| f (X)(x|m) log
pX| f (X)(x|m)

p?
X|X̂(x|x̂)

= ∑
x∈Am

pX(x)
Pr [X ∈ Am]

log
pX(x)

Pr [X ∈ Am]p?X|X̂(x|x̂)

= log
1

Pr [X ∈ Am]
+ ∑

x∈Am

pX(x)
Pr [X ∈ Am]

log
pX(x)

p?
X|X̂(x|x̂)

= log
1

Pr [X ∈ Am]
+ ∑

x∈Am

pX(x)
Pr [X ∈ Am]

(−(x, D) + λ?d(x, x̂)− λ?D) ,

where the last equality is from Equation (2). Note that d(x, x̂) is the only term that is a function of x̂,
and λ? is positive. Thus, if q(·) = pX|X̂(·|x̂) achieves the minimum in Equation (11), then x̂ minimizes
the following:

∑
x∈Am

pX(x)
Pr [X ∈ Am]

d(x, x̂) = E [d(X, x̂) | X ∈ Am]. (12)

Since Equation (12) coincides with Equation (10), we have

g̃`(m) = p?X|X̂(·|g(m)). (13)
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Remark 4. In Section 3, we directly defined g`(m) = p?
X|X̂(·|g(m)). However, we obtained g̃`(m) via the

following two-step procedure:

• extend the reconstruction set from Y toM(X ), then characterize optimal decoding functions gE
` (m) ∈

M(X ); and
• find the measure g̃`(m) ∈ Y that is closest to gE

` (m).

The above result (13) implies that g̃`(m) = g`(m).

5. Log-Convex Relaxation

In the previous section, we obtained the optimal reconstruction symbol from the extended
reconstruction alphabet, and projected it to the feasible set. In this section, instead of direct projection
to Y , we propose another slight extension of Y , namely, log-convex hull. As we show in the following
sections, the log-convex hull has interesting properties.

5.1. rI-Projection

Before defining the log-convex hull, we need to define the log-convex combination of probability
distributions. Let p and q be probability distributions in M(X ). For 0 < t < 1, the log-convex
combination of p and q is given by

ptq1−t(x) =
p(x)tq(x)1−t

∑x̃ p(x̃)tq(x̃)1−t . (14)

It is clear to see that log ptq1−t is a convex combination of log p(x) and log q(x) with a normalizing
constant. We can now define log-convex hull logconv(Y) that is a set of log-convex combination of
probability measures in set Y . More precisely,

logconv(Y) =
{

q(r) ∈ M(X ) : q(r)(x) =
1

c(r)
exp

(
∑̂
x

r(x̂) log p?X|X̂(x|x̂)
)}

where r is a weight vector (i.e., r ∈ M(X̂ )), and c(r) is a normalizing constant. By definition,
logconv(Y) is log-convex since it contains all log-convex combinations of probability distributions
in Y .

Instead of having projection of pX| f (X)(·|m) to Y , we consider the projection to logconv(Y). Since
logconv(Y) is log-convex, ([17], [Theorem 1]) implies that there exists unique probability distribution
q?m ∈ logconv(Y) that achieves the following minimum.

min
q∈logconv(Y)

D
(

pX| f (X)(·|m)‖q
)

.

Projection q?m is called an rI-projection of pX| f (X)(·|m) to logconv(Y). Let r?m be the corresponding
weights, i.e.,

q?m = q(r
?
m).

Csiszár and Matúš ([17], [Theorem 1]) showed that the rI-projection satisfies the following
inequality for all x̂ ∈ X̂ .

D(pX| f (X)(·|m)‖p?X|X̂(·|x̂)) ≥ D(pX| f (X)(·|m)‖q?m) + D(q?m‖p?X|X̂(·|x̂)). (15)
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On the other hand, the log-convex combination of probability measures q(r) is called the geometric
mean of probability measures [18]. The author also provided geometric compensation identity, which
is given by

∑̂
x

r(x̂)D(pX| f (X)(·|m)‖p?X|X̂(·|x̂)) =D(pX| f (X)(·|m)‖q(r)) + ∑̂
x

r(x̂)D(q(r)‖p?X|X̂(·|x̂)). (16)

The above result holds for any r ∈ M(X̂ ); therefore, Equation (16) also holds when q(r) = q∗m.
Together with Inequality (15), we get the following result. For all x̂ ∈ X̂ , if r?m(x̂) 6= 0, then

D(pX| f (X)(·|m)‖p?X|X̂(·|x̂)) =D(pX| f (X)(·|m)‖q?m) + D(q?m‖p?X|X̂(·|x̂)).

Remark 5. The above result is similar to the projection to polytope in Euclidean space. Suppose vectors
v1, v2, . . . , vn form a polytope, and consider the projection from a vector w to the polytope. Let h be a projection.
Then, h is a convex combination of vi’s. Thus, there exist coefficients {ai}1≤i≤n, such that

h =
n

∑
i=1

aivi

where ∑i ai = 1, and ai ≥ 0 for all i. Let E = {1 ≤ i ≤ n : ai 6= 0} be the set of indices of nonzero coefficients.
Then, projection h is on the plane generated by {vi}i∈E. Thus, two vectors w− h and h− vi are orthogonal for
all i ∈ E. Then, Pythagorean theorem implies that, for all i, we have either ai = 0 or

‖w− vi‖2 = ‖w− h‖2 + ‖h− vi‖2.

5.2. Optimization

As we saw in the previous section, we want to find q ∈ logconv(Y) that minimizes
D
(

pX| f (X)(·|m)‖q
)

. Note that

D
(

pX| f (X)(·|m)‖q(r)
)
= ∑

x∈X
pX| f (X)(x|m) log

pX| f (X)(x|m)

q(r)(x)

= ∑
x∈X

pX| f (X)(x|m) log pX| f (X)(x|m) + ∑
x∈X

pX| f (X)(x|m) log
1

q(r)(x)
.

Since the first term is not a function of q(r), it is enough to consider the second term. By the
definition of q(r), we have

∑
x∈X

pX| f (X)(x|m) log
1

q(r)(x)
=− ∑

x∈X
pX| f (X)(x|m) ∑̂

x
r(x̂) log p?X|X̂(x|x̂) + log c(r)

=− ∑
x∈X

pX| f (X)(x|m) ∑̂
x

r(x̂) log p?X|X̂(x|x̂)

+ log

(
∑
x′

exp

(
∑̂
x

r(x̂) log p?X|X̂(x′|x̂)
))

.

Thus, minimizing D(pX| f (X)(·|m)‖q) is equivalent to solving the following optimization problem.

min
r∈M(X̂ )

− ∑̂
x

r(x̂)∑
x

pX| f (X)(x|m) log p?X|X̂(x|x̂) + log

(
∑
x′

exp

(
∑̂
x

r(x̂) log p?X|X̂(x′|x̂)
))

s.t. r(x̂) ≥ 0

∑̂
x

r(x̂) = 1.
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Since the objective function is a convex function of r(x̂), the above problem is a convex
optimization problem that can be efficiently solved.

5.3. Relaxation in Clustering

In the corresponding lossy-compression problem under logarithmic loss, reconstruction symbols
are probability measures that have a natural algebraic structure, as we discussed in Section 3.3.3. In
this section, we present the benefits of such a property when we apply some known techniques from
the clustering literature.

Lossy compression is closely related to the clustering problem [19–21]. Many works focused on
the application of k-means clustering to a lossy-compression problem [22–24], which is an extension of
the Lloyd max algorithm [25,26]. However, k-means clustering is only available when there exists a
well-defined operation in X̂ (e.g., X̂ = Rn). This is because k-means clustering requires computing
the mean of data points, which is the center of each cluster. In general lossy-compression problems,
reconstruction alphabet X̂ may not have such an operation. In such cases, we may have to apply
k-medoidlike clustering [27], where the center of each cluster has to be a data point. The k-medoidlike
algorithm in the context of lossy compression is shown in Algorithm 1.

Algorithm 1 k-medoidlike clustering in lossy compression.

Randomly initialize x̂1, . . . , x̂M ∈ X̂
repeat

Set Am ← ∅ for all 1 ≤ m ≤ M.
for x ∈ X do

Am ← Am ∪ {x} where m = argmin
m′

d(x, x̂m′)

end for
for m = 1 to M do

x̂m ← argmin
x̂∈X̂

∑x∈Am pX(x)d(x, x̂)

end for
until converge

On the other hand, in the corresponding problem, the reconstruction alphabet is the set of
probability distributions where operations such as log-convex combinations are well-defined. This
allows us to propose a k-meanslike clustering algorithm, as shown in Algorithm 2.

Algorithm 2 k-meanslike clustering in lossy compression.

Randomly initialize r1, . . . , rM ∈ M(X̂ )
repeat

Set Am ← ∅ for all 1 ≤ m ≤ M.
for x ∈ X do

Am ← Am ∪ {x} where m = argmin
m′

log 1
q(rm′ )(x)

Set f (x) = m where x ∈ Am
end for
for m = 1 to M do

rm ← argmin
r∈M(X̂ )

D(pX| f (X)(·|m)‖q(r))
end for

until converge

The main idea of the above algorithm is that log-convex combination q?m behaves like center of
cluster Am. In the clustering literature, there are many known variations of k-means clustering [28,29].
The above result shows that we can borrow those techniques and apply them to the lossy-compression
problem even without any algebraic structures on the reconstruction alphabet.
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5.4. Application to General Clustering Problems

The idea of the previous section can be applied to an actual clustering problem. We mainly
focus on clustering categorical data where data points are not in continuous space [30–34]. Since
operations such as mean are not well-defined in this case, it is hard to apply known data-clustering
algorithms in continuous space. The key idea is that the equivalence relation with logarithmic loss
allows the algebraic structure on any set. More precisely, we can transform any clustering problem to
the clustering problem in continuous space and apply known techniques such as variations of k-means.

A more rigorous definition of the problem is given below. Assume that we have a finite set of data
points X , and each data point has its weight pX(x). We normalize the weights so that ∑x pX(x) = 1,
and the weights may or may not be uniform. The distance between two points are given by measure
d : X ×X → [0, ∞). Suppose we want to partition the data points into M clusters.

If we let X̂ = X , then the clustering problem turns out to be a lossy-compression problem under
distortion measure d(·, ·), where the number of messages is M. Let D = D?(M) be the optimal
achievable distortion, and p?

X̂|X be the distribution that achieves rate-distortion function R(D) as
defined in Equation (4). Then, we can find the corresponding lossy-compression problem under
logarithmic loss. Finally, we can apply clustering algorithms in continuous space such as k-means to
the corresponding problem. For example, Algorithm 2 can be applied to the corresponding problem.

Remark 6. Note that it is hard to have an exact analytic formula for D?(M) or p?
X̂|X . However, as we mentioned

in Section 3.3.2, we do not have to find an optimal scheme under the exact problem formulation. If we can
provide a good scheme of the corresponding problem with D ≈ D?(M), that should be a good enough scheme in
the original problem.

6. Conclusions

To conclude our discussion, we summarize our main contributions. We showed that for
any fixed-length lossy-compression problem under an arbitrary distortion measure, there exists a
corresponding lossy-compression problem under logarithmic loss where optimal schemes coincide.
We also proved that a good scheme for one lossy-compression problem is also good for another
problem. This equivalence provides an algebraic structure on any reconstruction alphabet that
allows using various optimization techniques in lossy-compression problems, such as log-convex
relaxation. Furthermore, our results naturally suggest a k-meanslike clustering algorithm in categorical
data-clustering problems.

Funding: This work was supported by the National Research Foundation of Korea, funded by the Korean
Government (MSIT) under Grant NRF-2017R1C1B5018298.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Optimal Scheme Under Excess Distortion Criterion

In this section, we characterize minimum number of codewords M?(D, ε) that can achieve
distortion D and excess distortion probability ε. Let an encoder and a decoder be f : X → {1, . . . , M}
and g : {1, . . . , M} → M(X ) where g(m) = q(m) ∈ M(X ). Since `(x, q) ≤ D is equivalent to
q(x) ≥ e−D, we hav

1− pe = ∑
x∈X

pX(x)1
(

q( f (x))(x) ≥ e−D
)

=
M

∑
m=1

∑
x∈ f−1(m)

pX(x)1
(

q(m)(x) ≥ e−D
)

.
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However, at most, beDc of the q(m)(x) can be larger than e−D where bxc is the largest integer that
is smaller than or equal to x. Thus, we can at mos cover t M · beDc of the source symbols with M
codewords. Suppose pX(1) ≥ pX(2) ≥ · · · ≥ pX(r), then the optimal scheme is

f (x) =
⌈

x
beDc

⌉

q(m)(x) =

1/beDc if f (x) = m

0 otherwise,

where q(m) = g(m) and dxe are the smallest integer that is larger than or equal to x. The idea is that
each reconstruction symbol q(m) covers beDc number of source symbols by assigning probability mass
1/beDc to each of them.

The above optimal scheme satisfies

1− pe =
M·beDc

∑
x=1

pX(x)

=FX

(
M · beDc

)
,

where FX(·) is the cumulative distribution function of X. This implies that the minimal error
probability is

ε?(M, D) = 1− FX

(
M · beDc

)
.

On the other hand, if we fix target error probability ε, the minimal number of codewords is

M?(D, ε) =

⌈
F−1

X (1− ε)

beDc

⌉

where F−1
X (y) = argmin

1≤x≤r
{x : FX(x) ≥ y}. Note that if we allow variable length coding without a prefix

condition, the optimal coding scheme is similar to optimal nonasymptotic lossless coding introduced
in [35].
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