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Abstract: The paper addresses an important long-standing question in regards to the energy efficiency
renovation of existing buildings, in this case hotels, towards nearly zero-energy (nZEBs) status.
The renovation of existing hotels to achieve a nearly zero-energy (nZEBs) performance is one of the
forefront goals of EU’s energy policy for 2050. The achievement of nZEBs target for hotels is necessary
not only to comply with changing regulations and legislations, but also to foster competitiveness
to secure new funding. Indeed, the nZEB hotel status allows for the reduction of operating costs
and the increase of energy security, meeting the market and guests’ expectations. Actually, there is
not a set national value of nZEBs for hotels to be attained, despite the fact that hotels are among
the most energy-intensive buildings. This paper presents the case study of the energy retrofit of
an existing historical hotel located in southern Italy (Syracuse) in order to achieve nZEBs status.
Starting from the energy audit, the paper proposes a step-by-step approach to nZEBs performance,
with a perspective on the costs, in order to identify the most effective energy solutions. Such an
approach allows useful insights regarding energy and economic–financial strategies for achieving
nZEBs standards to highlighted. Moreover, the results of this paper provide, to stakeholders, useful
information for quantifying the technical convenience and economic profitability to reach an nZEBs
target in order to prevent the expenses necessary by future energy retrofit programs.

Keywords: nZEBs; hotels; energy; economic analysis

1. Introduction

With the adoption of the Energy Performance of Buildings Directive in 2010, both the building
industry and Member States (MSs) undertook new challenges [1]. In Italy, existing buildings represent
the majority of the building stock and the largest and most cost-effective energy saving potential [2,3].
For this reason, an interesting challenge is the upgrading, of the existing building stock, to nearly
zero-energy (nZEBs). The concept of nZEBs refers to a building with a net energy consumption of
nearly zero over a typical year. The target of a nZEB is not limited to minimize the energy consumption
with an energy efficient envelope and the rational use of energy (RUE), but requires balancing their
energy requirements with the exploitation of on-site renewable sources, locally available, non-polluting,
and low-cost [4].

Specifically, hotels represent a fascinating challenge since they are usually complex building
systems and, at the same time, they need to minimize their energy costs without compromising the
quality of their guests’ stay [5–7]. Hotel buildings have some special features that must be considered
when planning an energy renovation: (a) Seasonal operation with a large fluctuation in energy demand
and large use of delivered energy for non-hosting functions, such as spas, swimming pools, saunas,
gyms, kitchens, laundry, etc., to ensure customers’ comfort and expectations [8]. Although no collective
data are available on global energy consumption in the hotel sector, it is estimated that 97.5 TWh power
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was used in hotel facilities worldwide in 2001 [9]. Numerous researches on energy use in hotels in
Europe show that hotels consume around 200–400 kWh/m2 per year and almost half of it (48%) is used
for HVAC (Heating, ventilation, and air conditioning) [10]. Nevertheless, the wide variety of existing
hotel buildings, which may differ in age, dimensions, and location, does not allow a unique approach
to the energy retrofit. Therefore, the retrofit interventions must be carefully defined and designed,
particularly in the case of historical or architectural constraints [11]. The hotels are among the most
energy-intensive buildings, consuming large amounts of energy per unit surface with large use of
fossil fuels. Use of renewable energy resources in the Mediterranean basin are not exploited enough
and could be used for heat and power generation, replacing fossil fuels, offering a profit to the owner,
and reducing carbon emissions, with resulting environmental benefits. Obviously, renewable energy
technologies which can be used in hotels depends on the availability of the energy source. Some of
them are abundant, like solar energy, and others are site-dependent, like wind energy and biomass [12].
However, the combined utilization of energy-saving technologies with renewable energy resources
in hotels could minimize or zero the energy consumption as well as the carbon emissions due to the
operational energy use in them [13,14].

Based on the case study of a small-to-medium size hotel, the authors have outlined different
cost-effective energy retrofit strategies and measures. After that, they have developed an integrated
assessment model [15,16], in order to evaluate not only the feasibility and environmental sustainability of
retrofit solutions but, also, the opportunity to maximize the trade-off between technical–environmental
and economic–financial performances [17,18].

2. Materials and Methods

2.1. Energy Saving Issues

In order to obtain the expected energy saving, the evaluation of a retrofit intervention requires
the identification of the most effective solutions according to the particular conditions of the site and
the type of building which must be renovated [4]. Therefore, it is essential to define a clear picture of
the current state of the building. Consequently, in the first stage, a survey was carried out in order
to collect reliable information concerning the HVAC systems, the lighting systems, the geometry of
the building elements, their current condition, the pathologies affecting them, and the deficit to be
addressed. Moreover, specific information on the features of the site, the climatic conditions, the
orientation, and the current energy consumption was collected. All data regarding the building
undergoing renovation was used for modelling a specific case study, in order to provide a reliable
integrated assessment model. Thus, several scenarios characterized by different technological solutions
and retrofitting strategies could be tested, both from the technical–environmental viewpoint and from
the economic–financial perspective [19,20]. This multidimensional approach allowed for several factors
to be kept under control that could influence the behavior of the refurbished building in terms of
energy performance indexes (EP), energy classification (EC), and carbon dioxide reduction (ECO2).
Moreover economic–financial indexes as net present value (NPV), internal rate of return (IRR), and
discount payback period (DPbP) were calculated [21,22].

Since the above mentioned indices (i.e., EP, EC, CO2, NPV, IRR, DPbP), have different scales and
measure units, a novel procedure was developed to encompass them into a single index expressed
in a standard scale range. Such a procedure requires the homogenization of the diverse factors that
influence the retrofit design according to the stakeholders (e.g., public authority and customers) and
the stockholders (the entrepreneurs). Consequently, such a multidimensional approach provides the
decision makers with broad information about the effects any change envisaged throughout the design
path can have on the global result of the retrofit process

The global energy performance index for non renewable energy EPgl,nr and for renewable energy
EPgl,rin, the energy classification (EC) and CO2 emissions due to the building energy consumptions were
calculated before and after the proposed retrofit actions. Analyses and simulations were performed
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using Termus Software, which complies with the following regulations: UNI EN ISO 15316 [23], UNI
EN ISO 13790 [24], UNI TS 11300 parts 1–2 [25,26].

2.2. Economic–Finacial Valuation Issues

The economic–financial performances are measured carrying out a discounted cash flow
analysis [27–30] by means of the following indices:

• Net present value, NPV, the sum of the discounted inflows and outflows over the whole lifespan
T, at the discount rate r; it needs to be positive;

• Internal rate of return, IRR, the discount rate that makes NPV of all cash flows from the investment
equal to zero; it needs to be greater than r, given that the latter is assumed as the global cost
(interest rate and opportunity cost) of the invested capital;

• Discounted payback period, DPbP, is the time span over which the initial investment cost is
recovered by the net future discounted cash flows.

The valuation-programming model consists of the following stages:

1. A set of approaching nZEB solutions ai (i = 1, 2, . . . , 9) were designed and characterized
from the perspectives of the above mentioned technical–environmental and economic–financial
performances, respectively Ti (i = 1, 2, . . . , 4) and Ei (i = 1, 2, . . . , 3);

2. T and E were successively normalized in a standard scale of scores, kT = f (T), kE = f (E), ranging
from 1 (lowest performance) to 5 (highest performance);

3. Two overall scores were attributed to each ai: KTi =
∑4

i=1 kTiλTi and KEi =
∑4

i=1 kEiλEi, where λTi
and λEi are the weights measuring the relative importance of each performance of group T or E
compared to the others in the same group, under the conditions:

∑4
i=1 λTi = 1 and

∑3
i=1 λEi = 1;

4. Based on scores KTi, the solutions ai are arranged in a ranking RT(W) depending on the chosen
weight system W; as the weight system reflects the perspective and the prospects of the decision
makers, we made some hypotheses about it supposing three different scenarios (displayed in
Section 4.2);

5. A set Aw of strategies Awi (i = 1, 2, . . . , 9) was arranged; each Awi is a bundle of ai packed
progressively including an increasing number of them, according to the above-mentioned ranking,
so that: Aw1 includes only the best ai; Aw2 includes the best two ai; and so on to the last strategy
Aw9 including all solutions; “the best” means the one(s) at the top of the above-mentioned ranking;

6. KTi = f (W) and Ai = f (W) as well, so that each set of strategies is associated to a weight system
and given W, Aw, it follows that, within each Aw, the best economic–financial Awi can be selected
based on KEi.

The input data are referred to as the technical–economic situation in Italy in 2017. According to
the Italian scenario, the operating costs are referred to as the unit prices of natural gas (0.10 €/kWh)
and electricity (0.25 €/kWh) [31]. The operational life and maintenance costs of the energy efficiency
measures and their components are referred to as UNI EN 15459:2008 [32]. The government incentives
are accounted for each solution [33]. The economic analysis is performed in nominal terms; the discount
rate is referred to as the interest rate reported in [34] and prudentially assumed at 5% as the basis for
the scenario analyses.

3. Case Study

3.1. Description

The Hotel Musciara (Figure 1) is a coastal hotel located in Ortygia, the old town of Syracuse
in southeastern Sicily, on an islet connected to the mainland by two bridges. Syracuse’s climate is
classified as warm and temperate. In the winter, there is much more rainfall than in the summer. This
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location is classified as Csa by Köppen and Geiger. The average annual temperature is 17.8 ◦C. In a
year, the average rainfall is 504 mm. Syracuse has 799 heating degree days (HDD) and belongs to Zone
B according to the national climatic zoning.

Figure 1. Views of the hotel’s shore and entrance.

The building, located on the northeastern water front and built at the beginning of the twentieth
century, was refurbished and converted into a hotel about twelve years ago (2006). It is worth
mentioning that, because of its historical features, the building was subject to some constraints to
comply with during the renovation process. In particular, the main façade cannot be insulated from the
outside, because of aesthetic reasons. The hotel has a rectangular plan, with six stories above ground
level. Musciara Resort operates annually and comprises twelve guestrooms for two people only, each
of them fully provided with appliances. The extra facilities offered by the resort are: Private beach,
restaurant, outdoor restaurant, meeting room, laundry service, whirlpool, satellite TV, and hair dryer.
The whole structure has a gross surface of 430.66 m2 and a gross volume of 1259 m3; the shape factor is
0.45 m−1.

3.2. Building Envelope and Energy Systems’ Features

The Hotel Musciara presents a very traditional structure with load bearing masonry walls (65 cm
thick) without thermal insulation. The roof is clad with typical Sicilian tiles, has a pitch of 25◦, and
is insulated. The floors and the attic have a traditional timber bearing structure. The wooden floor
(28 cm thick) of the attic is insulated. The windows are single pane and have a timber frame without
thermal break, and they are provided with external wooden blinds. The U-values of the main envelope
components, calculated after site inspection, are as follows:

⇒ load bearing masonry walls: U = 1.792 W·m−2
·K−1

⇒ roof: U = 0.443 W·m−2
·K−1

⇒ attic floor: U = 0.318 W·m−2
·K−1

⇒ ground floor: U = 0.970 W·m−2
·K−1

⇒ attic floor: U = 0.318 W·m−2
·K−1

⇒ ground floor: U = 0.970 W·m−2
·K−1

⇒ windows: U = 4.38 W·m−2
·K−1

The building is heated and cooled by an air-to-water type heat pump model Daikin
RXYQ14M9W1B, with 45 kW heating capacity and 40 kW cooling capacity [35]. The heat pump has a
13.40 kW nominal power input for heating and a 11.70 kW nominal power input for cooling [36,37].
Eighteen two-pipes fan coil units, placed in the false ceiling, are the terminals of the heating and
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cooling system. A furnace model Vaillant VK/1 Turbo VIT powered by natural gas (rated output
31.5 kW) is used for domestic hot water (DHW) production. The DHW loop also includes a 1500 L
water storage tank. At present, the building does not have a mechanical ventilation system (except
for exhaust air systems in bathrooms and kitchens) and it does not use any on-site renewable energy
source. The temperature set-points for space heating and cooling were fixed, respectively, at 20 ◦C
from 1 December to 31 March (heating period), and at 26 ◦C from 1 April to 30 November (cooling
period). The infiltration rate is 0.5 air changes per hour. The hotel is classified in the category of three
stars so the daily consumption of domestic heat water is set to 80 L/person/day. Occupancy levels of
the different zones are fixed as follows: 10 m2/person for guestrooms, 0.2 m2/person for lobby and café,
0.6 m2/person for breakfast rooms, 0 m2/person for the corridors and service space. Equipment power
densities are set equal to 6 W/m2.

Manual opening of the windows provides air change during daily cleaning. The lighting system
consists of both incandescent and fluorescent lamps installed in rooms, corridors, and service areas.
No control systems are installed. In Figure 2, DHW system, furnace and heat pump are reported.

Figure 2. From left to right: (a) DHW system, (b) furnace, (c) heat pump.

3.3. Current Energy Consumption

An energy audit was performed to obtain and compare real and simulated energy use of the
hotel. Energy use by hotels is influenced by their specific operational features, which include operating
schedules for the different and number of functional facilities, services offered, fluctuation in occupancy
levels daily and seasonally, and variations in customer preference relevant to indoor comfort. All
facilities were considered in the audit because the actual energy use of the hotel was derived from
energy bills. The current energy use, derived from energy bills, was extrapolated for the year 2016.

During the energy audit, the authors collected all information about the building’s physical (frame,
plants, etc.) and operational (occupancy, equipment data sheets, etc.) features, which allowed for the
modelling of the building using software for energy simulation. In case of unknown operational details,
reference was made to Italian standards. The energy performance (EP) index of the building was
calculated using a semi-steady-state software (Thermus). It allows a tailored rating energy assessment
according to the indications of the UNI CEI EN 16247-2 standard to be carried out, which takes into
account the real users’ conditions (e.g., occupancy, actual consumption of hot water, ventilation flow
rates, etc.). The tailored rating energy evaluation, as described in the technical specification UNI/TS
11300, and UNI EN 15603:2008 “Energy performance of buildings—overall energy use and definition
of energy ratings” is aimed at assessing an existing building with an acceptable energy performance
error, adapting to the real usage profile that can be concretely compared with the results that arise, for
example, from the reading of energy bills. Once the model was created, all the solutions analyzed
represent a true "simulation" of the actual savings that can derive from the energy saving solutions.
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The energy performance was expressed by the annual non-renewable primary energy consumption
for heating, DHW preparation, and lighting needed for standard building operation. The result
of the calculation of energy performance of the building in its current state was primary global
energy not renewable, EPgl,nren = 310.95 kWh·m−2

·y−1, and primary global energy renewable
EPgl,rin = 97.10 kWh·m−2

·y−1 with a C energy class level.
Table 1 reports the real and simulated data referring to electricity and gas consumption. The average

electricity consumptions in 2016 were about 48.45 kWh, while the gas consumptions were about
64.68 kWh. These data were used to verify and validate the model.

Table 1. Real and calculated energy delivered.

Source Real Simulated Variation

Natural Gas
5910 Sm3 5138 Sm3

13.0%64.68 kWhth 56.23 kWhth

150 kWh·m−2
·y−1 131 kWh·m−2

·y−1

Electricity 48.45 kWh 42.52 kWh -
113.0 kWh·m−2

·y−1 99.0 kWh·m−2
·y−1

3.4. Proposed Retrofit Strategies

The proposed energy retrofit strategies aim at improving the building energy class, ensuring high
return of the investment over the short-term and the significant reduction of greenhouse gas (GHG)
emissions. Starting from the analysis of the current building performance, energy efficiency measures
were addressed to improve it [38,39]. The energy efficiency measures chosen for energy retrofitting are
reported in Figure 3 and Table 2.

Figure 3. Sketch of the interventions.
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Table 2. Interventions and proposed solutions.

N Energy Efficiency Measures Proposed Solutions

1 Envelope Thermal Insulation
(Internal)

Vacuum Insulation Panel

s = 10 mm; k = 0.005 W/m·K

2 Windows Replacement
Double Pane Wood Windows

U = 1.1 W/m2
·K

3 Energy Systems Replacement
Water-To-Water Polyvalent HP for Space Heating, Cooling
and DHW
Heating Power = 21 kW; Cooling Power = 19 kW; COP = 4.52

4 Light Bulbs Replacement LED

5

Renewable Energy System

Photovoltaic Tiles; Area = 89.0 m2, P = 11.60 kWp

6 Photovoltaic Shelter; Area = 65.0 m2, P = 10.50 kWp

7 Photovoltaic Smartflower; Number = 3, P = 6.93 kWp

8 Photovoltaic Catwalk; Area = 158.0 m2, P = 9.50 kWp

9 Photovoltaic Umbrella; Area = 330.0 m2, P = 19.80 kWp

The selection of the technical solutions proposed took into account: The specific characteristics
of the historic hotel building (site and orientation, energy consumption, seasonality, etc.); the
expected energy performances; the environmental performances; and the economic–financial feasibility.
The solutions were in compliance with the regulations of Legislative Decree no. 42 of 22 January
2004 (Code of Cultural Heritage and Landscape) [40–42]. For example, the hotel façades have high
cultural value and must be preserved [43,44]. Therefore, the only choice was to insulate the walls from
the inside.

4. Results

4.1. Energy Performances Results

Several numerical analyses were carried out considering the energy efficiency measures described
in the previous section, in order to verify the effectiveness of such measures to make the hotel meet the
target performance. The calculations were performed with a national certified software (Thermus) by
CTI (Italian Thermo-Technical Committee), based on relevant national and international standards.
The software allows for the calculation of the final and primary energy and demanded carbon emission
levels for all energy services, namely space heating and cooling, domestic hot water, and lighting.
In Table 3 the energy efficiency measures of the nine interventions compared to the base case (BC)
are reported.

Table 3. Energy efficiency measures of the nine interventions.

B 1 2 3 4 5 6 7 8 9

T1: EPgl,nr

kW·m−2
·y−1 311 303 296 130 220 239 248 270 254 195

T2: EPgl,rin

kW·m−2
·y−1 97 54 87 126 62 102 101 95 99 114

T3: CO2
Kg·m−2

·y−1 65 64 62 29 45 49 51 56 52 39

T4: Energy
Class C B B A3 C A1 A1 B B A2
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It can be noticed that the interventions on the energy systems were more effective if compared
to those on the frame, despite the latter avoiding thermal bridges and improving indoor thermal
comfort. In particular, the highest performances were achieved by means of the installation of a
water-to-water HP.

4.2. Economic Performances Results

The expected energy performances was supposed point and continuous revenues and costs. Within
the time span T the annual cash flow was calculated as the difference between annual revenue and
cost, based on which the investment profitability can be valuated [45]. The annual cash flows include:

• Revenues, concerning savings, S, due to the improvement of the energy performances; government
subsidies, s;

• Global costs, concerning initial expenses for refurbishment works instalment I0; additional
expenses for professional services, p; value-added tax for both the above-mentioned items, t;
annual operating cost for each energy service, m; discounted annual sinking funds f for replacing
the systems after their usable life l, regarding the total amount of the above listed items; the
annuity for system replacement is:

f = Io
r

(1 + r)l
− 1

(1)

Then:

NPV = −I0 +
∑T

i=1

(S + s− p− t−m− f )

(1 + r)i , (2)

IRR = r(NPV=0), (3)

DPbP = T(NPV=0), (4)

Table 4 displays the values of these indexes for each solution and for the sum of all solutions.

Table 4. Economic analysis results for each solution.

Solutions
TOT

1 2 3 4 5 6 7 8 9

NPV € −44.2 −17.9 69.4 57.1 30.7 26.1 2.2 4.1 −19.3 108.1
IRR % −31 −31 31 684 15 13 −10 −8 −17 9.2

DPbP y - - 3 2 5 5 23 18 - 12

Table 5 lists the standard scores KT and KE for r = 5%; the weighted average score KT for T;
the resulting ranking of the nine solutions; and the economic result and the financial indexes.
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Table 5. Technical environmental and economic–financial performance scores and T-ranking of the
nine solutions.

Solutions
Weights

1 2 3 4 5 6 7 8 9

EPgl,nr 1.0 1.2 5.0 2.9 2.5 2.3 1.8 2.1 3.5 0.2
EPgl,rin 5.0 3.2 1.0 4.6 2.3 2.4 2.7 2.5 1.7 0.2

CO2 1.0 1.2 5.0 3.2 2.7 2.5 1.9 2.4 3.9 0.3
Class 2.0 2.0 3.0 1.0 5.0 5.0 2.0 2.0 4.0 0.3

KT 2.1 1.8 3.6 2.7 3.3 3.2 2.1 2.2 3.4 -

Ranking 7 9 1 5 3 4 8 6 2 -

NPV 1.0 1.9 5.0 4.6 3.6 3.5 2.6 2.7 1.9 -
IRR 1.0 1.0 1.3 5.0 1.3 1.2 1.1 1.1 1.1 -

DPbP 1.0 1.0 4.8 5.0 4.5 4.5 1.3 2.2 1.0 -

According to the KT-ranking of the solutions, nine strategies were arranged including,
progressively, the best solutions (marked with 1 in Table 6), starting from the heat pump system
(Solution 3). The ninth strategy comprises all solutions.

Table 6. Strategies for elementary solutions.

Strategies
Solutions

1 2 3 4 5 6 7 8 9

1 1
2 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1

The arrangement of the elementary solutions in different strategies is a necessary simplification
proposed in such a preliminary experiment aimed at testing the proposed pattern. A future insight
will be aimed at taking into account the inter-dependence of the solutions with the different results in
terms of energy, environmental, and economic–financial performances.

The nine strategies were finally compared in economic–financial terms, as displayed in Table 7,
also reporting the standard scores with the weights of the three performances, the weighted average
score (WAS) KE, and the resulting ranking.
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Table 7. Economic–financial results for the nine strategies in real valuations and standard scores.

Strategies
Weights

1 2 3 4 5 6 7 8 9

NPV 69.4 50.1 80.8 106.9 164.0 168.1 123.9 126.1 108.1 -
IRR 36% 13% 15% 16% 21% 17% 12% 10% 9% -

DPbP 3.0 9.0 7.0 7.0 5.0 6.0 9.0 11.0 12.0 -
NPV 1.7 1.0 2.0 2.9 4.9 5.0 3.5 3.6 3.0 0.6
IRR 5.0 1.5 1.8 2.0 2.7 2.2 1.4 1.2 1.0 0.2

DPbP 5.0 2.3 3.2 3.2 4.1 3.7 2.3 1.4 1.0 0.2

KE 3.0 1.4 2.2 2.8 4.3 4.2 2.8 2.7 2.2 -

Ranking 3 9 7 5 1 2 4 6 8 -

The model allows us to provide a top-down ranking of the solutions to be implemented according
to the overall technical–environmental performance. Successively, the model has allowed us to select
the optimal strategy, that is the one maximizing the economic–financial performance excluding the
less profitable solutions. The process is synthetically represented in Figure 4, which displays the
results of Table 7; here it is possible to highlight the increase of NPV up to strategy 6, beyond which it
definitely decreases due to less profitable solutions, such as thermal insulation and window replacement.
The strategic weight system can be arranged in different ways in order to provide developers and
public authorities with further information for the best choice according to specific environmental,
economic–financial, and technical issues. Two further scenarios were simulated (Table 8) and compared
(Figure 5).

Figure 4. Set of strategies showing the economic–financial performances and the related ranking
of solutions.

Table 8. Strategic variables for alternative scenarios.

Technical–Environmental Profile Economic–Financial Profile
Scenario λT1 (EPgl,nr) λT2 (EPgl,ren) λT3 (EC) λT4 (CO2) λE1 (NPV) λE2 (IRR) λE3 (DPbP) r

1 0.20 0.20 0.30 0.30 0.60 0.20 0.20 5%
2 0.10 0.45 0.30 0.15 0.80 0.10 0.10 2%
3 0.45 0.10 0.15 0.30 0.20 0.40 0.40 8%
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Figure 5. Scenario analysis: Comparison of two related strategies.

Three different scenarios have been identified, each of which is characterized by a different weight
system (λT1 (EPgl,nr), λT2 (EPgl,ren), λT3 (EC), λT4 (CO2), λE1 (NPV), λE2 (IRR), λE3 (DPbP)) expressed
by the decision makers, as shown in Table 8.

The three scenarios were arranged as follows: Scenario 1 outlines an intermediate approach to
energy and environment; the decision makers, in this case, consider the environmental criteria (energy
class and CO2 emissions) just a little more important than the ones related to the energy sources; the
economic criteria (NPV) is considered more important than the financial ones (internal rate of return
and discounted payback period), and considers a moderate discount rate (r = 5%). Scenario 2 outlines
a profile mainly aimed at sustainability, as shown by the primary interest in renewable energy sources
and in the energy class, as for technical environmental criteria; furthermore, it is characterized by
the modest interest for the financial criteria, and above all as for the very low discount rate (r = 2%).
Scenario 3 outlines a typical entrepreneurial profile mostly aimed at the private interest, and is the
opposite of Scenario 2, given that the correspondent weights are inverted, and the discount rate
very high. Therefore, two further scenarios were simulated and compared in Figure 5. Such overall
assessment approach allows us to outline the nZEB profile of each strategy. For example, scenario 2
shows that the best nZEBs solution (Strategy 8) is the most profitable (Figure 5a,b); on the contrary,
scenario 3 shows that the most profitable strategy (Strategy 1) is the worst solution to reach the nZEBs
target. As a result, scenario analysis can be a useful tool for the choice of the best strategy, not only for
the stakeholders, but for the stockholders as well: Scenario 1 is the best trade-off for entrepreneurial
investments; scenario 2 considers investment with a shorter payback period and it is attractive for
private investors; scenario 3 is particularly suitable for social and environmental issues and is mostly
encouraged by public (or environmental) authorities [46].
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5. Discussions and Conclusions

Overall, conclusive remarks can be synthesized as follows. For obtaining a nearly zero-energy
balance, it is necessary to upgrade the performance of the building envelope in combination with
the energy generation system. The analyzed energy efficient measures under-investigated are that
one commonly used in the current building design. However, only such strategy, which significantly
contributes to diminishing the energy demand of the building, is not sufficient to reach a nearly zero
balance of the energy needs. Therefore, the local production of energy through renewable sources
is compulsory, which would allow for the obtainment of a nearly zero-energy balance. Due to the
climatic zone, frame energy retrofit solutions such as thermal insulation, window replacement, and so
on, are not economically significant. The results of this paper highlight that the Italian transposition of
the nZEB concept, and the constraints of historic buildings during the renovation process, reduces the
choice of technologies useful for the building refurbishment towards the nearly zero-energy target.
However, the heat pump associated with a PV system seems to be the most effective solution that
could be able to improve indoor comfort conditions for the guests.

Combining the thermo-technical approach with the economic-financial issues, and taken into
account also the environmental performance of the envisaged solutions, a wider assessment prospect
arises outlining the different and differently motivated decisional profiles [46,47].

Such decisional profiles have been outlined by the three scenarios, each of them defined by a specific
weight system differently privileging the technical, the environmental and the economic-financial issues.

The first scenario, that can be considered the normal one due to the roughly equal importance
attributed to the three issues, shows a significant preference for strategies 5 (assessed as the fairest) and
6 (slightly less preferable).

A significantly environment-oriented scenario, mostly involving the stakeholders, suggests the
completion of the overall nZEBs plan as proposed in all its works and installments, considering as
preferable strategy 8 (supposing the implementation of almost all the works), then 7 and 9 (the latter
supposing the implementation of all the works).

The last scenario, mostly focused on the economic-financial issues, mainly involving the
stockholders, paradoxically suggest as preferable strategy 1, including just the heat system replacement,
so excluding any other work concerning the environmental sustainability, the personal comfort increase
and the enhancement of the energy performance of the building, then reducing any its development
potential. As a general perspective, we remark that the whole nZEBs plan [48] here proposed reaches
significant economic-financial performances, so that the stockholders can be supposed to implement it

The nZEBs approach has been developed, so far, in many ways, mostly in the technical building
context and from the point of view of economic profitability. The experience we carried out aims
at combining the two above issues (technical and economic) in a valuation-programming model
able to support both private developers and public administrations throughout the negotiation path,
involving private investors committed in urban transformation processes affecting free areas and/or
existing buildings. Usually, the public–private interaction consists in the payment of a permit fee
by the developer to the public administration. Such fees aim at somehow balancing private interest
(gained) and public value (lost) and can be increased or reduced in order to discourage or encourage
the transformation. The new approach can become a useful decisional and management tool for the
public administration in order to choose the best strategy to reach the nZEBs standard.

Energy use by hotels is also influenced by variations in customer preference relevant to indoor
comfort. This study can be a useful tool to change the perception by hotels manager that high energy use
is necessary to ensure the comfort of guests. Moreover, the model can be also used considering the fee
of building permits and solutions for the private sector that are not profitable but are environmentally
friendly for the public. The hotels can use the tool for the choice of the best strategy in order to reduce
operational costs and CO2 emissions, improve image, comfort, and services for the guests.
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