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Abstract: As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS),
the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing.
However, the highly non-convex nature of C-Loss results in performance degradation. To address
this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS,
which is the risk-sensitive loss defined as the expectation of an exponential function of the squared
estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive
mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is
a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the
KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented
for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and
reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum
kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP),
are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP)
criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the
proposed RMKRP and its quantized version.

Keywords: correntropic; quantized; kernel risk-sensitive mean p-power error; recursive; kernel
adaptive filters

1. Introduction

Online kernel-based learning is to extend the kernel methods to online settings where the data
arrives sequentially, which has been widely applied in signal processing thanks to its excellent
performance in addressing nonlinear issues [1]. The development of kernel methods is of great
significance for practical applications. In kernel methods, the input data are transformed from the
original space into the reproducing kernel Hilbert space (RKHS) using the kernel trick [2]. As the
representative of the kernel methods, kernel adaptive filters (KAFs) provide an effective way to
transform a nonlinear problem into a linear one, which have been widely introduced in system
identification and time-series prediction [3–5]. Generally, KAFs are designed for Gaussian and
non-Gaussian noises from the aspect of cost function, respectively.

For Gaussian noises, the second-order similarity measures of errors are generally used as a
cost function of KAFs to achieve desirable filtering accuracy. Therefore, in the Gaussian noise
environment, KAFs based on the second-order similarity measures of errors are mainly divided
into three categories, i.e., the kernel least mean square (KLMS) algorithm [6], the kernel affine
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projection algorithm (KAPA) [7], and the kernel recursive least square algorithm (KRLS) [8]. However,
the network size of KAFs increases linearly with the length of training, leading to large computational
and storage burdens. To curb this structure growth, many sparsification methods are required, such as
the surprise criterion (SC) [9], novelty criterion (NC) [10], coherence criterion [11], and approximate
linear dependency (ALD) criterion [8]. However, these sparsification methods only discard the
redundant data, leading to reduction of filtering accuracy. Unlike the aforementioned sparsification
methods, the vector quantization (VQ) utilizes the redundant data to update the weights for accuracy
improvement. The VQ is combined into KAFs to generate quantized KAFs, e.g., the quantized kernel
least mean square algorithm (QKLMS) [12] and quantized kernel recursive least squares algorithm
(QKRLS) [13].

However, the second-order similarity measures used in the aforementioned algorithms merely
contain the second order statistics of errors, which cannot address non-Gaussian noises or outliers,
efficiently [14]. Thus, it is very important to design a cost function beyond the second-order statistics of
errors for combating non-Gaussian noises. The non-second order similarity measures can be divided
into three categories, i.e., the mean p-power error (MPE) criterion [15], information theoretic learning
(ITL) [14], and risk-sensitive loss (RL) based criteria [16,17]. The MPE criterion based on the pth
absolute moment of the error can deal with non-Gaussian data with a proper p-value, efficiently.
In general, MPE is robust to large outliers when p < 2 [15], generating robust adaptive filters [15],
e.g., the kernel least mean p-power (KLMP) algorithm [18] and the kernel recursive least mean p-power
(KRLP) algorithm [18]. ITL can incorporate the complete distribution of errors into the learning
process, resulting in the improvement of filtering precision and robustness to outliers. The most
widely used ITL criterion is the maximum correntropy criterion (MCC) [19–24]. As a local similarity
measure defined as a generalized correlation in the RKHS, the correntropy used in MCC can leverage
higher order statistics of data to combat outliers [25]. However, the performance surface of the
correntropic loss (C-Loss) is highly non-convex, which may lead to poor convergence performance.
In the RL-based criteria, e.g., minimum risk-sensitive loss [16] and minimum kernel risk-sensitive
loss (MKRL) [17,26], the risk-sensitive loss in the RKHS is convex extremely, which is more efficient
for combating non-Gaussian noises or outliers than MCC [17,26]. However, since the MKRL uses the
stochastic gradient descent (SGD) method to update its weights, the desirable filtering performance
cannot be achieved for some complex nonlinear issues. The recursive update rules with excellent
tracking ability can improve the filtering performance of adaptive filtering algorithms [21]. For example,
KRLS based on the recursive update rule can improve the filtering performance of KLMS based on the
SGD, significantly. To the best of our knowledge, however, it has not yet been proposed to design a
recursive MKRL algorithm for desirable filtering performance in the RKHS by a recursive update rule.

In this paper, to inherit the advantages of both KRL and MPE for robustness improvement,
we propose the risk-sensitive mean p-power error (RP) defined as the expectation of an exponential
function of the pth absolute moment of the estimation error, and its kernel RP (KRP). The KRP
can outperform the KRL by setting an appropriate p-value for robust learning, and the KRP with
p = 2 reduces to the KRL. The proposed KRP criterion is used to derive a novel recursive minimum
kernel risk-sensitive mean p-power error (RMKRP) algorithm for desirable filtering performance by
combining the weighted output information. Furthermore, to curb the growth of network size in the
RMKRP, the VQ is combined into RMKRP to generate quantized RMKRP (QRMKRP).

The rest of this paper is organized as follows. In Section 2, we define the KRP, and give some basic
properties. The KRP criterion is derived to develop a recursive adaptive algorithm by combining the
weighted output information, called RMKRP algorithm in Section 3. To further reduce the network size
of RMKRP, the vector quantization method is applied in RMKRP, thus generating the quantized RMKRP
(QRMKRP) in Section 3. In Section 4, Monte Carlo simulations are conducted to validate the superiorities
of the proposed algorithms in nonlinear examples. The conclusion is summarized in Section 5.
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2. Kernel Risk-Sensitive Mean p-Power Error

2.1. Definition

According to [17], the risk-sensitive loss is defined in RKHS, called the kernel risk-sensitive loss
(KRL). Given two arbitrary scalar random variables X and Y, where X, Y ∈ R, the KRL is defined by

Lλ(X, Y) =
1
λ

E
[

exp
(

λ

(
1
2
‖ϕ(X)− ϕ(Y)‖2

F

))]
=

1
λ

E
[

exp
(

λ

(
1
2
〈ϕ(X)− ϕ(Y), ϕ(X)− ϕ(Y)〉F

))]
=

1
λ

E
[

exp
(

λ

(
1
2
(〈ϕ(X), ϕ(X)〉F + 〈ϕ(Y), ϕ(Y)〉F − 2〈ϕ(X), ϕ(Y)〉F)

))]
(1)

=
1
λ

E[exp(λ(1− κσ(X−Y)))]

=
1
λ

∫
exp(λ(1− κσ(X−Y)))dFXY(x, y),

where λ > 0 is a risk-sensitive scalar parameter; ϕ(X) = κ(X, .) is a nonlinear mapping induced by
a Mercer kernel κσ(.), which transforms the data from the original space into the RKHS F equipped
with an inner product 〈., .〉F satisfying 〈ϕ(X), ϕ(Y)〉F = ϕT(X)ϕ(Y) = κσ(X − Y); E denotes the
mathematical expectation; ‖.‖F denotes the norm in RKHS F; FXY(x, y) denotes the joint distribution
function of (X, Y). A shift-invariant Gaussian kernel κσ(.) with bandwidth σ is given as follows:

κσ(x, y) = κσ(x− y) = exp

(
− (x− y)2

2σ2

)
. (2)

However, the joint distribution of (X, Y) is usually unknown, and only N samples {x(i), y(i)}N
i=1

are available. Hence, the nonparametric estimate of Lλ(X, Y) is obtained by applying the Parzen

windows [19] as L̂λ(X, Y) = 1
Nλ

N
∑

i=1
exp(λ(1− κσ(x(i)− y(i)))). Note that the inner product in

the RKHS for the same input is calculated by using kernel trick and (2), i.e, ϕT(X)ϕ(X) =

exp
(
− (X−X)2

2σ2

)
= 1.

In this paper, we define a new non-second order similarity measure in the RKHS, i.e., the kernel
risk-sensitive mean p-power error (KRP) loss. Given two random variables X and Y, the KRP loss is
defined by

Lλ,p(X, Y) =
1
λ

E
[
exp

(
λ2−p/2

(
‖ϕ(X)− ϕ(Y)‖p

F

))]
=

1
λ

E
[

exp
(

λ2−p/2
(
‖ϕ(X)− ϕ(Y)‖2

F

)p/2
)]

=
1
λ

E[exp(λ2−p/2(2− 2κσ(X−Y))p/2)] (3)

=
1
λ

E[exp(λ(1− κσ(X−Y))p/2)]

=
1
λ

∫
exp(λ(1− κσ(X−Y))p/2)dFX,Y(x, y),

where p > 0 is the power parameter. Note that the KRL can be regarded as a special case of the KRP
with p = 2.
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However, the joint distribution of X and Y is usually unknown in practice. Hence, the empirical
KRP is defined as follows:

L̂λ,p(X, Y) =
1

Nλ

N

∑
i=1

exp(λ(1− κσ(x(i)− y(i)))p/2), (4)

where {x(i), y(i)}N
i=1 denotes the available finite number of samples. The empirical KRP can be

regarded as a distance between both X = [x(1), x(2), ..., x(N)]T and Y = [y(1), y(2), ..., y(N)]T.

2.2. Properties

In the following, we give some important properties of the proposed KRP.

Property 1. Lλ,p(X, Y) is symmetric that is Lλ,p(X, Y) = Lλ,p(Y, X).

Proof. Straightforward since κσ(X−Y) = κσ(Y− X).

Property 2. Lλ,p(X, Y) is positive and bounded, i.e., 1
λ ≤ Lλ,p(X, Y) ≤ 1

λ exp(λ), and reaches its minimum
if X = Y.

Proof. Straightforward since 0 < κσ(X−Y) ≤ 1, and κσ(X−Y) = 1 if X = Y.

Property 3. As λ is small enough, it holds that Lλ,p(X, Y) ≈ 1
λ + E[(1− κσ(X−Y))p/2].

Proof. For a small enough λ, we have λ(1− κσ(X−Y))p/2 → 0, i.e.,

exp(λ(1− κσ(X−Y))p/2) ≈ 1 + λ(1− κσ(X−Y))p/2. (5)

Therefore, we can obtain

Lλ,p(X, Y) =
1
λ

E[exp(λ(1− κσ(X−Y))p/2)]

(5)
≈ 1

λ
E[1 + λ(1− κσ(X−Y))p/2] (6)

=
1
λ
+ E[(1− κσ(X−Y))p/2].

Property 4. As σ is large enough, it holds that Lλ,p(X, Y) ≈ 1
λ + (2σ2)−p/2E[|X−Y|p].

Proof. Since exp(x) is approximated by 1 + x for a small enough x, for the case of large enough σ,

i.e., (X−Y)2

2σ2 → 0. Thus, we can obtain the approximation as

exp

(
− (X−Y)2

2σ2

)
≈ 1− (X−Y)2

2σ2 . (7)

Similarly, when λ

(
(X−Y)2

2σ2

)p/2
→ 0 for large enough σ, we can also obtain the approximation as

exp

λ

(
(X−Y)2

2σ2

)p/2
 ≈ 1+λ

(
(X−Y)2

2σ2

)p/2

. (8)
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According to (7) and (8), we have

Lλ,p(X, Y) =
1
λ

E

exp

λ

(
1− exp

(
− (X−Y)2

2σ2

))p/2


(7)
≈ 1

λ
E

exp

λ

(
(X−Y)2

2σ2

)p/2
 (9)

(8)
≈ 1

λ
E

1+λ

(
(X−Y)2

2σ2

)p/2


=
1
λ
+(2σ2)−p/2E

[
|X−Y|p

]
.

Remark 1. According to Properties 3 and 4, the KRP is, approximately, equivalent to the KMPE [27] as λ is
small enough, and equivalent to the MPE [15] as σ is large enough. Thus, the KMPE and MPE can be viewed as
two extreme cases of the KRP.

Property 5. As p is small enough, it holds that Lλ,p(X, Y) ≈ 1
λ exp(λ(1+ (p/2)E[log(1−κσ(X−Y))])) ≈

1
λ exp(λ).

Proof. Property 5 holds because of (1−κσ(X−Y))p/2 ≈ 1 + (p/2)E[log(1−κσ(X−Y))] ≈ 1.

Property 6. Let e = X−Y = [e(1), e(2), ..., e(N)]T, where e(i) = x(i)− y(i). The empirical KRP L̂λ,p(X, Y)
as a function of e is convex at any point satisfying ‖e‖∞ = maxi=1,2,...,N |e(i)| ≤ σ and p ≥ 2. When ‖e‖∞ >

σ, the empirical KRP L̂λ,p(X, Y) is also convex if the risk-sensitive parameter λ > 0 and power parameter

p ≥ max
i=1,2,...,N

{
2(e2(i)−σ2)(1−κσ(e(i)))

e2(i)κσ(e(i))
+ 2
}

.

Proof. Since L̂λ,p(X, Y) = 1
Nλ

N
∑

i=1
exp(λ(1− κσ(e(i)))

p/2), the Hessian matrix of L̂λ,p(X, Y) with

respect to e can be derived as

HL̂λ,p(X,Y)(e) =

[
∂2 L̂λ,p(X, Y)

∂e(i)∂e(j)

]
= diag[γ1, γ2, ..., γN ], (10)

where

γi =ζi

(
pλ

2σ2 (1− κσ(e(i)))
(p−2)/2 exp

(
− e2(i)

2σ2

)
e2(i) + 1

+
p− 2

2
(1− κσ(e(i)))

−1 exp
(
− e2(i)

2σ2

)
e2(i)
σ2 −

e2(i)
σ2

)
, (11)

with ζi =
p

2Nσ2 exp(λ(1− κσ(e(i)))p/2)(1− κσ(e(i)))(p−2)/2 exp
(
− e2(i)

2σ2

)
, i = 1, 2, ..., N. When p ≥ 2,

we have HL̂λ,p(X,Y)(e) > 0 if max
i=1,2,...,N

|e(i)| ≤ σ. From (11), if |e(i)| ≤ σ and p ≥ 2, or |e(i)| >σ and p ≥

[2(e2(i)− σ2)(1− κσ(e(i)))/(e2(i)κσ(e(i)))] + 2, we have ζi ≥ 0. Therefore, we have HL̂λ,p(X,Y)(e) ≥ 0 if

p(λ(1− κσ(e(i)))p/2 + 1) ≥ max
i=1,2,...,N

{
2(e2(i)− σ2)(1− κσ(e(i)))

e2(i)κσ(e(i))
+ 2
}

, (12)
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where (λ(1− κσ(e(i)))p/2 + 1) ≥ 1. Thus, we have p ≥ max
i=1,2,...,N

{
2(e2(i)−σ2)(1−κσ(e(i)))

e2(i)κσ(e(i))
+ 2
}

.

Remark 2. According to Property 6, the empirical KRP as a function of e is convex at any point satisfying
‖e‖∞ ≤ σ and p ≥ 2. For the case ‖e‖∞ > σ, the empirical KRP can still be convex at a point if the

risk-sensitive parameter λ > 0 and power parameter p ≥ max
i=1,2,...,N

{
2(e2(i)−σ2)(1−κσ(e(i)))

e2(i)κσ(e(i))
+ 2
}

.

Property 7. As σ→ ∞ or x(i)→ 0, i = 1, 2, ..., N, it holds that

L̂λ,p(X, 0) ≈ 1
λ
+

1

N
(√

2σ
)p ‖X‖

p
p , (13)

where 0 denotes an N-dimensional zero vector.

Proof.

L̂λ,p(X, 0) =
1

Nλ

N

∑
i=1

exp(λ(1− κσ(x(i)))
p/2) ≈ 1

Nλ

N

∑
i=1

exp

(
λ

(
1−

(
1− x2(i)

2σ2

))p/2)

=
1

Nλ

N

∑
i=1

exp

(
λ

(
x2(i)
2σ2

)p/2)
≈ 1

Nλ

N

∑
i=1

[
1+λ

(
x2(i)
2σ2

)p/2]
(14)

=
1
λ
+

1

N
(√

2σ
)p

N

∑
i=1
|x(i)|p =

1
λ
+

1

N
(√

2σ
)p ‖X‖

p
p .

Remark 3. According to Property 7, the empirical KRP L̂λ,p(X, 0) behaves like an Lp norm of X when kernel
bandwidth σ is large enough.

3. Application to Adaptive Filtering

In this section, to combat non-Gaussian noises, two recursive robust adaptive algorithms under
the proposed KRP criterion are proposed in the RKHS using the kernel trick and vector quantization
technique, respectively.

3.1. RMKRP

The recursive strategy is introduced into the KRP loss function, namely the recursive minimum
kernel risk-sensitive mean p-power error (RMKRP) algorithm. The offline solution to minimum of
the KRP loss is first obtained. Based on the obtained offline solution, the recursive solution or online
solution to minimum of the KRP loss is then derived using some matrix operations, which generates
the RMKRP algorithm. The details of RMKRP are shown as follows.

Consider the prediction of a continuous input-output model f : U→ R based on adaptive filtering
shown in Figure 1, where u(i) ∈ U ⊂ RD is the ith D-dimensional input vector, d(i) ∈ R is the ith
scalar desired output contaminated by a noise v(i), i.e., d(i) = f (u(i)) + v(i). A sequence of training
samples {u(j), d(j)}i

j=1 is used to perform the prediction of f (·) in an adaptive filter. The nonlinear
mapping ϕ(u(j)) of input u(j) is denoted by ϕ(j) for simplicity. Hence, in the RKHS F, the training
samples are changed to {Φ(i), d(i)}, where the desired output vector is d(i) = [d(1), d(2), ..., d(i)]T and
the input kernel mapping matrix is Φ(i) = [ϕ(1),ϕ(2), ...,ϕ(i)]. The prediction denoted by f̂ (·) in the
RKHS is therefore given as f̂ (·) = ϕT(·)Ω, where Ω ∈ F is the weight vector in a high dimensional
feature space F.
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f(·)

Adaptive filtering with

φ
T(i)Ω(i)

v(i)

u(i) d(i)

+

+

+
_

e(i)

Figure 1. Block diagram of adaptive filtering.

An exponentially-weighted loss function is used here to put more emphasis on recent data and to
de-emphasize data on the remote past [28]. When {Φ(i), d(i)} are available, the weight vector Ω(i) is
obtained as the offline solution to minimizing the following weighted cost function:

J(Ω(i)) =
i

∑
j=1

ρi−j 1
λ

exp
(

λ(z(j))
p
2
)
+

1
2

ρiζ‖Ω(i)‖2, (15)

where ρ denotes the forgetting factor in the interval [0, 1], ζ is the regularization factor, z(j) = 1−
exp

(
− e2(j)

2σ2

)
, and e(j) = d(j)−ϕT(j)Ω(i) denotes the jth estimate error. The second term is a norm

penalizing term, which is to guarantee the existence of the inverse of the input data autocorrelation
matrix especially during the initial update stages. In addition, the regularization term is weighted by
ρ, which deemphasizes regularization as time progresses. According to Property 6, the empirical KRP
as a function of e is convex at any point satisfying max

j=1,2,...,i
|e(j)| ≤ σ, λ > 0, and p ≥ 2. To obtain the

minimum of (15), its gradient is calculated, i.e.,

∂J(Ω(i))
∂Ω(i)

=− p
2σ2

i

∑
j=1

ϕ(j)ρi−j exp
(

λ(z(j))
p
2
)
(z(j))

p−2
2 (d(j)−ϕT(j)Ω(i))(1− z(j)) + ρiζΩ(i)

=− p
2σ2

i

∑
j=1

ϕ(j)ρi−j exp
(

λ(z(j))
p
2
)
(z(j))

p−2
2 (1− z(j))d(j) (16)

+
p

2σ2

i

∑
j=1

ϕ(j)ρi−j exp
(

λ(z(j))
p
2
)
(z(j))

p−2
2 (1− z(j))ϕT(j)Ω(i) + ρiζΩ(i).

Setting (16) to zero, i.e., ∂J(Ω)
∂Ω = 0, we can obtain the offline solution to minimum of (15) as follows:

Ω(i) = (Φ(i)H(i)ΦT(i) + ρiζ2σ2/pI)−1Φ(i)H(i)d(i), (17)

where H(i) = diag[H1(i), H2(i), ..., Hi(i)] with Hj(i) = ρi−j exp
(

λ(z(j))
p
2
)
(z(j))

p−2
2 (1− z(j)), j =

1, 2, ..., i, and I denotes an identity matrix with an appropriate dimension.
To obtain an efficient recursive solution to the minimum of (15), a Mercer kernel is used to

construct the RKHS. Here, the Gaussian kernel is used as a Mercer kernel, which is denoted as κσ1(.)
with σ1 being the kernel width. The inner product in the RKHS can be calculated by using the kernel
trick [28], i.e., κσ1(u(i), u(j)) = κσ1(u(i)− u(j)) = ϕT(u(i))ϕ(u(j)) = ϕT(i)ϕ(j), efficiently, which can
avoid the direct calculation of nonlinear mapping ϕ(·).

Since the matrix inversion lemma [28] is described by (A + BCD)−1 = A−1 −
A−1B(C−1 + DA−1B)−1DA−1, by letting A = ρiζ2σ2/pI, B = Φ(i), C = H(i), and D = ΦT(i),
we rewrite (17) as

(Φ(i)H(i)ΦT(i) + ρiζ2σ2/pI)−1Φ(i)H(i) = Φ(i)(ΦT(i)Φ(i) + ρiζ2σ2/pH(i)−1)−1. (18)



Entropy 2019, 21, 588 8 of 18

Substituting (18) into (17) yields

Ω(i) = Φ(i)(ΦT(i)Φ(i) + ρiζ2σ2/pH(i)−1)−1d(i). (19)

Note that ΦT(i)Φ(i) in (19) can be computed by the kernel trick, efficiently. The weight vector
Ω(i) is therefore described explicitly as a linear combination of the input data in the RKHS, i.e.,

Ω(i) = Φ(i)α(i), (20)

where α(i) denotes the coefficients vector.
It can be seen from (20) that the recursive form of Ω(i) is changed to that of α(i). Hence, in the

following, the key for finding a recursive solution to the minimum of (15) is to obtain the recursive
form of α(i).

The coefficients vector α(i) is calculated using the kernel trick as

α(i) = (ΦT(i)Φ(i) + ρiζ2σ2/pH(i)−1)−1d(i). (21)

For simplicity, we obtain the update form of α(i) indirectly by defining Λ(i) as

Λ(i) = (ΦT(i)Φ(i) + ρiζ2σ2/pH(i)−1)−1, (22)

where Φ(i) = {Φ(i− 1),ϕ(i)}. Then, the update form of Λ(i) can be further obtained

Λ(i) =

[
ΦT(i− 1)Φ(i− 1) + ρiζ2σ2/pH(i− 1)−1

ϕT(i)Φ(i− 1)
ΦT(i− 1)ϕ(i)

ϕT(i)ϕ(i) + ρiζ2σ2/pν(i)

]−1

, (23)

where ν(i) =
(

exp
(

λ(z(i))
p
2
)
(z(i))

p−2
2 (1− z(i))

)−1
. By using some matrix operations, we further

simplify (23) as

Λ(i)−1 =

[
Λ(i− 1)−1

ξT(i)
ξ(i)

ρiζ2σ2/pν(i) +ϕT(i)ϕ(i)

]
, (24)

where ξ(i) = ΦT(i− 1)ϕ(i). By using the following block matrix inversion identity [18,21,28][
A
C

B
D

]−1

=

[
(A−BD−1C)−1

−D−1C(A−BD−1C)−1
−A−1B(D−CA−1B)−1

(D−CA−1B)−1

]
, (25)

then, we can obtain the update equation for the inverse of the growing matrix in (24) as

Λ(i) = r−1(i)

[
Λ(i− 1)r(i) + θ(i)θT(i)

−θT(i)
−θ(i)

1

]
, (26)

where θ(i) = Λ(i− 1)ξ(i) and r(i) = ρiζ2σ2/pν(i) +ϕT(i)ϕ(i)− θT(i)ξ(i). Combining (21) with (26),
the coefficients vector α(i) of the weight vector Ω(i) is shown as follows:

α(i) = Λ(i)d(i) =

[
Λ(i− 1) + θ(i)θT(i)r−1(i)

−θT(i)r−1(i)
−θ(i)r−1(i)

r−1(i)

] [
d(i− 1)

d(i)

]

=

[
α(i− 1)− θ(i)r−1(i)e(i)

r−1(i)e(i)

]
, (27)
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where e(i) = d(i)− f̂ (i) denotes the difference between the desired output d(i) and the system output

f̂ (i) = ξ(i)Tα(i− 1) =
i−1
∑

j=1
αj(i− 1)κσ1(u(j), u(i)). αj(i− 1) is the jth element of α(i− 1) and all the

previous data are the centers. The coefficients α(i− 1) and all the previous data should be stored at
each iteration. Finally, the RMKRP algorithm is summarized in Algorithm 1.

Algorithm 1: The RMKRP Algorithm.
Initialization:
{u(i), d(i)}, i = 1, 2, ...

p, λ, ρ, σ, σ1 > 0, ζ ∈ [0, 1], z(1) = 1− exp
(
− d2(1)

2σ2

)
.

H1(1) = exp
(

λ(z(1))
p
2

)
(z(1))

p−2
2 (1− z(1)).

Λ(1) = (ζρ2σ2/p/H1(1) + κ(u(1), u(1)))−1, α(1) = Λ(1)d(1).
Computation:
While {u(i), d(i)}(i > 1) available do

1) ξ(i) = [κ(u(1), u(1)), ..., κ(u(i), u(i− 1))]T

2) e(i) = d(i)− ξ(i)Tα(i− 1)
3) θ(i) = Λ(i− 1)ξ(i)
4) z(i) = 1− exp

(
− e2(i)

2σ2

)
5) ν(i) =

(
exp

(
λ(z(i))

p
2

)
(z(i))

p−2
2 (1− z(i))

)−1

6) r(i) = ρiζ2σ2/pν(i) + κ(u(i), u(i))− θT(i)ξ(i)

7) Λ(i) = r−1(i)

[
Λ(i− 1)r(i) + θ(i)θT(i)

−θT(i)
−θ(i)

1

]

8) α(i) =

[
α(i− 1)− θ(i)r−1(i)e(i)

r−1(i)e(i)

]
.

end while

3.2. QRMKRP

The RMKRP algorithm generates a linearly growing network owing to the used kernel trick.
The online vector quantization (VQ) method [12] has been successfully applied in KAFs to curb its
network growth efficiently. Thus, we incorporate the online VQ method into the RMKRP to develop
the quantized RMKRP (QRMKRP) algorithm, which is shown as follows.

Suppose that the dictionary C(i) contains L vectors at discrete time i, i.e., C(i) = {Ck(i)}L
k=1,

k ∈ Id = {1, 2, ..., L}, which means that there are L distinctive quantization regions. In the RKHS,
the prediction f̂ (i) is therefore expressed as f̂ (i) = ϕT(Ck(i))Ω̂, where Ω̂ ∈ F is the weight vector in
RKHS F. The cost function of QRMKRP based on C(i) is denoted as

L

∑
k=1

|Dk |

∑
n=1

ρi−k 1
λ

exp

λ

(
1− exp

(
− (dkn(i)− ϕT(Ck(i))Ω̂(i))2

2σ2

)) p
2
+

1
2

ρiζ
∥∥Ω̂(i)

∥∥2, (28)

where |Dk| denotes the number of input data those lie in the kth quantization region of C(i) and
satisfies ∑k∈Id |Dk| = i and |Dk| ≥ 1, and dkn(i) is the desired output d(i) corresponding to the nth
element within the kth quantization region.

The offline solution to the minimization of (28) can be described by

Ω̂(i) =
[
Φ̂(i)Ĥ(i)Φ̂T(i) + ρiζ2σ2/pI

]−1
Φ̂(i)d̂(i), (29)

where Φ̂(i) = [ϕ(C1(i)), ϕ(C2(i)), ..., ϕ(CL(i))] with L � i elements; Ĥ(i) =

diag[∑
|D1|
n=1 H1n(i), ∑

|D2|
n=1 H2n(i), ..., ∑

|DL |
n=1 HLn(i)] denotes a accumulated diagonal matrix;
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d̂(i) = diag[∑
|D1|
n=1 H1n(i)d1n(i), ∑

|D2|
n=1 H2n(i)d2n(i), ..., ∑

|DL |
n=1 HLn(i)dLn(i)]T denotes a accumulated

weighted output vector; Hkn(i) denotes Hi(i) corresponding to the nth entry of the kth quantization
region; I denotes an identity matrix with an appropriate dimension. Since (29) has a similar form to
(17), we simplify (29) as

Ω̂(i) = Φ̂(i)
[
Ĥ(i)K̂(i) + ρiζ2σ2/pI

]−1
d̂(i) = Φ̂(i)Q̂(i)d̂(i) = Φ̂(i)α̂(i), (30)

where K̂(i) = Φ̂T(i)Φ̂(i). To obtain the recursive solution to the minimization of (28), we let α̂(i) =
Q̂(i)d̂(i) and denote

Q̂(i) =
[
Ĥ(i)K̂(i) + ρiζ2σ2/pI

]−1
. (31)

To update Ω̂(i) in (30) recursively, two cases are therefore considered.
(1) First, Case: dis(u(i), C(i− 1)) ≤ ε: In this case, we have C(i) = C(i− 1) and Q̂(i) = Q̂(i− 1),

which means the input u(i) is therefore quantized to the k∗th element of dictionary C(i− 1), where
k∗ = arg min

1≤k≤|Ck(i−1)|
‖u(i)−Ck (i− 1)‖2. The matrix Ĥ(i) and the vector d̂(i) have a similar form to [13].

Here, Ĥ(i) and d̂(i) can be shown as{
Ĥ(i) = Ĥ(i− 1) + Hi(i)τk∗τ

T
k∗

d̂(i) = d̂(i− 1) + Hi(i)d(i)τk∗
, (32)

where τk∗ is a |C(i− 1)|-dimensional column vector whose k∗th element is 1 and all other
elements are 0. Combining (32) into (31), the matrix Q̂(i) can be expressed as Q̂(i) =

[Q̂(i− 1)−1 + Hi(i)τk∗τ
T
k∗K̂(i− 1)]−1. By using the matrix inversion lemma [28], we obtain

Q̂(i) = Q̂(i− 1)− Q̂k∗(i− 1)K̂T
k∗(i− 1)Q̂(i− 1)

H−1
i (i) + K̂T

k∗(i− 1)Q̂k∗(i− 1)
, (33)

where Q̂k∗(i− 1) and K̂k∗(i − 1) represent the k∗th columns of the matrices Q̂(i − 1) and K̂(i − 1),
respectively. Therefore, α̂(i) in (30) can be calculated as

α̂(i) = Q̂(i)d̂(i) = α̂(i− 1) +
(d(i)− K̂T

k∗(i− 1)α̂(i− 1))Q̂k∗(i− 1)

H−1
i (i) + K̂T

k∗(i− 1)Q̂k∗(i− 1)
. (34)

(2) Second Case: dis(u(i), C(i− 1)) > ε: In this case, we have C(i) = {C(i− 1), u(i)}, Φ̂(i) =
[Φ̂(i− 1), ϕ(u(i))], and we have

Ĥ(i) =

[
Ĥ(i− 1)

0T
0

Hi(i)

]
, K̂(i) =

[
K̂(i− 1)

ĥ(i)T
ĥ(i)
κii

]
, (35)

where 0 is the null column vector with a compatible dimension; ĥ(i) = Φ̂(i− 1)T ϕ(u(i)) and κii =

κσ1(u(i), u(i)). Combining (31), (35), d̂(i) = [d̂(i− 1)T, Hi(i)d(i)]T, and the block matrix inversion
identity [28], we obtain

Q̂(i) =

[
Q̂(i− 1) + r̂(i)−1Hi(i)ẑĤ(i)ẑ(i)

T

−r̂(i)−1Hi(i)ẑ(i)T
−r̂(i)−1ẑĤ(i)

r̂(i)−1

]
, (36)
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where 
ẑĤ(i) = Q̂(i− 1)Ĥ(i− 1)ĥ(i)
ẑ(i) = Q̂(i− 1)Tĥ(i)
r̂(i) = κσ1(u(i), u(i))Hi(i) + ρiζ2σ2/p− Hi(i)ĥ(i)TẑĤ(i)

. (37)

Furthermore, due to d̂(i) = [d̂(i− 1)T, Hi(i)d(i)]T, we obtain

α̂(i) = Q̂(i)d̂(i) =

[
α̂(i− 1)− r̂(i)−1Hi(i)ẑĤ(i)(d(i)− ĥ(i)Tα̂(i− 1))

r̂(i)−1Hi(i)(d(i)− ĥ(i)Tα̂(i− 1))

]
. (38)

The QRMKRP algorithm is summarized in Algorithm 2, where L denotes the dictionary size.

Algorithm 2: The QRMKRP algorithm.
Initialization:
{u(i), d(i)}, i = 1, 2, ...
σ, σ1, p, λ > 0, L = 1, C(1) = {u(1)},
z(1) = 1− exp

(
− d2(1)

2σ2

)
,

H1(1) = exp
(

λ(z(1))
p
2

)
(z(1))

p−2
2 (1− z(1)), Ĥ(1) = [H1(1)].

Q̂(1) =
[
ζρ2σ2/p + H1(1)κ11

]−1, α̂(1) = Q̂(1)H1(1)d(1),
ε > 0, ρ > 0, ζ ∈ [0, 1].
Computation:
While {u(i), d(i)}(i > 1) available do

1) Compute the distance between u(i) and C(i− 1):
dis(u(i), C(i− 1)) = min

1≤k≤|Ck(i−1)|
‖u(i)−Ck (i− 1)‖2,

where k∗ = arg min
1≤k≤|Ck(i−1)|

‖u(i)−Ck (i− 1)‖2.

2) If dis(u(i), C(i− 1)) ≤ ε:
Keep the dictionary unchanged: C(i) = C(i− 1), L⇐ L,
Update Ĥ(i) by (32), Q̂(i) by (33), α̂(i) by (34).

3) Otherwise:
The dictionary changes: C(i) = [C(i− 1), u(i)], L⇐ L + 1,
Update Ĥ(i) by (35), Q̂(i) by (36), α̂(i) by (38).

end while

4. Simulation

In this section, to validate the performance of the proposed RMKRP algorithm and its quantized
version, two examples, i.e., Mackey–Glass (MG) chaotic time series prediction and nonlinear system
identification, are used to validate the performance superiorities of the proposed two algorithms.

In this example, the noise environment considered is the impulsive noise, which is modeled by
the combination of two independent noise processes [17], i.e.,

v(i) = (1− b(i))v1(i) + b(i)v2(i), (39)

where v1(i) is an ordinary noise disturbance with small variance and v2(i) represents large outliers
with large variance; b(i) is of binary distribution random process over {0, 1} with Prob {b(i) = 1} = c
and Prob {b(i) = 0} = 1 − c (0 ≤ c ≤ 1 is an occurrence probability). Here, we select c = 0.1.
The distribution of v1(i) is considered as a Binary distribution over {0.5,−0.5} with probability
mass Prob {x = 0.5} = Prob {x = −0.5} = 0.5. In addition, v2(i) is modeled by the α-stable process,
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owing to its heavy-tailed probability density function. The α-stable process is described by the
following characteristic function [29]:

f (t) = exp
{

jδt− γ|t|α [1 + jβsgn(t)S(t, α)]
}

, (40)

where

S(t, α) =

{
tan απ

2 , if α 6= 1
2
π log |t| , if α = 1

, (41)

with α ∈ (0, 2] being the characteristic factor, β ∈ [−1, 1] being the symmetry parameter, γ > 0 being
the dispersion parameter, sgn(.) denotes the sign function, j =

√
−1, and −∞ < δ < ∞ being the

location parameter. Generally, a smaller α generates a heavier tail and a smaller γ generates fewer large
outliers. The characteristic function denoted as Vα−stable(α, β, γ, δ) is chosen as Vα−stable(0.8, 0, 0.1, 0)
to model the impulse noise in the simulations.

4.1. Chaotic Time Series Prediction

The MG chaotic time series is generated from the following differential equation [9]:

dx(t)
dt

=
βx(t− τ)

1 + x(t− τ)n − γx(t), (42)

where β, γ, n > 0. Here, we set β = 0.2, γ = 0.1, and τ = 30. The time series is discretized at a
sampling period of six seconds. The training set includes a segment of 2000 samples corrupted by the
additive noises which are shown in (39), and another 200 samples without noise are used as the testing
set. The kernel size σ1 in the Gaussian kernel is set to 1. The filter length is set at L = 7, which means
that [xt, xt−1, ..., xt−6] is used to predict xt+1.

To evaluate the filtering accuracy, the testing mean square error (MSE) is defined as follows:

MSE(dB) =
1
N

10log10(
N

∑
i=1

(d(i)− f̂ (i))
2
), (43)

where f̂ (i) is the estimate of d(i), and N is the length of testing data.
The KLMS [6], KMCC [22], MKRL [26], KRMC [21], and KRLS [8] algorithms are chosen for

performance comparison with RMKRP thanks to their excellent filtering performance. The other
sparsification algorithms, i.e., the QKLMS [12], QKMCC [30], QMKRL [26], QKRLS [13],
and KRMC-NC [21] algorithms are used for performance comparison with QRMKRP owing to their
modest space complexities and excellent performance. All simulation results are averaged over 50
independent Monte Carlo runs.

Since power parameter p, risk-sensitive parameter λ, and kernel width σ are crucial parameters in
the proposed RMKRP and QRMKRP algorithms, the influence of these parameters on the performance
is first discussed. In the simulations, we take 12 points evenly in the close interval p ∈ [1, 6] and
σ ∈ [0.17, 5], respectively. The influence of p on the steady-state performance of RMKRP is shown
in Figure 2a, where the steady-state MSEs are obtained as averages over the last 100 iterations.
The parameters are set as: p is set within [1, 6]; risk-sensitive parameter λ in the KRP is set as 1;
ζ = 0.1 and ρ = 1; kernel size σ in the KRP is set as 1. As can be seen from Figure 2a, we have
that the filtering accuracy of RMKRP is the highest when p = 4 and decreases gradually when p is
either too small or too large. Then, the influence of σ on the filtering performance of RMKRP with
p = 4 is shown in Figure 2b, where the steady-state MSEs are obtained as averages over the last
100 iterations. The parameters are set as: risk-sensitive parameter λ is fixed at 1; σ lies in [0.17, 5].
From Figure 2b, we see that RMKRP can achieve the highest filtering accuracy when σ is about 1. It is
reasonable to note that RMKRP are sensitive to outliers when the kernel width is large, and decreases
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its ability of error-correction when the kernel width is small. Finally, the influence of λ on the filtering
performance of RMKRP with σ = 1 and p = 4 is shown in Figure 2c, where the steady-state MSEs
are obtained as averages over the last 100 iterations. The parameters are set as: the range of λ is
selected as λ ∈ {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 2, 3, 4}. From Figure 2c, we see that λ has a slight
influence on the filtering accuracy when λ is small, and a large λ can increase the steady-state MSE
obviously. Therefore, from Figure 2, the parameters of RMKRP can be chosen by trials to obtain the
best performance in practice. Similarly, the parameters of QRMKRP can be chosen by the same method
as that in RMKRP.

(a) (b)

(c)

Figure 2. Steady-state MSE of RMKRP with different p in MG time series prediction (a); steady-state
MSE of RMKRP with different σ in MG time series prediction (b); steady-state MSE of RMKRP with
different λ in MG time series prediction (c).

The performance comparison of QKLMS, QKMCC, QMKRL, KLMS, KMCC, MKRL, KRLS, KRMC,
KRMC-NC, and QKRLS is conducted in the same environments as in (39). The parameters of the
proposed algorithms are selected by trials to achieve desirable performance, and the parameters of
compared algorithms are chosen such that they have almost the same convergence rate. λ = 1, p = 4,
and σ = 1 are set for RMKRP; λ = 1, p = 4, σ = 1, and ε = 0.2 for QRMKRP; η= 0.1 for KLMS; η= 0.09
and σ = 3.5 for KMCC; η= 0.09, σ = 1, and λ = 1 for MKRL; η= 0.1 and ε = 0.2 for QKLMS; η= 0.09,
ε = 0.2, and σ = 3.5 for QKMCC; η= 0.09, ε = 0.2, σ = 1, and λ = 1 for QMKRL; ζ = 0.1, ρ = 1,
and σ = 3.5 for KRMC; the novelty criterion thresholds δ1= 0.15, δ2= 0.1, ζ = 0.1, ρ = 1, and σ = 3.5
for KRMC-NC; ζ = 0.1 for KRLS; ζ = 0.1 and ε = 0.2 for QKRLS. Figure 3 shows the compared
MSEs of RMKRP, QRMKRP, and the compared algorithms. As can be seen from Figure 3, RMKRP
achieves a better filtering accuracy than KRLS, KRMC, KLMS, KMCC, and MKRL. QRMKRP achieves
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a better steady-state testing MSE than the sparsification algorithms including QKRLS, KRMC-NC,
QKLMS, QKMCC, and QMKRL. We also see from Figure 3 that the proposed algorithms provide
good robustness to impulsive noises. For detailed comparison, the dictionary size, consumed time,
and steady-state MSEs in Figure 3 are shown in Table 1. Note that the steady-state MSEs of KLMS,
QKLMS, KRLS, and QKRLS are not shown in Table 1 since they cannot converge in such impulsive
noise environment. From Table 1, we see that RMKRP has similar consumed time to KRLS and KRMC
but provides better filtering accuracy. In addition, QRMKRP provides the highest filtering accuracy in
all the compared sparsification algorithms and approaches the filtering accuracy of RMKRP with a
significantly lower network size.

(a) (b)

Figure 3. Comparison of the MSEs of KLMS, KMCC, MKRL, KRLS, KRMC, and RMKRP in MG time
series prediction (a); comparison of the MSEs of QKLMS, QKMCC, QMKRL, QKRLS, KRMC-NC,
and QRMKRP in MG time series prediction (b).

Table 1. Simulation results of QKLMS, QKMCC, QMKRL, QKRLS, KRMC-NC, KLMS, KMCC, MKRL,
KRLS, KRMC, RMKRP, and QRMKRP in MG time series prediction.

Algorithms Size Time (s) MSE (dB)

KLMS [6] 2000 30.9501 s N/A
QKLMS [12] 28 2.1011 s N/A

KRLS [8] 2000 58.5358 s N/A
QKRLS [13] 28 2.3374 s N/A
KMCC [22] 2000 30.8285 s −18.5063

QKMCC [30] 28 2.0995 s −17.8707
MKRL [26] 2000 30.9117 s −18.7312

QMKRL [26] 28 2.1063 s −18.1037
KRMC [21] 2000 58.1229 s −25.1618

KRMC-NC [21] 462 2.8045 s −21.5183
QRMKRP 28 2.3443 s −24.9326
RMKRP 2000 58.2196 s −28.1802

4.2. Nonlinear System Identification

To further validate the performance superiorities of the proposed RMKRP and QRMKRP
algorithms, the nonlinear system identification is considered. Here, the nonlinear system is of the
following form [31].

s(t) = s(t− 1)(0.8− 0.5 exp(−s2(t− 1)))− (0.3 + 0.9 exp(−s2(t− 1)))s(t− 2) + 0.1 sin(s(t− 1)π), (44)

where s(t) denotes the output at discrete time t with the initial s(−1) = 0.1 and s(−2) = 0.1. The two
previous outputs u(k) = [s(t− 1), s(t− 2)]T are utilized as the input to estimate the current output s(t).
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The training set includes a segment of 2000 samples corrupted by the additive noises shown in (39),
and another 200 samples without noise are used as the testing set. The kernel width σ1 is set to 1 for the
Gaussian function. All simulation results are averaged over 50 independent Monte Carlo runs.

Similar to MG chaotic time series prediction, the influence of power parameter p, risk-sensitive
parameter λ, and kernel width σ on the performance of RMKRP is also discussed in nonlinear system
identification. The influence of p on the steady-state performance of RMKRP is shown in Figure 4a,
where the steady-state MSEs are obtained as averages over the last 100 iterations. The parameters are set
as: p is set within [1, 6]; λ is set as 0.1; ζ = 0.1 and ρ = 1; kernel size σ in the KRP is set as 1. The influence
of σ on the filtering performance of RMKRP is shown in Figure 4b, where risk-sensitive parameter λ is
fixed at 0.1; σ lies in [0.17, 5]; p is set as 4. The influence of λ on the filtering performance of RMKRP
is shown in Figure 4c, where the range of λ is selected as λ ∈ {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 2, 3, 4};
σ is set as 1; p is set as 4. As can be seen from Figure 4, we can obtain the same conclusions as those in
Figure 2.

(a) (b)

(c)

Figure 4. Steady-state MSE of RMKRP with different p in nonlinear system identification (a);
steady-state MSE of RMKRP with different σ in nonlinear system identification (b); steady-state
MSE of RMKRP with different λ in nonlinear system identification (c).

We compare the filtering performance of QKLMS, QKMCC, QMKRL, KLMS, KMCC, MKRL,
KRLS, KRMC, KRMC-NC, and QKRLS in the same environments as in (39). The parameters of the
proposed algorithms are selected by trials to achieve desirable performance, and the parameters of
compared algorithms are chosen such that they have almost the same convergence rate. λ = 0.1, p = 4,
and σ = 1 are set for RMKRP; λ = 0.1, p = 4, σ = 1, and ε = 0.2 for QRMKRP; η= 0.1 for KLMS; η= 0.09
and σ = 3.5 for KMCC; η= 0.09, σ = 1, and λ = 2 for MKRL; η= 0.1 and ε = 0.2 for QKLMS; η= 0.09,
ε = 0.2, and σ = 3.5 for QKMCC; η= 0.09, ε = 0.2, σ = 1, and λ = 2 for QMKRL; ζ = 0.1, ρ = 1, and σ = 3.5
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for KRMC; the novelty criterion thresholds δ1= 0.01, δ2= 0.1, ζ = 0.1, ρ = 1, and σ = 3.5 for KRMC-NC;
ζ = 0.1 for KRLS; ζ = 0.1 and ε = 0.2 for QKRLS. Figure 5 shows the compared MSEs of RMKRP,
QRMKRP, and the compared algorithms. For detailed comparison, the dictionary size, consumed
time, and steady-state MSEs in Figure 5 are also shown in Table 2, where the steady-state MSEs of
KLMS, QKLMS, KRLS, and QKRLS are not shown since they cannot converge in such impulsive noise
environments. From Figure 5 and Table 2, we can obtain the same conclusions as those in Figure 3 and
Table 1.

(a) (b)

Figure 5. Comparison of the MSEs of KLMS, KMCC, MKRL, KRLS, KRMC, and RMKRP in nonlinear
system identification (a); comparison of the MSEs of QKLMS, QKMCC, QMKRL, QKRLS, KRMC-NC,
and QRMKRP nonlinear system identification (b).

Table 2. Simulation results of QKLMS, QKMCC, QMKRL, QKRLS, KRMC-NC, KLMS, KMCC, MKRL,
KRLS, KRMC, RMKRP, and QRMKRP in nonlinear system identification.

Algorithms Size Time (s) MSE (dB)

KLMS [6] 2000 21.2447 s N/A
QKLMS [12] 14 1.7284 s N/A

KRLS [8] 2000 48.6055 s N/A
QKRLS [13] 14 1.9643 s N/A
KMCC [22] 2000 21.1328 s −19.233

QKMCC [30] 14 1.763 s −17.9723
MKRL [26] 2000 21.0313 s −19.5390

QMKRL [26] 14 1.7243 s −18.5748
KRMC [21] 2000 48.7601 s −28.7583

KRMC-NC [21] 496 2.6874 s −23.671
QRMKRP 14 1.9681 s −27.3128
RMKRP 2000 48.6101 s −34.0790

5. Conclusions

In this paper, the kernel risk-sensitive mean p-power error (KRP) criterion is proposed by
constructing mean p-power error (MPE) into kernel risk-sensitive loss (KRL) in RKHS, and some
basic properties are presented. The KRP criterion with power parameter p is more flexible than
KRL to handle the signal corrupted by impulsive noises. Two kernel recursive adaptive algorithms
are derived to obtain desirable filtering accuracy under the minimum KRP (MKRP) criterion, i.e.,
the recursive minimum KRP (RMKRP) and quantized RMKRP (QRMKRP) algorithms. The RMKRP
can achieve higher accuracy but with almost identical computational complexity as that of the KRLS
and KRMC. The vector quantization method is introduced into RMKRP, thus generating QRMKRP,
and QRMKRP can effectively reduce network size while maintaining the filtering accuracy. Simulations
conducted in Mackey–Glass (MG) chaotic time series prediction and nonlinear system identification
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under impulsive noises illustrate the superiorities of RMKRP and QRMKRP from the aspects of
robustness and filtering accuracy.
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