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Abstract: Most undergraduate students who have followed a thermodynamics course would have
been asked to evaluate the volume occupied by one mole of air under standard conditions of
pressure and temperature. However, what is this task exactly referring to? If air is to be regarded
as a mixture, under what circumstances can this mixture be considered as comprising only one
component called “air” in classical statistical mechanics? Furthermore, following the paradigmatic
Gibbs’ mixing thought experiment, if one mixes air from a container with air from another container,
all other things being equal, should there be a change in entropy? The present paper addresses
these questions by developing a prior-based statistical mechanics framework to characterise binary
mixtures’ composition realisations and their effect on thermodynamic free energies and entropies.
It is found that (a) there exist circumstances for which an ideal binary mixture is thermodynamically
equivalent to a single component ideal gas and (b) even when mixing two substances identical in
their underlying composition, entropy increase does occur for finite size systems. The nature of the
contributions to this increase is then discussed.
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1. Introduction

Whether one thinks of ubiquitous substances such as air or drinking water or more specific
fluids such as petroleum or milk, they all count as multicomponent systems, i.e., they all comprise
more than one identifiable type of constituent. Furthermore, following early commentaries (see [1]
and references therein) on Gibbs’ original work [2,3] on mixtures, the latter are thought to play a
key role in the—quantum [4–13] or classical [14–25]—foundations of classical statistical mechanics;
through the (in)famous Gibbs paradox. Somewhat surprisingly then, the vast majority of statistical
mechanics textbooks covers principally single component systems. Mixtures are usually treated
but as an exception to the identical particle paradigm. The reasons for this lack of visibility of
multicomponent systems, despite their omnipresence in natural and artificial settings, are often
rather elusive so that we could be left with—wrongly—attributing motives to their authors ranging
from “mixtures do not matter as much as we think” to “mixtures are too complicated to treat in all their
details anyways”. To be sure, if phase behaviour is to be considered in models of mixtures with
interacting constituents, then characterising these phases and their occurrences is indeed a much more
complicated problem than when looking at single component systems, as illustrated in relatively recent
works [26,27]. Gibbs originally developed the notions of grand (and petit) canonical ensembles to
elucidate the statistical thermodynamics of systems with varying particle numbers, including mixing
problems [3]. More recently, the entropy of mixtures and Gibbs’ paradoxes were revisited within a
more contemporary framework involving probabilities and particle exchanges protocols equivalent
to the grand canonical ensemble for non-interacting systems [28]. However, for finite size systems,
the grand canonical ensemble may not always give the same result as the canonical ensemble and,
in practice, many mixing scenarios do not involve any external reservoir with which to exchange
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particles. In addition, we will see that, even in absence of interaction between constituents, it is
arguable that the very nature of a polydisperse system in the canonical ensemble requires additional
care in its statistical mechanics treatment which impacts the finite size expected canonical free energy
and entropy measures. The purpose of this paper is therefore two-fold: (1) to develop a mathematically
and conceptually consistent statistical mechanics treatment of mixtures in the canonical ensemble
and (2) to derive general finite size expressions for the canonical measures of free energy and entropy.
From these expressions, we will then show that there are circumstances for which a mixture, in the
canonical ensemble, becomes equivalent to a single component system thus partially justifying the
apparent lack of coverage in the literature. In what follows, we will focus on the statistical mechanics
of binary mixtures to illustrate the kind of difficulties that can already emerge at this rather simple
level of polydispersity. The article is organised as follows: Section 2 reminds the reader of the classical
textbook treatment of binary mixtures in the canonical ensemble. Section 3 introduces a heuristic
generalisation of the textbook treatment developed in Section 2 and discusses some of its caveats.
Section 4 proposes a general, prior based, statistical mechanics framework for binary mixtures and
discusses its consequences. Section 5 looks at the problem of mixing between two mixtures with
different compositions and identifies the various contributions to the entropy change so as provide a
specific definition of mixing entropy. Finally, Section 6 discusses further perspectives and Section 7
presents conclusions.

2. Textbook Treatment of Binary Mixtures

The textbook treatment of binary mixtures of non-interacting particles with Hamiltonian H
usually considers a system with a total of N particles with N1 particles of type 1 and mass m1 and
N2 = N− N1 particles of type 2 and mass m2, different from type 1, confined in a box of volume V and
maintained at a temperature T = (kBβ)−1. Following the 1/n! prescription for any n identical particles
in the system, the classical canonical partition function Q(N, N1, β, V) of the system then reads (e.g., in
Refs. [8,9,11]):

Q(N, N1, β, V) =
1

N1!(N − N1)!

∫
phase space

∏N
i=1 d3rid3 pi

h3N e−βH , (1)

where h—usually taken as the Planck constant—is a quantity with the dimension of an action and the
Hamiltonian H reads

H = Ubox({~ri}i=1,...,N) +
N1

∑
i=1

~p2
i

2m1
+

N−N1

∑
i=1

~p2
i

2m2
, (2)

where Ubox({~ri}i=1,...,N) is infinite if any particle goes outside the bounding box and is zero otherwise.
Upon choosing, as is often done, N1 = N/2, it follows that:

Q(N, N1 = N/2, β, V) =
1

N1!(N − N1)!
VN

Λ3N1
1 Λ3(N−N1)

2

=
1

(N/2)!2
VN

Λ3N/2
1 Λ3N/2

2

, (3)

where Λi ≡ h
√

β/(2πmi) is the thermal wavelength of species i. Finally, applying the Stirling
approximation ln N! ≈ N ln N − N, one finds for sufficiently large N the free energy

βF(N, N1 = N/2, V, β) ' −N ln 2− N +
N
2

ln
(

ρΛ3
1

)
+

N
2

ln
(

ρΛ3
2

)
, (4)

where ρ ≡ N/V. In Equation (4), the second and third terms can be interpreted as the free energy that
a gas of N/2 identical particles of respectively type 1 and 2 would have, had they been separated in
equal sized compartments of volume V/2. Given that F = U − TS and that T does not vary, it is then
rather timely to introduce the mixing entropy ∆Smix as being:

∆Smix
kB

≡ βF(N1 = N/2, β, V/2) + βF(N2 = N/2, β, V/2)− βF(N, N1 = N/2, β, V) = N ln 2. (5)
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The entropy gain of kB ln 2 per particle found in Equation (5) upon mixing is the well known
entropy of mixing attributable to the difference in identity between the two species 1 and 2. Technically
speaking, this difference in identity is betrayed by the factor (N/2!)−2 in Equation (3), instead of the
usual 1/N! expected for identical particles. However, it has been argued that interpreting the NkB ln 2
entropy change as stemming from this combinatorial factors was in fact misleading [11]. We will come
back to this issue in Section 5.

3. Heuristic Generalisation

One of the issues with what was presented above as the “textbook” derivation is that it may
appear somewhat artificial in a general context. For example, in the case where N1 = N/2, it follows
that N ought to be an even number as there cannot be a fractional number of particles. In addition,
even in absence of fractional particle numbers, how are we to choose the species upon adding a single
additional particle to the overall system? These questions become more and more inevitable as the kind
of mixtures one wants to look at becomes more complex with, e.g., N1 = N/

√
2 or when considering

more than two species or even infinitely many.
One possible way of tackling these issues is to interpret the composition of a mixture through the

probability p ∈ [0, 1] for a particle in the box to be of type 1 and then recast N1 as N1 ≡ Np. Since p is a
probability, the product Np need not be an integer and each new particle added to the mixture will be
of type 1 with probability p and type 2 with probability 1− p. With this new prescription, Equation (3)
can be rewritten as follows:

Q(N, p, β, V) =
1

Γ(Np + 1)Γ(N(1− p) + 1)
VN

Λ3Np
1 Λ3N(1−p)

2

, (6)

where Γ(x + 1) ≡
∫ +∞

0 dy yxe−y is the Euler gamma function which generalises the factorial function
to the reals. For large values of x, one can use a saddle point approximation and finds that Γ(x + 1)
satisfies the Stirling approximation Γ(x + 1) ' x ln x− x. Thus, in the large N limit, one finds for the
free energy

βF(N, p, β, V) ' Np ln
(

ρΛ3
1

)
+ N(1− p) ln

(
ρΛ3

2

)
− N − Ns(p), (7)

where s(p) ≡ −p ln p− (1− p) ln(1− p). Although some authors [19,26] refer to s(p) as the mixing
entropy, we follow [29] and consider that the mixing entropy denomination should be left for
unambiguously prepared mixing scenarios and their corresponding entropy variations and therefore
refer to s(p), appearing in the equilibrium free energy of a mixture, as its composition entropy. For the
reader who is more mathematically inclined, in the case of a Bernouilli random variable with probability
p, s(p) is also called the binary entropy [30].

It can be noted that Equation (7) can be rewritten, without any explicit reference to different
species, as follows:

βF(N, p, β, V) ' N
(

ln
(

ρΛ̃3
)
− 1
)
− Ns(p), (8)

where Λ̃ ≡ h
√

β/(2πm̃) and m̃ ≡ mp
1 m1−p

2 is the weighted geometric mean of the masses of the
species 1 and 2. One important consequence of Equation (8) is that, at fixed composition, both Λ̃
and s(p) have fixed values and do not contribute to the thermodynamic properties of the system
and therefore the non-interacting binary mixture is thermodynamically equivalent to a system of N
effective identical particles [22].

Suppose now that we have two binary mixtures each comprising species 1 and 2 but with different
compositions: mixture A with probability pA for a particle of the mixture to be of type 1 and mixture B
with probability pB for a particle of the mixture to be of type 2. Each mixture contains N/2 particles
and is initially confined in a box of volume V/2 (cf. Figure 1).
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Figure 1. Schematic representation of a mixing scenario between two different substances. The top left
panel uses a particle representation with type 1 particles as dark orange squares and type 2 particles as
blue disks. We see that the compositions of substances A and B are different. This is further illustrated
in representing their underlying probability distribution on the top right panel. Upon mixing the
bottom panels, they form a new composition C that is a priori different from A and B.

They are then mixed together in a box of volume V: what is the entropy change in the mixture?
To address this question, we need first to determine the composition of the new mixture C obtained
after mixing. In the absence of chemical reactions, the conservation of particle number compels us to
ascribe the probability pC = (pA + pB)/2. The entropy change upon mixing reads then

∆Smix
kB

= βF(N/2, pA, β, V/2) + βF(N/2, pB, β, V/2)− βF(N, pC, β, V) = DJS(pA|pB), (9)

where

DJS(pA|pB) =
1
2 ∑

i=A.B

[
pi ln

(
2pi

pA + pB

)
+ (1− pi) ln

(
2(1− pi)

(1− pA) + (1− pB)

)]
. (10)

is the Jensen–Shannon divergence. Two features of DJS worth mentioning is that it is positive definite and
bounded from above by ln 2 and its square root is a distance between probability distributions [31].
One can verify for example that if pA = 0 and pB = 1, then DJS = ln 2 thus retrieving Equation (5).

In spite of the generalisation of the textbook derivation to any binary mixture and the physical
insights gained from adopting a composition as probability paradigm, the approach developed above
suffers from a few mathematical and conceptual problems which need to be addressed:

• The heuristic approach used in this section starts off by directly generalising Equation (3)
into Equation (6). Mathematically, it cannot start from Equation (1) as, in general, it could
involve a fractional number of phase space integrals over particles of type 1 or 2, respectively.
Thus, the current approach cannot be used as a basis to devise a mathematically rigorous
composition-probability-based statistical mechanics of mixtures.

• Equation (6) made use of the Euler Gamma function to replace the more traditionally accepted n!
terms at the denominator so as to account for Np not being an integer. While mathematically this
may be fine, it is not justified within statistical mechanics itself and, indeed, as the first point was
being raised, it is hardly so, as one could have a fractional number of phase space integrals.
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• Problems arise with Np as well. What does it mean to switch from N1 (an integer) to Np
(not necessarily an integer) in the canonical ensemble? If p is a probability for a particle to be of
type 1, then the particle type is a Bernouilli random variable t = {1, 2} such that p(t = 1) = p
and p(t = 2) = 1 − p. Suppose we now model a mixture as a collection {ti}i=1,...,N of N
independent such random variables. This leads us to define the random variable N1 ≡ ∑N

i=1(−ti +

2) corresponding to the number of particles of type 1 in the system. If we denote 〈〈·〉〉, from the
composition average, 〈〈N1〉〉 = Np comes. Thus, by substituting N1 with Np in Equation (3),
one effectively replaces an integral number of particles by a real positive expectation value.
Conceptually, this poses a problem, at least in principle, as any given individual mixture will only
ever have an integer number of particles usually close to, but different from, Np.

It is the aim of the following sections to devise a rigorous statistical mechanics framework of
binary mixtures for which the composition is interpreted as an a priori probability distribution with
probability p for any given particle to be of type 1 (and probability (1− p) for a particle to be of type
2). Only once such a framework has been laid out can we hope to delineate the range of validity, if any,
of the results summarised in Equations (7)–(9) and the approximate reasoning used to derive them.

4. Prior Based Statistical Mechanics of a Binary Mixture

We now consider the simple case of the composition of a binary mixture modelled as a collection
{ti}i=1,...,N of N independent Bernouilli random variables with p(ti = 1) = p and p(ti = 2) = 1− p.
Denoting N1 as the random variable for the number of particles of type 1 among N, the probability
P(N1 = N1|N, p) for it to be equal to a set integer value N1 follows a Binomial distribution BN,p(N1)

defined by:

P(N1 = N1|N, p) = BN,p(N1) ≡
N!

N1!(N − N1)!
pN1(1− p)N−N1 . (11)

Given the status of random variable of N1, it means that the set of values it can take corresponds
to a set of different possible realisations of the same mixture. As a side note, in models with interacting
components, the fact that there can be multiple realisations of the same mixture (as characterised by an
a priori probability distribution) translates into using random matrices to set the interaction strengths
between constituents [27].

From Equation (11), we see that

1
N1!(N − N1)!

=
BN,p(N1)

N!pN1(1− p)N−N1
. (12)

Now, for any given mixture realisation, both N and N1 are fixed and the framework of the
canonical ensemble applies, including Equation (3). We can then substitute 1/(N1!(N − N1)!) by its
expression in Equation (12) and get:

Q(N, N1 = N1, β, V) =
VN

Λ3N1
1 Λ3(N−N1)

2

BN,p(N1)

N!pN1(1− p)N−N1
. (13)

We seek a definition of the free energy of a mixture that would be realisation-independent.
This is because repeating an experiment with a given mixture—characterised by prior composition
probability—likely involves different realisations of its composition. To this end, we denote
F (N, p, V, β) ≡ 〈〈−kBT ln Q(N, N1, β, V)〉〉 the canonical free energy averaged over realisations of N1.
After a bit of algebra and using the fact that 〈〈N1〉〉 = Np, we get

βF (N, p, V, β) = −N ln V + N ln Λ̃3 + ln N!− Ns(p) + H(BN,p, BN,p), (14)

where s(p) and Λ̃ are as introduced in Equations (7) and (8), respectively, and H( f , g) ≡
−∑N

N1=0 f (N1) ln g(N1) making then H(BN,p, BN,p) interpretable as the realisation entropy of the
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mixture. There does not exist any exact closed form expression for H(BN,p|BN,p) [32] but for N
sufficiently large H(BN,p, BN,p) ∼ (1/2) ln(2πeNp(1− p)) (see Appendix A) so that, in the large N
limit, Equation (14) is equivalent to Equation (8), thus justifying more rigorously its validity.

A few remarks are in order regarding Equation (14):

• The large N limit leading to Equation (8) in the heuristic derivation (Section 3) implies that
both Np and N(1− p) should be sufficiently large for the Stirling approximation to hold, which
can require a very large N if p is either very small or very close to unity. On the contrary,
Equation (14) converges rather quickly with N to the asymptotic form Equation (8) especially
when p is either very small or very close to unity. This can be explained by remarking that, if
1− p is very small and N finite, any realisation will most likely have very few, if any, particles
of type 2. As a consequence, the realisation entropy will be closer to zero in magnitude as there
is less uncertainty in the composition realisations. Therefore, although the heuristic derivation
leads to the asymptotic form Equation (8), it incorrectly—given that Equation (14) has stronger
mathematical and conceptual foundations—predicts the composition for which the asymptotic
regime is reached the fastest.

• For finite N, the realisation entropy term in Equation (14) actually decreases the entropy estimate
given by the first four terms in the r.h.s of Equation (14) as it contributes negatively to the entropy of
the system. This can be understood by adopting a “surprise” interpretation of entropy. The last two
terms of Equation (14) can then be interpreted as the average surprise to have N1 type 1 particles
in the mixture. On the one hand, the Ns(p) contribution to entropy stems from an estimation
of the surprise for a given realisation N1 as being N1 ln p + (N − N1) ln(1− p). This would be
exact if one were to either assign a particular order to the particles or if one were to repeat
single-particles experiments N times, where the identity of the particle for each try is obtained
from the underlying probability distribution of the Bernouilli variable t, and add-up the observed
individual surprises [22]. On another hand, the probability to have N1 particles of type 1 among
N is BN,p(N1) and the corresponding surprise is − ln BN,p(N1). The difference between the two

gives us the relative surprise − ln pN1 (1−p)N−N1

BN,p(N1)
which captures the contribution to entropy owing

to composition.

Finally, we note that Sollich et al. [26,33] have proposed a strategy based on a moment-description
of thermodynamic quantities for sufficiently large N to tackle the fact that a mixture composition of a
single finite system is but a realisation of some underlying prior composition. This strategy differs
in spirit from the one developed in the present paper in that it aims at performing a dimensional
reduction of the free energy landscape by using a dependence of the free energy in the moments
(ideally a small number of them) of the feature used to characterise the composition (e.g., size. mass,
etc...) to obtain insights on the phase behaviour of mixtures. This objective is currently beyond the
scope of the present paper.

5. Identifying the Gibbs Mixing Entropy

In this section, we consider a situation analogous to the one described in Figure 1 whereby N/2
particles (N being even) of a mixture A initially confined in a volume V/2 mix with N/2 particles of a
mixture B initially confined in a volume V/2. Mixtures A and B only comprise type 1 and 2 particles
but each particle identity is modelled with different random variables depending on the mixture it
belongs to: tA with p(tA = 1) = pA and tB with p(tB = 1) = pB. Following the theory developed
in Section 4, we model the composition of mixture A (resp. B) as a collection of N/2 independent
Bernouilli random variables {tA

i }i=1,...,N/2 (resp. {tB
i }i=1,...,N/2) and denote NA

1 (resp. NB
1 ) the random

variable giving the number of type 1 particles in mixture A (resp. mixture B). NA
1 and NB

1 both follow
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a Binomial distribution and therefore, prior to mixing, the free energy of each mixture—for a given
realisation—follows from Equation (12):

βFA/B(N/2, NA/B
1 = NA/B

1 , β, V/2) = − ln

 V
N
2

Λ3NA/B
1

1 Λ3(N/2−NA/B
1 )

2

B N
2 ,pA/B

(NA/B
1 )

N
2 !pNA/B

1
A/B (1− pA/B)

N/2−NA/B
1

 . (15)

Upon mixing, the A and B mixtures will form a new mixture C with a composition emerging from
the constraints during the diffusion process [29]. In the absence of chemical reactions, the number NC

1
of particles of type 1, once mixing has occurred, is a random variable satisfying:

NC
1 ≡ NA

1 + NB
1 , (16)

and
〈〈NC

1 〉〉 =
N
2
(pA + pB) = NpC. (17)

We note that Equation (17) justifies the approach used for mixture C within the heuristic approach
described in Section 3. If we want to know what is the probability for having NC

1 = NC
1 , then we have:

P(NC
1 = NC

1 |N, pA, pB) = PN,pA,pB(NC
1 ) ≡

N/2

∑
NA

1 =0

N/2

∑
NB

1 =0

B N
2 ,pA

(NA
1 )B N

2 ,pB
(NB

1 )δNC
1 ,NA

1 +NB
1

(18)

=
NC

1

∑
NA

1 =0

B N
2 ,pA

(NA
1 )B N

2 ,pB
(NC

1 − NA
1 ), (19)

where δi,j = 1 if i = j, and zero otherwise, is the Kronecker delta function. If pA = pB, then
PN,pA,pB(NC

1 ) = BN,pA(NC
1 ). However, there is no known closed form expression for PN,pA,pB(NC

1 )

when pA 6= pB so if one wants to estimate its values it has to be done either numerically by carrying
out the whole summation or by using an approximate expression [30].

The canonical free energy of the final state of the system for a given realisation NC
1 can be written

from the form of the canonical partition function in Equation (13):

FC(N, NC
1 = NC

1 , β, V) = − ln

 VN

Λ
3NC

1
1 Λ

3(N−NC
1 )

2

BN,pC(NC
1 )

N!p
NC

1
C (1− pC)

N−NC
1

 . (20)

The difference with Equation (13), however, is that, in Equation (20), the probability distribution
BN,pC(NC

1 ) is in general not equal to the actual probability distribution (given in Equation (19)) for
obtaining NC

1 type 1 particles after the mixing of substances A and B. We will see in what follows that,
as long as BN,pC(NC

1 ) has the same support as P(NC
1 = NC

1 |N, pA, pB), this problem can be overcome.
For a given realisation of mixtures A and B composition, we can now obtain the entropy

variation ∆Smix upon mixing as being of the two gases from ∆Smix/kB = βFA(N/2, NA
1 , β, V) +

βFB(N/2, NB
1 , β, V)− βFC(N, NC

1 , β, V). For each realisation, a different entropy variation can be be
found in principle. Like in Section 4, a realisation-free entropy change ∆Smix ≡ 〈〈∆Smix〉〉 can be
sought by averaging over composition realisations of substances A and B. We get (see Appendix B):

∆Smix
kB

= ln
(

2N((N/2)!)2

N!

)
︸ ︷︷ ︸

partitioning entropy

+N DJS(pA|pB)︸ ︷︷ ︸
square metric

+ ∑
i=A,B

H(B N
2 ,pi

, B N
2 ,pi

)− H(PN,pA,pB , BN,pC)︸ ︷︷ ︸
realisation entropy

. (21)

In Equation (21), we have identified three different contributions to the entropy change upon
mixing substances A and B that are worth commenting on:
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• Partitioning: The first term on the r.h.s of Equation (21) corresponds to the entropy change owing
to having removed a partition between the initial compartments or, said differently, results from
the more numerous partitioning possibilities offered when the whole volume V can be explored
instead of V/2. Indeed, when each particle can freely roam in the boxe of volume V, imagining a
virtual division splitting the box into two equal half will lead each particle to be either on one side
or the other of the virtual dividing wall. There are then 2N possibilities. When the dividing wall
switches from virtual to real, and N/2 particles have to be on each side, the number of ways of
realising this partitioning is N!/((N/2)!)2. The corresponding entropy change is therefore larger
than zero for any finite N.

• Composition distance: The second term on the r.h.s of Equation (21) has already been discussed
in Section 4 and corresponds to a contribution to the entropy variation stemming from how
different are the compositions of mixtures A and B when characterised by underlying probability
distributions for particle identities. Since DJS(pA|pB) is a square metric, it becomes strictly zero
when the a priori compositions are identical.

• Composition realisation: The third and last term identified on the r.h.s of Equation (21)
corresponds to the entropy variation owing to realisation considerations. It is worth noting that
when the compositions are identical i.e., pA = pB then PN,pA,pB = BN,pA but H(BN,pA , BN,pA) ≤
2H(B N

2 ,pA
, B N

2 ,pA
) because of the submodular character of Shannon’s entropy function [34]. As a

result, the entropy variation due to composition realisations is larger than or equal to zero upon
mixing even when substances have the same underlying composition.

When split into the three contributions identified in Equation (21), the reasons for an entropy
increase upon mixing can be seen in a new light.

First, as noted in [11], conflating the presence of combinatorial terms in an entropy expression
with an explicit role of particle identity can be misleading. Indeed, the partitioning entropy term has
nothing to do with whether substances A and B are considered identical or not and is therefore not
exclusive to the mixing of different substances. It will therefore appear in all mixing scenarios no
matter what. This positive increase in entropy owing to partitioning can, at least in principle, be used
to do meaningful work as exemplified with Szilard’s engine [35]. This positive increase in entropy also
further supports the—usually dismissed—intuitive claim that, even when substances are identical,
some form of mixing does indeed occur.

The realisation entropy contribution that is positive even when substances have an identical
underlying composition can be understood by the fact that upon mixing information on the initial
realisations of mixtures A and B has disappeared. Therefore, if one were to insert a dividing wall, even
if it happens that there are N/2 particles on each side, the realised compositions on either sides of
the wall will be differing from the initial ones, even if selective membrane is used. This difference
in realisation can in principle be used to do work by adapting Szilard’s engine to incorporate a
semi-permeable membrane. This conclusion would not follow, however, if the substances are identical
in their underlying composition and pA is exactly equal to 0 or 1 since the consideration on realisations
would then become meaningless.

It remains then the square metric contribution to entropy which is the only one to exactly vanish
if substances are identical in their underlying composition and to measure in what sense substances
A and B differ from each other in principle. For reasons detailed elsewhere [22], we argue that this
contribution reflects best Gibbs’ original insights on the mixing of substances by diffusion [2] and shall
therefore denote ∆SGibbs

mix ≡ kBNDJS(pA|pB).
All of the above considerations with regard to Equation (21) hold for finite size systems. From a

standard use of Stirling’s approximation, the first term on the r.h.s of Equation (21) vanishes in the
thermodynamic limit. At first glance, it is nevertheless unclear how the H(PN,pA,pB , BN,pC) behaves in
the large N limit. It can be shown (Appendix A) that the term H(PN,pA,pB , BN,pC) is at most of order
∼ O(ln N) so that

∆Smix ' ∆SGibbs
mix = kBNDJS(pA|pB) (22)
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for large N.

6. Discussion

After having briefly presented what we called the textbook treatment of binary mixtures,
we looked at a heuristic generalisation which is grounded in the idea that a size-independent definition
of a substance necessitates the existence of a prior underlying probability distribution from which
are drawn the particles identity. The heuristic formulation works by substituting N1 the number of
particles of type 1 by Np, p being the probability for an individual particle to be of type 1. Following
some postulated extensions of the canonical ensemble framework, this led us to Equation (13) which
enabled us to discuss how the thermodynamics of a binary mixture can then be equivalent to that of a
system of identical particles, provided the composition is kept fixed. Acknowledging various caveats of
the heuristic approach, we then developed a more rigorous approach fully compatible with traditional
statistical mechanics. This new approach starts by taking seriously the idea of a prior probability
distribution underlying the composition of a substance. If that is the case, then two different realisations
of the same underlying distribution need not have the exact same composition. Having this in mind, it
then conjectured that to obtain a realisation-independent thermodynamics of a binary mixture, one
needs to consider the free energies averaged over realisations. This procedure enabled us to retrieve
Equation (13) in the large N limit, thus validating the more intuitive approach used in Section 3.
Incidentally, this further supports the idea that for dilute gases or substances at fixed composition, the
actual polydisperse character of the substance bears no consequences on the thermodynamics of the
system and it is enough to consider the system as comprising only—effective—identical particles. It is
unclear whether this is purposeful or not, but this equivalence between a binary mixture and a single
component system can partially justify—at least a posteriori—the predominance of single component
systems in the literature available at undergraduate level.

Aside from the average free energy of a given mixture, the entropy variation upon mixing two
different mixtures has also been studied within the new statistical mechanics framework proposed in
this paper. It was found that the entropy of mixing comprised three physically different contributions:
one owing to partitioning that is not exclusive to the mixing of different substances, one owing
to a square distance between the underlying probability distributions for particles’ identity and
a last one owing to realisation entropy differences. This last term is new and does not vanish
when the underlying compositions of the two mixed substances are the same. Upon inspection,
the second—metric based—term in Equation (21) is therefore the closest to the entropy of mixing, as
discussed by Gibbs in [2]. Finally, we discussed the thermodynamic limit behaviour of Equation (21)
and showed that it reduced to the Gibbs entropy (22).

It is worth noting that the proposed theory of binary mixtures relies on the assumption that the
substances can be modelled as collections of independent random—identity—variables. In practice,
any protocol which behaves the same way with any particle regardless of how many of a specific
kind it has already processed, would give rise to a Binomial distribution for particle number of
type 1 (resp. 2). However, there can also be non-independent collections of Bernouilli variables
with PN,p(N1) 6= BN,p(N1) (e.g., kinetic proof reading or active sorting) [36]. In such cases, the
mathematical framework developed in these pages is still valid, but the asymptotic behaviours of
average free energies need to be elucidated for each individual case. In addition, it is important to
stress that, if the particles were to interact with each other, that would not necessarily mean that the
particles’ identity random variables are not independent. Instead, particle interactions could simply be
expressed through random matrices [27]. Therefore, one avenue of exploration would be to adapt it to
interacting mixtures. Moreover, it is possible to see a parallel with the composition-realisation-based
statistical mechanics developed in the present paper and averages over disorder in systems with
quenched disorder (see e.g., [37]). This offers possibilities of cross-fertilisation between different
branches of statistical mechanics. Now, if the realisation-based approach corresponds to averages
over quenched disorder in other fields, it is tempting to draw a parallel between grand canonical



Entropy 2019, 21, 599 10 of 13

ensemble-treatments of mixtures [28] and annealed disorder. The author is not aware of an equation
equivalent to Equation (22) in the context of the grand canonical ensemble and this is another route
worth exploring.

Finally, in Refs. [22,29], the heuristic approach was used to suggest that both discrete and
continuous polydisperse systems were equivalent to a system of identical particles, provided the
composition remains the same and a generalised version of Equation (9) was derived for mixtures of
arbitrary number of components and composition. Whether these results can remain valid in a version
of the present framework extended to more than two components remains to be determined.

7. Conclusions

In this article we proposed a theory to address the possibility of different realisations of a
given composition and obtain realisation-independent free energies in the canonical ensemble.
This lead us to find that (a) in addition to the composition entropy discussed in [22,29] a realisation
entropy—vanishing in the thermodynamic limit—emerges in the expression of the free energy of a
binary mixture, (b) for a fixed composition the thermodynamics of a binary mixture is equivalent to
that of a system of identical particles, (c) the entropy change upon mixing two finite size identical
substances has two positive contributions owing to firstly an increase in partitioning entropy and
secondly a loss of information on substances’ realisations and (d) in the thermodynamic limit the
mixing entropy is a square norm between the compositions of the substances being mixed. Further
work remains to be done to extent this work to more complex mixtures.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Limiting Behaviour of H(PN,pA ,pB , BN,pC)

We wish to determine the asymptotic behaviour of H(PN,pA,pB , BN,pC) as N tends to infinity. To this
end, we first note that H(PN,pA,pB , BN,pC) ≥ 0 as it is the cross entropy over a discrete probability
distribution. Next, we recall Jensen’s inequality [38], which, for a given random variable X, states that
E[ϕ(X)] ≥ ϕ(E[X]), where E[·] stands for the expectation value. If we choose BN,pC(N

C
1 )/PN,pA,pB(N

C
1 )

for X and ϕ(x) = ln x, we get

E[ϕ(X)] =
N

∑
NC

1 =0

PN,pA,pB(NC
1 ) ln

(
BN,pC(NC

1 )

PN,pA,pB(NC
1 )

)
≥ ln

 N

∑
NC

1 =0

BN,pC

 = 0, (A1)

which yields
H(PN,pA,pB , BN,pC) ≤ H(PN,pA,pB , PN,pA,pB). (A2)

Note that Equation (A1) is valid because BN,pC and PN,pA,pB have the same support.
Next, we seek to evaluate the limiting behaviour of H(PN,pA,pB , PN,pA,pB). We recall that PN,pA,pB

stands for the probability distribution of the sum of two binomial variables distributed according to
B N

2 ,pA
and B N

2 ,pB
, respectively. In the large N limit, the central limit theorem applies and we have

B N
2 ,pA/B

(NA/B
1 ) ∼ N NpA/B

2 ,
NpA/B(1−pA/B)

2

(NA/B
1 ), (A3)

where

Nµ,σ2(x) ≡ 1√
2πσ2

e−
(x−µ)2

2σ2 . (A4)

Given that NC
1 = NA

1 + NB
1 , we can use Equation (A3) and consider NC

1 as a sum of two normally
distributed random variables. Since the sum of two normally distributed random variables with mean



Entropy 2019, 21, 599 11 of 13

µA (resp. µB) and variance σ2
A (resp. σ2

B) is also normally distributed but with mean µA + µB and
variance σ2

A + σ2
B,

PN,pA,pB(NC
1 ) ∼ NNpC, N

2 (pA(1−pA)+pB(1−pB))
(NC

1 ). (A5)

is provided.
It is straightforward to show that

H(Nµ,σ2 ,Nµ,σ2) =
1
2

ln(2πeσ2). (A6)

Thus, denoting σ2
C = N(pA(1− pA) + pB(1− pB))/2, we get that

H(PN,pA,pB , PN,pA,pB) ∼ H(NNpC,σ2
C

,NNpC,σ2
C
) ∼ O(ln N), (A7)

which, when combined with Equation (A2), shows that H(PN,pA,pB , BN,pC) is at most of order ∼
O(ln N) in the large N limit.

Appendix B. Deriving the Entropy Change Averaged over Compositions

In this section, we want to find an expression for the entropy variation upon mixing two substances
averages over all possible realisations of their composition. We start by discussing more formally
which average is taken. In our particular case of mixing, the average of any function f (NA

1 , NB
1 ) is

defined as

〈〈 f (NA
1 , NB

1 )〉〉 ≡
N/2

∑
NA

1 =0

N/2

∑
NB

1 =0

B N
2 ,pA

(NA
1 )B N

2 ,pB
(NB

1 ) f (NA
1 , NB

1 ). (A8)

From the general definition above, two specific cases are worth looking at:

• If f (NA
1 , NB

1 ) = f (NA/B
1 ) i.e., only depends on one of the variables, then

〈〈 f (NA
1 , NB

1 )〉〉 =
N/2

∑
NA/B

1 =0

B N
2 ,pA/B

(NA/B
1 ) f (NA/B

1 ). (A9)

• If f (NA
1 , NB

1 ) = g(NA
1 + NB

1 ), where g(x) is a function of a single variable, then

〈〈 f (NA
1 , NB

1 )〉〉 =
N/2

∑
NA

1 =0

N/2

∑
NB

1 =0

B N
2 ,pA

(NA
1 )B N

2 ,pB
(NB

1 )g(NA
1 + NB

1 ) (A10)

=
N

∑
NC

1 =0

NC
1

∑
NA

1 =0

B N
2 ,pA

(NA
1 )B N

2 ,pB
(NC

1 − NA
1 )g(NC

1 ) (A11)

=
N

∑
NC

1 =0

PN,pA,pB(NC
1 )g(NC

1 ). (A12)

We are now equipped to look at the average of ∆Smix/kB = βFA(N/2, NA
1 , β, V) +

βFB(N/2, NB
1 , β, V) − βFC(N, NC

1 , β, V). To this end, we note that the first two free energies are
functions of only one of the particle number and will therefore follow Equation (A10). This case
is rather straightforward and gives an expression of the form (14):

〈〈βFA(N/2, NA
1 , β, V) + βFB(N/2, NB

1 , β, V)〉〉 = −N ln V
2 + N

2
(
ln
[
(Λ3

1)
pA(Λ3

2)
1−pA

]
+ ln

[
(Λ3

1)
pB(Λ3

2)
1−pB

])
+ ln

(
N
2 !
)2
− N

2 (s(pA) + s(pB))

+H(B N
2 ,pA

, B N
2 ,pA

) + H(B N
2 ,pB

, B N
2 ,pB

).

(A13)
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Next, the average of the free energy once mixing has occurred follows the case described in
Equation (A12) and we get:

〈〈βFA(N, NC
1 , β, V)〉〉 = −N ln V + 〈〈NC

1 〉〉 ln Λ3
1 + 〈〈N − NC

1 〉〉 ln Λ3
2 + ln N!

− 〈〈NC
1 〉〉 ln pC − 〈〈N − NC

1 〉〉 ln(1− pC) + H(PN,pA,pB , BN,pC). (A14)

Substituting 〈〈NC
1 〉〉 by NpC and subtracting Equation (A14) from (A13) then gives Equation (21).
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