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Abstract: Our objective in the present study is to scrutinize the flow of aqueous based nanofluid
comprising single and multi-walled carbon nanotubes (CNTs) past a vertical cone encapsulated in a
permeable medium with solutal stratification. Moreover, the novelty of the problem is raised by the
inclusion of the gyrotactic microorganisms effect combined with entropy generation, chemical reaction,
and thermal radiation. The coupled differential equations are attained from the partial differential
equations with the help of the similarity transformation technique. The set of conservation equations
supported by the associated boundary conditions are solved numerically with the bvp4c MATLAB
function. The influence of numerous parameters on the allied distributions is scrutinized, and the
fallouts are portrayed graphically in the analysis. The physical quantities of interest including the skin
friction coefficient and the rate of heat and mass transfers are evaluated versus essential parameters,
and their outcomes are demonstrated in tabulated form. For both types of CNTs, it is witnessed
that the velocity of the fluid is decreased for larger values of the magnetic and suction parameters.
Moreover, the value of the skin friction coefficient drops versus the augmented bioconvection Rayleigh
number. To corroborate the authenticity of the presented model, the obtained results (under some
constraints) are compared with an already published paper, and excellent harmony is achieved in
this regard.

Keywords: nanofluid; carbon nanotubes (SWCNTs and MWCNTs); solutal stratification;
bioconvection; entropy generation

1. Introduction

Nanofluid, characterized by copious attractive features, including outstanding chemical and
mechanical steadiness, significant improvement in thermal conductivity, etc. [1], is found to serve
in a number of engineering applications, for example fuel-cells [2], porous materials [3], petroleum
engineering [4], and biotechnology [5,6], among others. The pioneering work was done by Choi and
Eastman [7] who found that thermal conductivity of the base fluid will increase from the insertion
of metallic particles. This was followed by a study by Buongiorno [8] who studied the features of
Brownian motion and thermophoresis in nanofluids. Later, Makinde and Aziz [9] deliberated on the
flow of Newtonian fluid past a convectively heated surface. The flow of 3D couple stress nanofluid
past an exponentially stretching surface associated with zero mass flux at the surface and convective
boundary conditions was deliberated by Ramzan et al. [10]. Farooq et al. [11] examined Newtonian fluid
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flow analytically over an exponentially stretching sheet under the influence of magneto hydrodynamics
using the optimal homotopy analysis method. The nanofluid flows containing carbon nanotubes
(CNTs) over a cone and an inclined permeable plate were studied numerically by Reddy et al. [12,13].
Sreedevi et al. [14] found a numerical solution for CNTs amalgamated nanofluid flow past a vertical
cone with a convective boundary condition. The aqueous-silver non-Darcy Poiseuille nanofluid flow
with entropy generation past a permeable media was studied by Shehzad et al. [15]. A few recent
investigations highlighting nanofluid flows may be found in References [16–18].

CNTs are the hexagonal structure of carbon atoms that are rolled in a cylindrical shape. Carbon
nanotubes possess unique features like corrosion resistance, high thermal conductivity, and exceptional
strength [19]. Owing to these remarkable characteristics, CNTs are useful in numerous applications like
nanotubes transistors, microwave amplifier, solar cells, chemical sensors, optics, drug delivery, prostheses,
pharmacogenomics, and many other fields of engineering and material science [20–22]. Carbon nanotubes
are labeled as multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs).
Iijima [23] discovered carbon nanotubes in 1991. He first investigated MWCNTs utilizing the Krastschmer
and Huffman method. This was followed by another exploration in 1993 by Bethune [24] who introduced
the concept of SWCNTs. SWCNTs are comprised of carbon nanotubes with a diameter of 1 nm whereas
MWCNTs is a collection of 2–50 carbon nanotubes with 0.34 nm spacing. Abundant studies may be
found in the literature to highlight different aspects of CNTs. Ramasubramaniam et al. [25] found that
single-walled CNTs are helpful in improving electrical conductivity. The idea of improved thermal
conductivity using composite nanotubes was introduced by Xue [26]. Muhammad et al. [27] inspected
the rotating flow of carbon nanotubes under the influence of heat generation/absorption and nonlinear
thermal radiation past a linearly stretching surface. The flow of 3D viscous nanofluid containing CNTs
with quartic chemical reaction and entropy generation analysis is expressed numerically by Kumar et
al. [28]. The aqueous based nanofluid Darcy-Forchheimer 3D flow comprising CNTs past a permeable
surface was examined analytically by Muhammad et al. [29]. The flow problem in Reference [29] is
extended to homogeneous-heterogeneous reactions associated with convective boundary conditions is
discussed by Alshomrani and Ullah [30]. Recent explorations studying CNTs nanofluid flow may be
found in References [31–33] and those contained therein.

The aforementioned literature review reveals that abundant articles are available addressing the
topic of nanofluid. But this subject gets narrower once we talk about nanofluid flow over a cone with
nanotubes inserted into it. Furthermore, this exploration becomes unique when the above-mentioned
characteristics are supported by entropy generation and gyrotactic microorganisms (see Table 1). The
numerical solution of the problem is acquired with requisite discussion of plotted illustrations of
involved parameters versus associated distributions.

Table 1. The studies on nanoliquid flow comprising carbon nanotubes (CNTs).

Authors CNTs
SWCNTs/MWCNTs

Entropy
Generation

Gyrotactic
Microorganisms

Flow over a
Cone

Reddy et al. [12]
√

× ×
√

Reddy et al. [13]
√

× × ×

Sreedevi et al. [14]
√

× ×
√

Kumar et al. [28]
√ √

× ×

Muhammad et al. [29]
√

× × ×

Alshomrani & Ullah [30]
√

× × ×

Lu et al. [31]
√

× × ×

Ramzan et al. [32]
√ √

× ×

Lu et al. [33]
√ √

× ×

Present
√ √ √ √

(
√

) means effect is present, and (×) means effect is absent.
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2. Mathematical Modeling

Let us assume a 2D aqueous fluid flow amalgamated with carbon nanotubes past a vertical
cone in an absorbent media. The analysis is accompanied by solutal stratification, chemical reaction,
and entropy generation (see Figure 1).
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Figure 1. Physical model of the problem.

The flow of the fluid is along the x-axis past the cone surface. Along the y-axis, a magnetic field
with strength B0 is enforced. The fluid is an aqueous based nanofluid containing both types of CNTs,
whose thermo-physical characteristics are defined in Table 2. The governing system of equations
representing the presented model are as follows [14]:

∂(ru)
∂x

+
∂(rv)
∂y

= 0, (1)

u∂u
∂x + v∂u

∂y =
µn f
ρn f

∂2u
∂y2 −

µn f
ρn f

1
K u + g[β(T − T∞) − β∗(C−C∞) − β∗γ(n− n∞)∆ρ] cosγ

−
σB0

2

ρn f
u,

(2)

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 −

1
(ρcp)n f

∂qr

∂y
, (3)

u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 −Kr(C−C∞), (4)

u
∂n
∂x

+ v
∂n
∂y

+
bWc

Cw −C0

∂
∂y

(
n
∂C
∂y

)
= Dn

∂2n
∂y2 , (5)

with the corresponding boundary conditions

v = V1, u = 0,−kn f
∂T
∂y = h f (T f − T), C = Cw = C0 + dx, n = nw, at y = 0,

u→ 0, T→ T∞, C→ C∞ = C0 + ex, n→ n∞, as y→∞.
(6)
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Table 2. Values of physical features of nanoparticles and water [14].

Physical Attributes Liquid Nanoparticles

H2O SWCNTs MWCNTs

Cp(J/kg K) 4179 425 796

ρ (kg/m3) 997 2600 1600

k (W/mK) 0.613 6600 3000

Multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs).

The hypothetical relations are characterized as follows:

µn f =
µ f

(1−φ)2.5 , vn f =
µn f

ρn f
, (7)

ρn f = (1−φ)ρ f + φρCNT, αn f =
kn f

ρn f (cp)n f
, (8)

kn f

k f
=

(1−φ) + 2φ kCNT
kCNT−k f

ln(
kCNT+k f

2k f
)

(1−φ) + 2φ
k f

kCNT−k f
ln(

kCNT+k f
2k f

)
. (9)

Using the similarity transformations

η =
y
x Rax

1/4, Ψ = αRax
1/4 f (η), θ(η) = T−T∞

Tw−T∞ ,
g(η) = C−C∞

Cw−C0
, h(η) = n−n∞

nw−n∞ ,
(10)

Equation (1) is impartially fulfilled and Equations (2) to (6) obtain

f ′′′ + 1
Pr (1−φ)

2.50(1−φ+ φ
ρCNT
ρ f

)
{
3 f f ′′ − 1

2 f ′
2}
− k1 f ′ − (1−φ)2.5M f ′

+(1−φ)2.50(1−φ+ φ
ρCNT
ρ f

)[θ−Nrg−Rbh] = 0,
(11)

kn f

k f
(1 + Rd)θ

′′ +
3
4

1−φ+ φ
(ρCp)CNT

(ρCp) f

 fθ′ = 0, (12)

g′′ +
3
4

Sc f g′ − Scn f ′ −Crg = 0, (13)

h′′ +
3
4

Lb f h′ − Pe(h′g′ + (h + δ)g′′) = 0, (14)

and the boundary conditions (6) take the form

f (0) = V0, f ′(0) = 0,
kn f
k f
θ′(0) = −B1(1− θ(0)), g(0) = 1− n, h(0) = 1,

f ′(∞)→ 0, θ(∞)→ 0, g(∞)→ 0, h(∞)→ 0.
(15)

In the aforementioned equations, the dimensionless parameters are given by:

Pr =
υ f
α , k1 = x2

KRax1/2 , M = σB0
2x2

µ f Rax1/2 , Sc =
α

Dm
, n = e

d ,

Lb =
α

Dn
, Rd = 16T∞3σ∗

3k∗kn f
, Nr =

β∗(Cw−C0)
β(T f−T∞)

, Rb =
β∗γ∆ρ∆nw
β(T f−T∞)

,

Cr =
Krx2

DmRax1/2 , B1 =
h f x

Rax1/4k f
, Pe =

bWc
Dn

, δ = n∞
nw−n∞ .

(16)
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The physically essential quantities, i.e., the skin friction, rate of heat and mass transfers, and local
density of motile microorganisms, are appended below:

C f =
τw

ρU∞2 , Nux =
xqw

k f (Tw − T∞)
, Shx =

xqm

Dm(Cw −C0)
, Nnx =

xqn

Dn(nw − n∞)
. (17)

The aforementioned physical quantities in dimensionless form are appraised as follows:

C f Rax
1/4 = 1

(1−φ)2.5 f ′′(0),

NuxRax
−1/4 = −

kn f
k f
(1 + Rd)θ

′(0),

ShxRax
−1/4 = −g′(0),

NnxRax
−1/4 = −h′(0).

(18)

Table 3 depicts a comparison with Khan et al. [34] for varied estimates of φ in limiting
case. An outstanding matching in both results is achieved. This reflects the corroboration of
the presented outcomes.

Table 3. Evaluation of the presented model with Khan et al. [34] in limiting case.

φ
f
′′

(0) −θ
′

(0)

Khan et al. [34] Existing Results Khan et al. [34] Existing Results

SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT

0.01 0.33894 0.33727 0.338910 0.337270 1.10553 1.07905 1.105710 1.079040

0.1 0.40811 0.39008 0.408120 0.390070 4.80627 4.27718 4.806290 4.277160

0.2 0.50452 0.46466 0.504530 0.464660 12.30317 10.56783 12.30352 10.56796

Entropy Generation

The entropy generation of the presented model is specified as follows:

Sgen
′′′

=
kn f

T∞2

[
1 +

16T∞3σ∗

3k∗kn f

](
∂T
∂y

)2

︸                           ︷︷                           ︸
HFI

+
µn f

T∞

(
∂u
∂y

)2

+
σ

T∞
B0

2u2 +
µn f

T∞K
u2

︸                                     ︷︷                                     ︸
FFI

+
RD
C∞

(
∂C
∂y

)2

+
RD
T∞

(
∂T
∂y

)(
∂C
∂y

)
︸                              ︷︷                              ︸

Di f f usive irreversibility

.
(19)

In Equation (19), entropy is comprised of three terms, namely (i) HFI (heat transfer irreversibility),
(ii) FFI (fluid friction irreversibility), and (iii) diffusion irreversibility. The entropy generation NG is
defined as:

NG =
S
′′′

gen

S0
′′′

, (20)

where S
′′′

gen and S0
′′′

characterize the entropy generation rate and characteristic entropy generation
rate, respectively, such that

NG =
kn f
k f
(1 + R)Raxθ′

2 + 1
(1−φ)2.5

BrRax
α ( f ′′2 + k1 f ′2) + RaxBrM

α f ′2

+λ
(
ζ
α

)2
Raxg′2 + ζ

αRaxλθ′g′.
(21)
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Parameter used in above equation are define as,

α =
∆T
T∞

, Br =
µ f uw

k f ∆T
, ζ =

∆C
C∞

,λ =
RDC∞

k f
. (22)

3. Results and Discussion

This section is devoted to comprehend the discussion of the graphical illustrations. The impressions
of the miscellaneous parameters on entangled profiles are given in Figures 2–14. The numerical values
of the parameters used are taken to be fixed as: φ = 0.01, Nr = Pe = k1 = 0.5 = Lb, Sc = B1 = 1.0 =

M = V0, Rb = n = Rd = 0.1 = Cr = δ and Pr = 6.2 unless otherwise stated. The ranges of parameters
defined in the figures are 0.4 ≤M ≤ 1.0, 0.1 ≤ k1 ≤ 0.7, 0.2 ≤ Nr ≤ 0.4, 0.1 ≤ Rb ≤ 0.3, 0.01 ≤ φ ≤ 0.03,
0.5 ≤ B1 ≤ 1.5, 0.1 ≤ Rd ≤ 0.7, 0.5 ≤ Sc ≤ 1.5, 0.1 ≤ n ≤ 0.5, 0.5 ≤ Pe ≤ 0.9, 0.5 ≤ Lb ≤ 0.7, 0.1 ≤ α ≤ 0.3,
and 0.1 ≤ λ ≤ 0.5.

3.1. Velocity Profile

The trend of axial velocity versus different parameters’ effects is described in Figures 2–5. Figure 2
depicts the impact of the magnetic parameter M on the velocity field. The velocity of the fluid diminishes
for increasing values of M. This is because of the strong Lorentz force that presents resistance to
the fluid’s movement that eventually lowers the fluid’s movement. In Figure 3, the consequence
of porous parameter k1 on the velocity profile is sketched. It is understood that the velocity is a
decreasing function of k1. Physically, more resistance against the fluid’s movement is witnessed due to
the augmented thickness of the permeable medium that results in feeble fluid velocity. The impact of
the buoyancy ratio parameter Nr and the bioconvection Rayleigh number Rb on the velocity profile
for both CNTs is depicted in Figures 4 and 5, respectively. It is witnessed that the velocity profile
declines with increasing values of Nr and Rb. Higher values of the buoyancy ratio parameter mean an
increase in the number of CNTs immersed into the aqueous solution, which increases the viscosity of
the fluid and results in a decrease in fluid’s velocity. Similarly, the velocity of the fluid is affected by the
growth in the bioconvection Rayleigh number. This is due to the inertia force of the fluid motion being
surpassed by the bioconvection. There is a decrease in speed of roughly 15.48% with an approximate
increase in Rb of 400% [35].
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3.2. Temperature Profile

The outcome of solid volume fraction φ on the temperature field is evident in Figure 6. The
temperature profile is enhanced with increasing estimates of the solid volume fraction of the
nanoparticles. It is also understood that the thermal boundary layer thickness is enhanced by
augmenting the estimation of the solid volume fraction φ for both nanotubes. This is all because of the
enhancement in thermal conductivity of CNTs with solid volume fraction that becomes the main cause
for augmented temperature. The effect of Biot number B1 is studied in Figure 7. It is perceived that
with an upsurge in B1, temperature distribution escalates for both SWCNT and MWCNT. Physically,
larger estimates of B1 means more thermal resistance inside the cone in comparison to the boundary
layer; consequently, a higher temperature of the fluid in the boundary layer area is witnessed. Figure 8
shows the influence of radiation parameter Rd on temperature profile. It was determined that larger
values of Rd result in more energy being produced, which eventually raises the temperature of the fluid.
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3.3. Concentration Profile

The impact of numerous parameters on the concentration field is presented in Figures 9 and 10.
Figure 9 depicts the influence of Schmidt number Sc on concentration distribution for both nanotubes.
It is understood from the figure that the concentration field is a diminishing function of Sc. Since the
Schmidt number is the proportion of kinematic viscosity and the molecular diffusion coefficient, higher
values of Sc leads to a reduced molecular diffusion that ultimately lowers the concentration of the
fluid. In Figure 10, the graph of concentration profile versus the solutal stratification n is depicted.
It is clear that for improved values of n, the concentration of the fluid is diminished for both SWCNT
and MWCNT nanotubes. In actuality, the lowering of concentration field is due of the concentration
differences between the ambient fluid and the surface of the cone.
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3.4. Density of Motile Microorganism Profile

Figures 11 and 12 demonstrate the impacts of the bioconvection Péclet number and the
bioconvection Lewis number on the density of motile microorganisms, respectively. It is observed
that motile microorganisms decrease for both bioconvection Péclet number and bioconvection Lewis
numbers. Indeed, higher estimates of the bioconvection Péclet and bioconvection Lewis numbers
result in a decline in the microorganism diffusion, which ultimately results in the decay of the density
and boundary layer thickness of motile microorganisms.
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3.5. Entropy Generation

From Figure 13, it is seen that increasing the temperature difference parameter α decreases the
entropy generation number NG for both nanoparticles. Similarly, the local entropy generation increases
for growing estimates of the diffusive constant parameter λ for both SWCNT and MWCNT, which is
displayed in Figure 14.
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Table 4 shows that the skin friction coefficient is enhanced with increase in the values of the solid
volume fraction of nanoparticles and suction parameter, while it declines for higher values of the
porous medium, magnetic parameter, and bioconvection Rayleigh number. Table 5 demonstrates the
numerical values of the Nusselt number for different varying parameters. It is found that the Nusselt
number rises for larger estimates of solid volume fraction, radiation parameter, and Biot number,
and decreases when the values of the magnetic parameter are increased. Table 6 displays the numerical
value of the Sherwood number for varied parameters. The Sherwood number boosted with an increase
in the values of the chemical reaction parameter and the Schmidt number, while it decreases with
an increase in the values of the concentration stratification and buoyancy ratio parameter. Table 7
depicts the numerical value of motile density number versus different parameters. The motile density
number increases for larger estimates of the Péclet number and microorganism concentration difference
parameter and decreases for increasing values of the Rayleigh number.

Table 4. Numerical value of 1
(1−φ)2.5 f ′′(0).

φ k1 V0 Rb M 1
(1−φ)2.5 f

′′

(0)

SWCNTs MWCNTs

0.1 0.5 1.0 0.1 1.0 1.11420 0.57810

0.2 1.23160 1.00280

0.3 1.47580 1.11930

0.2 1.29720 1.26970

0.3 1.22650 1.16470

0.4 1.16610 1.07700

0.5 1.04840 0.87042

0.6 1.07060 0.89693

0.7 1.09350 0.92345

0.2 1.10830 0.94259

0.3 1.05020 0.88198

0.4 0.99171 0.82097

0.5 1.46240 1.25400

0.6 1.38720 1.19320

0.7 1.32120 1.13840
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Table 5. Numerical value of −
kn f

k f
(1 + Rd)θ

′(0).

φ Rd B1 M −
knf

kf
(1+Rd)θ

′

(0)

SWCNTs MWCNTs

0.01 0.1 1.0 1.0 0.45621 0.45560

0.02 0.46268 0.46097

0.03 0.47205 0.46855

0.2 0.47736 0.47659

0.3 0.49760 0.49666

0.4 0.51704 0.51594

0.5 0.31751 0.31731

0.7 0.38387 0.38351

1.0 0.45621 0.45560

1.0 0.45621 0.45560

2.0 0.45279 0.45238

3.0 0.45094 0.45063

Table 6. Numerical values of −g′(0).

Sc Cr n Nr −g
′

(0)

SWCNTs MWCNTs

0.1 0.1 0.1 0.5 0.31891 0.31882

0.5 0.50221 0.50155

0.9 0.74207 0.74087

0.1 0.80642 0.80511

0.2 0.88714 0.88613

0.3 0.95695 0.95612

0.2 0.73573 0.73379

0.3 0.66795 0.66532

0.4 0.60326 0.59988

0.6 0.79903 0.79771

0.7 0.79130 0.78997

0.8 0.78319 0.78185
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Table 7. Numerical values of NnxRax
−1/4.

Lb Pe Rb δ −h
′

(0)

SWCNTs MWCNTs

0.5 0.5 0.1 0.1 0.83681 0.83535

0.6 0.91358 0.91207

0.7 0.99024 0.98870

0.1 0.48494 0.48380

0.2 0.57267 0.57146

0.3 0.66056 0.65927

0.2 0.82280 0.82132

0.3 0.80759 0.80609

0.4 0.79092 0.78938

0.2 0.87679 0.87530

0.3 0.91679 0.91528

0.4 0.95681 0.95528

4. Final Remarks

The flow of water based carbon nanotubes (SWCNT and MWCNT) fluid past a cone erected
vertically is discussed numerically. The analysis is performed in the presence of motile organisms with
solutal stratification in spongy media. Furthermore, the attributes of thermal radiation and chemical
species are explored in the presence of entropy generation. The main outcomes of the analysis are:

â The velocity of the fluid diminishes with increasing values of the magnetic and suction parameters
in the case of both nanotubes.

â The fluid’s concentration is diminished for both SWCNT and MWCNT nanotubes versus higher
values of solutal stratification.

â When increasing the temperature difference parameter, the entropy generation number decreases
for both nanoparticles.

â The Sherwood number increases with increasing values of the chemical reaction parameter and
the Schmidt number, while it decreases with increasing estimates of solutal stratification.

â The motile density number decreases with increasing values of the Péclet number.
â The skin friction coefficient increases for the suction parameter while decreasing for the

bioconvection Rayleigh number.
â It is found that the Nusselt number increases with an increase in the estimates of solid volume

fraction, radiation parameter, and Biot number, whereas it decreases with increasing values of the
magnetic parameter.
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Nomenclature

u: v velocity components
x, y coordinate
Kr rate of chemical reaction
K permeability parameter
h f convective parameter
B1 Boit number
Nr buoyancy ratio parameter
V0 suction/injection parameter
T, T f temperature
Dn diffusivity of microorganisms
Pr Prandtl number
Cp specific heat
uw stretching velocity along x-direction
B0 magnetic field of strength
Dm Brownian diffusion coefficient
Cf surface drag force
Nux Nusselt number
Pe bioconvection Péclet number
Cr chemical reaction parameter
Sc Schmidt number
Wc maximum cell swimming speed
k1 porous parameter
Rb bioconvection Rayleigh number
Rd radiation parameter
Rax local Rayleigh number
NG entropy generation number
Lb bioconvection Lewis number
M magnetic parameter

Greek Symbols
ρCNT, ρ f density
σ∗ Stephan-Boltzmann constant
µn f , µ f dynamic viscosity
τxy shear stress
αn f modified thermal diffusivity(
ρCp

)
n f

,(ρCp) f heat capacity

k f , kn f , k thermal conductivity
φ solid volume fraction of nanofluid
η a scaled boundary-layer coordinate
Ψ stream function
qw(x) the surface heat flux of nanoliquid film
β thermal expansion coefficient
f dimensionless stream function
θ dimensionless temperature
δ bioconvection constant
α temperature difference parameter
λ diffusive constant parameter
ζ concentration difference
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