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Abstract: In his influential study, Theil (1967) developed the notion of entropy on the basis of
information theory. He then advocated the use of entropy-based measure for the analysis of income
inequality. In this paper, the first of its kind, we apply Theil’s notion of entropy to public finances
in multi-tiered governments, in particular for a measurement of fiscal decentralisation, which is
currently very crude in terms of the ratio between local government revenue and total revenue. It is
the claim of this paper that such an approach of measuring fiscal decentralisation completely ignores
important distributional aspects of fiscal arrangements. Findings from this paper indicate that studies
on measuring various aspects of fiscal activities—such as fiscal decentralisation—should carefully take
into account the dispersion of revenue (and expenditure) across regions. On that basis, the entropic
approach developed in this paper is able to accommodate these dispersions across subnational
governments. As an illustration for the case of Vietnam, the true degree of fiscal decentralization has
effectively been decreased in comparison with estimates from other simple measurements due to the
presence of substantial dispersions of revenue and expenditure from the subnational governments
across 63 provinces in Vietnam.
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1. Introduction

In recent decades, fiscal decentralisation has become a central concern in countries around the
world, especially in developing nations such as Argentina, Bolvia, Brazil, Colombia, Ethiopia, India,
Mexico, and Nigeria; and countries in transition such as Bulgaria, China, Hungary, and the Russian
Federation [1,2]. Fiscal arrangements among levels of government have been reformed in a manner
that increases the extent to which subnational governments (SNGs) are assigned more expenditure
and revenue-raising responsibilities. The theory of fiscal decentralization, both from expenditure and
revenue assessment, has long been of interest among academics [3–6]. There is, however, a lack of
a widely-accepted tool to measure the degree of fiscal decentralisation across countries. In previous
studies, typically either revenue or expenditure from subnational governments is used without taking
into account the fiscal autonomy of SNGs. For example, in his pioneering study, in 1972 Oates [7]
used the national government’s share in total public revenue as the degree of fiscal centralisation.
In 1998, Woller and Phillips [8] measured fiscal decentralisation in one of four ways: (i) the ratio of local
government revenues to total government revenues; (ii) the ratio of local revenues less grants-in-aid
to total government revenues; (iii) the ratio of local expenditures to total government expenditures;
and (iv) the ratio of local government expenditures to total government expenditures less defence and
social security expenditures.
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Similar measures of fiscal decentralisation can be found in previous studies [9–13], to name a few.
None of these measures consider the autonomy of SNGs in their fiscal activities. In short, the linkage
between “theory” and “measurement” is poor in much of the current literature.

Martinez-Vazquez et al. [14] argued that one crucial and yet unsolved issue in the empirical
literature on decentralization is the proper measurement of decentralization itself. In one of
the most recent papers on measuring fiscal decentralisation, Liu et al. [15] measured the degree
of fiscal decentralization in the Chinese provinces by simultaneously considering expenditure
decentralization and revenue decentralization. The authors argued that of these two indicators,
expenditure decentralization, defined as the local share of total government expenditure has been
widely used in previous empirical studies.

The above fiscal decentralisation indices have two potentially significant limitations. First, each
subnational government (SNG) is implicitly treated as fiscally homogenous. In effect, per capita
revenue and expenditure in each subnational region are implicitly assumed to be equal. However,
SNGs typically involve large fiscal differences that may have implications for fiscal decentralisation.
Second, but related to the first point, the structure of fiscal arrangements is ignored. SNGs are not
differentiated by type—the state government level is not distinguished from the local government
level. As such, the new indices developed earlier account only for the more fundamental influences
on the fiscal autonomy and fiscal importance of SNGs, while ignoring the impact of fiscal differences
between them.

To redress these shortcomings, the background for the extension of the fiscal decentralisation
index in future studies is developed, using information theory developed by Theil [16]. The main goals
are to account for: (i) the distributions of state and local government revenue and expenditure shares
between the regions physically defined by the border of state jurisdictions, and (ii) the distribution of
state and local government revenue and expenditure shares within a physical region defined by the
state-level governments. The concepts of “between-set entropy” and “within-set entropy” appear to
have the potential to account for heterogeneity in fiscal shares across different levels of government.

The ideas of expected information of a direct message and an indirect message were originally
developed by Theil in his influential book “Economics and Information Theory”. These ideas were
further developed to measure the income inequality by comparing the income share with the population
share of the states. These works lay a strong foundation for the development of an analytical framework
of fiscal inequality which takes into account the dispersions of the revenue and expenditure of various
levels of SNGs. This study is conducted to be devoted to this development.

The paper is structured as follows. Following this brief introduction, Section 2 discusses
information theory including the concept of “entropy”. Section 3 of the paper presents the analytical
framework for the analysis of subnational fiscal inequality. Decomposing revenue/expenditure
inequality of a generic country is discussed at length in Section 4, followed by the C\conclusion in
Section 5.

2. Information Theory

A possibility E will occur with the probability x with 0 ≤ x ≤ 1 where x = 0 means that this
possibility will not be realised and x = 1 means that this possibility is definitely realised. When x is
close to 0, say, x = 0.01, the information content of the message is very large. However, when x is close
to one, say, x = 0.95, the message has provided little information content. To formalise these ideas,
let h (x) be information content of a definite and reliable message x. It is obvious that h (x) will be
the decreasing function of the probability x. This is because “the more unlikely the event before the
message on its realisation, the larger the information content” [16]. Among many different decreasing
functions, the logarithm of the reciprocal of the probability x is widely used.

h (x) = log
1
x
= − log x (1)
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The other reason for the logarithmic function to be selected among many decreasing functions is
the additivity of this function in the case of independent events. Suppose that E1 with probability x1

and E2 with probability x2 are stochastically independent, their product x1.x2 is the probability that
both events occur. In this case, the information content of the message which informs us that “both
events did occur”, h(x1, x2), will be as follows:

h(x1, x2) = log
1

x1.x2
= log

1
x1

+ log
1
x2

= h(x1) + h(x2) (2)

The far right-hand side of the Equation (2) includes the information content of the message telling
us that “Event E1 occurred”, h(x1), and the information content of the other message of “Event E2

occurred”, h(x2). As a consequence, as the Equation (2) shows, the information content of the message
which informs us that “both events did occur” is the sum of the information content of “Event E1

occurred” and the information content of “Event E2 occurred”. This additivity is a very convenient
property of definition in Equation (1).

2.1. The Entropy as the Information Content

In light of the previous discussion, it is clear that different values of probabilities xi of the event Ei
will provide different meanings. In short, it means that the lower the probability of an event occurring,
the larger the “information content” of a message.

Until the message is released, no one can predict how significant the “information content” will
be as either h (x1), or h (x2), . . . , or h (xn) with different probabilities x1 , x2 , . . . , xn can
occur. However, the average or expected information content can be calculated before the message
arrives, since we know the probabilities. In this sense, the expected information content of the message
is just the expected value of the information content, that is, the probability weighted average of
h(x1), h(x2), . . . , h(xn):

H(x) =
n∑

i=1

xih(xi) =
n∑

i=1

xi log
1
xi

= −
n∑

i=1

xi log xi (3)

Since xi is the probability for a particular event to occur, it follows that 0 ≤ xi ≤ 1 and log xi will
always be negative. As the product of xi log xi is always negative,

∑n
i=1 xi log xi < 0. Therefore, the

negative of this sum, H(x), cannot be negative. In other words, H(x) cannot be negative since it is the
weighted average, with all non-negative weights x1, x2, . . . , xi, of the non-negative information values
h(x1), h(x2), . . . , h(xn). The measure H(x) is the expected information of a distribution, which Theil
calls “entropy”. In addition, the value of the entropy H(x) has a lower limit of zero and the upper limit
of log n, where n represents a number of events or possibilities, so that 0 ≤ H(x) ≤ log n.

2.2. The Appropriate Range for H(x)

The entropy H(x) falls in the range with a lower limit zero and the upper limit log n, where n
represents a number of events or possibilities.

For the lower limit, it is clear that when the event Ei occurs with certainty, xi = 1, and
x j = 0 for all i , j. Thus, the probability vector (x1, x2, . . . , xi, . . . , xn) = (0, 0, . . . , 1, . . . , 0).
Then, xi log xi = 0 for i = 1, . . . , n and −

∑n
i=1 xi log xi = 0. This establishes that the lower bound of

H(x) is zero if and only if xi = 1 for some i.
Regarding the upper limit, the task now is to maximise the

∑n
i=1 xi log xi, subject to∑n

i=1 xi = 1 where 0 ≤ xi ≤ 1. To do this, we formulate the Lagrangian function:

L (x1, . . . , xn; λ) = −
n∑

i=1

xi log xi − λ

 n∑
i=1

xi − 1
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where λ is the Lagrangian multiplier. The first-order condition is ∂L/∂xi = − log xi − 1− λ = 0. This
is equivalent to log xi = −(λ+ 1). This equation shows that xi is independent of i. This happens when
and only when x1 = x2 = . . . = xi = 1/n. When xi = 1/n, H(x) takes its upper value of log n.

2.3. Entropy, Uncertainty and Dispersion

The measure H(x), defined in Equation (3), is known as the expected information content or the
expectation of information. It is developed from the notion of the probability of occurrence of certain
events. Based on the limits of this entropy, 0 ≤ H(x) ≤ log n, it is said that, prior to the presence of a
message which states that A occurred, the more uncertainty there is, the larger the expected information
content of the message. As a consequence, entropy H(x) can also be used to measure uncertainty of an
event or an outcome. When an event is certain to occur, its probability is unity. There is no uncertainty,
and H(x) = 0, the lower limit, in this case. On the other hand, for a given number of events, uncertainty
is at its maximum level when all events have the same probability, 1/n, of occurrence. This case
corresponds with the upper limit of the expected information content H(x) = log n. Moreover, the
level of uncertainty will increase with an increase in the number of outcomes n. For example, if there
are only two possible outcomes, the probability of 1/2 for each outcome presents less uncertainty than
in the case with 20 possible outcomes, which carries a probability of 1/20 to occur. In other words, the
more equi-likely events that can occur, the more uncertainty there is.

In addition, the entropy H(x) can also be used to measure dispersion. The variance is the
most common approach to measure dispersion of the distribution. The variance of a continuous
random variable with a probability distribution f (x) is defined as: σ2 =

∫
∞

− ∞
(x − µ)2 f (x)dx, where

µ =
∫
∞

− ∞
x f (x)dx is the mean. In the discrete case, entropy is defined as the negative value of the

expected logarithms of event probabilities: H(x) = −
∑n

i=1 xi log xi. When x is continuous, entropy is
the negative value of expectation of the logarithms of the density: H(x) = −

∫
∞

− ∞
f (x) log f (x)dx.

To illustrate, suppose x is normally distributed, with the mean µ and variance σ2, so that:

f (x) = 1
σ
√

2π
e−

1
2 (x − µ)

2

σ2 , so that log f (x) = − log σ
√

2π− 1
2
(x − µ)2

σ2

The entropy now becomes:

H(x) = −
∫
∞

− ∞
f (x)

{
− log σ

√
2π− (1/2)(x−µ)2

σ2

}
dx

=
(
log σ

√
2π

)∫
∞

−∞
f (x)dx + 1

2

∫
∞

−∞

( x−µ
σ

)2
f (x)dx

= log σ
√

2π+ 1
2 = log σ+

(
1
2 + log

√
2π

)
.

Thus, the entropy of a normal distribution is the sum of the logarithm of the standard deviation σ
and a constant equal to 1/2 + log

√
2π. Since 1/2 = (1/2) log e, the relationship between the entropy

and the variance σ2 of the normal distribution can also be expressed as: H(x) = (1/2) log
(
2πeσ2

)
. This

shows that the entropy is an increasing function of the variance in the case of the normal distribution.
Even though when things are not normally distributed however, the general idea that the entropy
measures dispersion continues to hold.

In conclusion, the entropy H(x) can be used to measure the expected information content, the
uncertainty and the dispersion. The entropy H(x) is developed based on the concepts of probability
alone, so it can take both numerical values (say, 0.1, 0.5, . . .) and “nominal” values (say, “rich” and
“poor”). It sheds light on the view that the entropy H(x) is in contrast to the variance since the variance
can only take the numerical values.

An Indirect Message: Prior and Posterior Probabilities

When we take one possibility into consideration, an indirect message does not confirm any event
but it does provide additional information regarding an event that may occur in the future. If so,
then the expected information content will change. This is because, with the release of the message,
some events have a higher chance of occurring and others have a lower probability of occurring, no
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guarantee of an event is provided with the release of the message. Similar to previous discussions,
it is assumed we have n chances as E1, E2, . . . , En with the probabilities to occur are x1, x2, . . . , xn,
respectively. These probabilities are known as prior probabilities since they existed before the message
comes in. When the message comes in, these probabilities will be changed because with the presence
of the message, some chances become more probable to occur and others become less probable to occur.
The probabilities for these events E1, E2, . . . , En to occur become y1, y2, . . . , yn, respectively. These
are called as posterior probabilities [16]. As a result, the sum of these posterior probabilities is unity.
That means:

n∑
i=1

yi = 1, yi ≥ 0∀ i = 1, 2, . . . , n. (4)

These posterior probabilities are also non-negative. If it turns out that one of these probabilities is
one, all the others are zero, then the message becomes a direct one since this message guarantees one
particular event with probability of unity occurs. Recall from Equation (1) regarding the information
content, we will then apply for the event Ei to occur with the probabilities before and after the message
is released (i.e., its prior and posterior probabilities) are xi and yi, respectively.

“Probability ex post” is the probability of the event to occur after the message is released. In this
case, we will not know what happens for sure with the release of the message. In addition, the
probability in this case is y1. In addition, “probability ex ante” is the probability of the event to occur
before the message is released, still xi in this case. Therefore, the information content in the case of an
“indirect message” is as follows:

h(yi, xi) = log
yi

xi
, (5)

or in words: The information received with message = log
(probability ex post

probability ex ante

)
.

It is important to note that the message itself does not mention any possibility or event Ei in
particular. This means that the presence of the message does not guarantee the occurrence of any event.
Any event has its own posterior probability yi to occur. In this case, the expected information of the
indirect message is as follows:

I(y : x) =
n∑

i=1

yi log
yi

xi
. (6)

The expected information of an indirect message I(y : x) transforms the prior probabilities
x1, x2, . . . , xn into the posterior probabilities y1, y2, . . . , yn. And, I(y : x) is non-negative, which can
be shown as follows. It is assumed that yi > 0, i = 1, 2, . . . , n in the first instance. In addition, let
us assume that, there exists a small number εi(i = 1, 2, . . . , n), such that

∑n
i=1 yiεi = 0. In this case,

the equation xi = yi(1 + εi) holds, or equivalently: xi/yi = 1 + εi. Equation (6) can then be rewritten
as follows:

I(y : x) = −
n∑

i=1

yi log (1 + εi). (7)

Since
∑n

i=1 yiεi = 0, Equation (7) can be rewritten as I(y : x) =
∑n

i=1 yi[εi − log (1 + εi)].
In proving that I(y : x) is non-negative, because yi ≥ 0, it is only necessary to prove that
A(εi) = [εi − log (1 + εi)] ≥ 0. Taking the first-order derivative of A(εi) is: dA/dεi =1−1/(1 + εi) =

εi/(1 + εi). This is obvious that this derivative disappears when εi = 0. In addition, the derivative
dA/dεi is positive when εi > 0 and negative when εi < 0. However, regardless of the value of εi,
negative or positive, the function A(εi) is always positive as long as εi is a small number. It is clear that
A(εi) = 0 when εi = 0, and A(εi) > 0 when εi , 0, and the function looks like below. In short, as
presented in Figure 1 below, the function A(εi) ≥ 0, so that I(y : x) ≥ 0 and the equality sign holds
when and only when each εi disappears, that is, when xi = yi for all i. It means that the expected
information of an indirect message disappears when all probabilities are left unchanged.
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Figure 1. The expected information content of an indirect message.

It is important to further note that, as previously discussed, in the case where x1 = x2 = . . . =
xn = 1/n, the entropy is at its maximum value. That is H(x) = log n. In this case, the expected
information content of an indirect message I(y : x) is:

log n−
n∑

i=1

yi log
1
yi

= log n−H(y). (8)

Equation (8) tells us that, in a special case for equal prior probabilities, the expected information of
an indirect message is the difference between the maximum value (log n) of the entropy of the posterior
probabilities, and the actual value of the entropy H(y).

In addition, the expected information of an indirect message I(y : x) as in Equation (7) can be named
as the information inaccuracy. This is because the message transforms the prior probabilities (before a
realisation of an event) into posterior probabilities (after a realisation of an event). The presence of the
posterior probabilities reveals how allocation of occurrence among events actually took place. When
the message has a zero expected information (i.e., I(y : x) = 0), we have xi = yi, where i = 1, 2, . . . , n.
In this case, the forecast is perfect. As a result, the higher the expected information of an indirect
message is, the more inaccurate the forecast is.

2.4. The Expected Information Content

The following section explores the link between the expected information content of an indirect
message with both prior and posterior probabilities, being weighted by respective posterior probabilities.
Since the sums of prior or posterior probabilities are both unity, the expected information content of an
indirect message could be expressed as the weighted sum of these two probabilities. From Equation (6),
the expected information content of an indirect message is the sum of n terms involving xi and yi.
The xi and yi are prior and posterior probabilities of an event Ei to occur and

∑n
i=1 xi =

∑n
i=1 yi = 1.

Suppose that yi > xi for each i, so that yi − xi > 0 for each i. This is contrary to the fact that the sum of
both sets of probabilities is unity. As a result, n terms in Equation (6) must consist of some negative
terms and some positive terms so that yi > xi for some i and y j < x j for some j where i , j. We start
with the function in logarithms log(yi/xi) which we express as:

log
yi

xi
= − log

[
1 +

xi − yi

yi

]
. (9)

For convenience, let a = (xi − yi)/yi, so that we can write Equation (9) as log(yi/xi) =

− log(1 + a). Function f (a) can be expanded as Maclaurin series:

f (a) = f (0) +
f ′(0)

1!
a +

f ′′ (0)
2!

a2 +
f ′′′ (0)

3!
a3 +

f 4(0)
4!

a4 + . . . (10)
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With f (a) = − log(1 + a), and a = (xi − yi)/yi, we have f (0) = 0, f ′(0) = − 1, f ′′ (0) = 1,
f ′′′ (0) = − 2 and f 4(0) = 6. Using these values in Equation (9), we then obtain:

− log
(
1 +

xi − yi

yi

)
= −

xi − yi

yi
+

1
2

(
xi − yi

yi

)2

−
1
3

(
xi − yi

yi

)3

+
1
4

(
xi − yi

yi

)4

− . . . (11)

The above expansion converges if (xi − yi)/yi < 1, or xi < 2yi. The first term of the right-hand
side of Equation (11) is worth considering. If we multiply it by yi and take the sum, we have:
−

∑n
i=1 yi[(xi − yi)/yi] = −

∑n
i=1(xi − yi) = 0. The expected information content now becomes:

I(y : x) =
n∑

i=1

yi log
yi

xi
=

1
2

n∑
i=1

(xi − yi)
2

yi
−

1
3

n∑
i=1

(xi − yi)
3

yi2
+

1
4

n∑
i=1

(xi − yi)
4

yi3
− . . . (12)

From these results, the expected information content of an indirect message can also be used to
represent information inaccuracy because it translates the prior probability into posterior probability: the
higher the differences between these two probabilities xi − yi are, the more inaccurate the information is.

Vo [14] represented that many previous attempts to measure the degree of fiscal decentralisation
involve the use of some form of share of revenue/expenditure at lower-level jurisdictions in the national
total. It is the claim of this paper that such an approach completely ignores important distributional
aspects of fiscal arrangements. Consider two hypothetical economies, A and B. In both economies,
government spending and revenue at the national level accounts for 50 percent of the total, so that the
remaining 50 percent is the responsibility of SNGs. In country A, there are only two large subnational
governments, each with an equal share of total subnational fiscal activity (i.e., 50 percent each); while
in country B there are 100 subnational units, each accounting for 1 percent of the 50 percent total.
It is clear that there is substantially more fiscal decentralisation in B as compared to A. However, an
exclusive focus of the split of the total between the national and subnational levels would lead one to
erroneously conclude that both economies exhibit the same degree of fiscal decentralisation. In other
words, both the first and second moments of the distribution of revenue/expenditure are important for
understanding the workings of fiscal arrangements.

3. An Analytical Framework for the Analysis of Subnational Fiscal Inequality

In his influential study, Theil [16] advocated the use of entropy-based measure for the analysis of
income inequality. In this section, we apply Theil’s notion of entropy to public finances in multi-tiered
governments. The analysis that follows is devoted to the development of an analytical framework
which reveals SNGs’ fiscal inequality in term of revenue shares among SNGs. The same framework
can be directly applied to the expenditure shares among SNGs. The notion of fiscal inequality
(or fiscal dispersion) is important for fiscal theory on decentralisation because it accounts for the
heterogeneity of various subnational units in terms of revenue and expenditure shares. However, it
should be emphasised that fiscal inequality and fiscal equalisation are two distinct concepts, in that
fiscal equalisation is not designed to redress the notion of fiscal inequality in this paper. Specifically,
the concept of fiscal inequality in this paper relies on “money” (such as revenue and expenditure of
subnational governments) as the unit of comparison, whereas, the fiscal equalisation process (such
as that adopted in Australia) is concerned with equalising the capacity of SNGs to provide the same
“real” level of service.

It is assumed that a country has P states (the second level of government) and Q local councils
(the third level of government) and each local council belongs to one state. Let N = P + Q be the total
number of local and state governments, the number of subnational governments (SNGs). It is further
assumed that each subnational government accounts for a non-negative fraction of total subnational
revenue, to be denoted by ri which, for short, we shall refer to as the “regional revenue share”. The
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sum of these all revenue shares is equal to unity:
∑N

i=1 ri = 1, ri ≥ 0∀ i = 1, . . . , N. Let r denote the
vector of revenue shares r1, . . . , rN. The entropy of revenue shares is defined as:

H(r) =
N∑

i=1

ri log
1
ri

. (13)

Entropy H(r) can be regarded as the measure of the equality with which revenue is distributed
among the SNGs. When the revenue distribution is extremely equal in that each SNG has the same
revenue share (i.e., ri = 1/N) and revenue entropy is at its maximum: H(r) = log N. At the other
extreme, when only one SNG collects all SNGs revenue so that others have no revenue at all (i.e., ri = 1
and r j = 0 for i , j), the minimum value of the entropy is achieved: H(r) = 0. As a result, the range
of the entropy is 0 ≤ H(r) ≤ log N.

In the context of considering the relevance of the distribution of revenue among SNGs for its
impact on fiscal decentralisation, it is appropriate to focus on revenue inequality between SNGs, rather
than revenue equality. Revenue inequality is measured by deducting the revenue entropy, H(r), from
its maximum value, log N :

log N − H(r) = log N −
N∑

i=1

ri log
1
ri

=
N∑

i=1

ri log Nri. (14)

Due to the constraints on the range of the entropy H(r), it is clear that the range of this measure
of revenue inequality is 0 - perfect equality (when H(r) = log N) - and log N - maximum inequality
(when H(r) = 0). The entropy H(r) is an attractive way to measure equality as it satisfies three axioms
or tests described below.

Axiom 1: The proportionality test
The entropy in Equation (13) is expressed in terms of the revenue shares of SNGs. Thus, if all

revenues change proportionally, the shares do not change, and measure in euqation (14) remains
unchanged. This invariance of revenue inequality to a proportional change is the proportionality test.

Axiom 2: The “Haves and Have Nots” test
The upper limit of H(r) increases with N, so the maximum value of the inequality measure in

Equation (14) rises with N. Consider two hypothetical countries. First, in a two-subnational region
country, there is perfect inequality when one SNG accounts for all revenue, and the other has no
revenue. The entropy of the revenue shares is zero, and the value shown in Equation (13) is log 2.
Second, in a society consisting of 10,000 SNGs, revenue inequality is at maximum when 9,999 SNGs
have no revenue. The value of revenue inequality is now log 10, 000. It is obvious that revenue
distribution in the latter is much more unequal than the first country. In the first country, one-half
of the SNGs (one SNG) accounts for all subnational revenue and the other half has no revenue. As a
result, revenue inequality of the second country is as unequal as for the first country when one-half
of the SNGs account for all subnational revenue and when each of these has the same revenue. The
concern is that whether revenue inequality, as expressed in Equation (13), satisfies this condition.
The following material reveals that this is true by showing that as a larger fraction of SNGs join the
“revenue” group, revenue inequality falls. This establishes that revenue inequality will be uniquely
determined by the size of the revenue group (which we call “the haves”) relative to the “no-revenue”
group (“the have nots”).

Assume there is a set S which consists of M subnational governments where 0 < M ≤ N. It is
further assumed that SNGs in set S account for all subnational revenue, so that SNGs outside set S
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have no revenue. Also, within set S, each SNG accounts for the same amount of revenue (i.e., for
i ∈ S, ri = 1/M. ). The inequality measure in Equation (13) then becomes:

N∑
i=1

ri log Nri =
∑

i ∈ Si

ri log Nri =
1
M

log N
1
M

+
1
M

log N
1
M

+ . . . ,

or:
N∑

i=1

ri log Nri = log
N
M

= log
1
θ

, (15)

where θ = M/N is the fraction of SNGs in the country who jointly account for all subnational revenue.
The application of the last member of Equation (15) to the second example above with N = 10,000 and
θ = 5000/10,000 = 1/2, reveals that revenue inequality is also log 2.

When revenue is equally distributed among some groups of SNGs in the society, and the remaining
SNGs outside these groups have no revenue, revenue inequality of the country is determined solely
by the fraction—the ratio of the number of SNGs in the group to the total number of SNGs. In both
examples above, this ratio is 1/2, and the revenue inequality is log 2. This result is in consistence with
intuition: when the number of SNGs receiving revenue, M, increases, revenue distribution becomes
more equal. The above discussion shows that as the inequality (3.3) decreases as the share of a number
of SNGs which receive revenue rises, this measure satisfies the “Haves and Have Nots” axiom.

Axiom 3: The revenue transfer test
Consider an economy consisting two SNGs only A (rich) and B (poor) with the revenue shares rA

and rB, where rA > rB. Suppose that some revenue is transferred from A to B, such that drA + drB = 0.
A reasonable measure of revenue inequality should indicate that such a transfer from the rich SNG to
the poor SNG has the effect of decreasing inequality. Does Equation (13) satisfy this property? The
following material shows that it does have this property.

It is assumed that there are G sets of SNGs, to be denoted by S1, . . . , SG, and each SNG belongs to
one and only one set. Let Ng be a number of SNGs in set Sg, with

∑G
g=1 Ng = N. To give some practical

significance to the symbols, consider a three-tiered government: tier 1—national government; tier
2—state government; and tier 3—local government. Sg represents the set of state and local governments
in the geographical region defined by the jurisdiction of State g. Ng is the total number of state and
local governments within the jurisdiction defined by State g. In view of this, the entropy of revenue
shares, Equation (13), can now be expressed as:

H(r) =
G∑

g=1

 ∑
i ∈ Sg

ri log
1
ri

, (16)

where the component inside the square brackets is the entropy of revenue shares within set Sg. Let Rg

be the sum of revenue shares of all SNGs in set Sg, Rg =
∑

i ∈ Sg ri; this Rg is the revenue share of group

g with
∑G

g=1 Rg = 1. The entropy of revenue shares within set Sg can be expressed as:

∑
i ∈ Sg

ri log 1
ri

= Rg

 ∑
i ∈ Sg

ri
Rg

(
log 1

ri/Rg
×

1
Rg

)
= Rg

∑
i ∈ Sg

ri
Rg

log 1
ri/Rg

+ Rg log 1
Rg

.
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Thus, if we define Hg
(
rg

)
=

∑
i ∈ Sg

ri
Rg

log 1
ri/Rg

, where rg is the vector of ri that fall under Sg, as the

within-set entropy, we have: ∑
i ∈ Sg

ri log
1
ri

= RgHg
(
rg

)
+ Rg log

1
Rg

. (17)

Combining Equations (16) and (17), the total entropy becomes:

H(r) =
G∑

g=1

RgHg
(
rg

)
+

G∑
g=1

Rg log
1

Rg
. (18)

On the right-hand side of this equation, the first component is a weighted average of the within-set
entropies H1(r1), . . . , HG(rG), with the group revenue shares R1, . . . , RG as the weights. The second
term on the right of Equation (18) is the between-set entropy,

∑G
g=1 Rg log

(
1/Rg

)
.

Let consider the N > 2 case where there are three groups of SNGs: (i) Group A with only one
SNG A; group B with SNG B; and (iii) group C with (N − 2) SNGs comprising every SNG in the
economy except A and B. These three groups are denoted by SA, SB, and SC. We assume that the joint
revenue share of A and B is a constant, i.e., rA + rB = RA + B = constant. This implies that the revenue
share of group C, RC, is also constant at 1 − RA + B. It is further assumed that there are no revenue
transfers to or from the other SNGs of the society in SC. We now apply decomposition of Equation (18)
to this economy. The weighted average of the within-group entropies, the first term on the right-hand
side of Equation (18), is:

G∑
g=1

RgHg
(
rg

)
= RAHA(rA) + RBHB(rB) + RCHC(rC) = RCHC(rC). (19)

where HC(rC) =
∑

i ∈ SC

ri
RC

log 1
ri/RC

, with rC is the vector of ri that fall under group SC, is the within-group

entropy of group C. The first and second components in Equation (19), the within-group entropies for
groups A and B, disappear because there is only one SNG in each group. In addition, the between-group
entropy, the second term on the right-hand side of Equation (18), now becomes:

G∑
g=1

Rg log
1

Rg
= RA log

1
RA

+ RB log
1

RB
+ RC log

1
RC

. (20)

Substituting Equations (19) and (20) into Equation (18), the total entropy for this three-group
country becomes:

H(r) = RA log
1

RA
+ RB log

1
RB

+ RC log
1

RC
+ RCHC(rC). (21)

When we transfer revenue from A to B, with the distribution within SC remaining unchanged,
Equation (21) can be expressed as:

H(r) = RA log
1

RA
+ RB log

1
RB

+ constant. (22)

The constant in Equation (22) includes RC log(1/RC) and RCHC(rC). In words, the total entropy of
the three-group country is equal to the total entropy of two-group country plus a constant. Accordingly,
the impact on inequality of a transfer from A to B is the same in the N > 2 case as it is in the N = 2 case.
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To summarise this discussion, revenue inequality decreases if there is a transfer of revenue from
the rich SNG to the poor SNG. This conclusion holds for a society with two-subnational regions
(N = 2), as well as in the higher-dimensional case (N > 2). In short, it is clear that the measure of
revenue inequality satisfies the revenue transfer test.

4. Decomposing Revenue/Expenditure Inequality

In the above, we decomposed revenue equality into within-set and between-set terms. We now
show that revenue inequality can be similarly decomposed.

Recall from Equation (18) that the entropy is decomposed into two distinct components: a weighted
average of the within-set entropy and the between-set entropy. Furthermore, as in Equation (14),
inequality is measured by the difference between the maximum value of the entropy, log N and the
entropy H(r). Thus, by combining Equations (14) and (18), revenue inequality can be expressed as:

log N − H(r) = log N −
G∑

g=1

RgHg(rg) −
G∑

g=1

Rg log
1

Rg
. (23)

The right-hand side of Equation (23) remains unchanged if we subtract and add
∑G

g=1 Rg log Ng,
where Rg and Ng are the revenue share of and a number of SNGs in set Sg, respectively:

log N − H(r) =
G∑

g = 1
Rg

(
log Ng − Hg(rg)

)
+ log N −

G∑
g = 1

Rg log
Ng
Rg

=
G∑

g = 1
Rg

log Ng −
∑

i ∈ Sg

ri
Rg

log 1
ri/Rg

 +
G∑

g = 1
Rg log

Rg
Ng/N .

As the result, revenue inequality can be expressed as follows:

log N − H(r) =
G∑

g=1

Rg

 ∑
i ∈ Sg

ri
Rg

log
ri/Rg

1/Ng

 +
G∑

g=1

Rg log
Rg

Ng/N
. (24)

Equation (24) reveals that revenue inequality consists of two distinct components: (i) a weighted
average of within-set inequalities and (ii) a between-set inequality. The right-hand side of Equation (24)
parallels the decompositions given by Equation (18). The meaning of the two components of
Equation (24) is discussed further in what follows.

4.1. The within-Set Inequalities

The first component on the right-hand side of Equation (24) is a weighted average of the
within-set inequalities:

G∑
g=1

Rg

 ∑
i ∈ Sg

ri
Rg

log
ri/Rg

1/Ng

. (25)

The term ri/Rg is the conditional revenue share of SNG i within group Sg, that is, SNG i’s revenue
share within the group. Also, Ng represents a number of SNGs in group Sg. Equation (25) comprises

two weighted averages: (a) Zg =
∑

i ∈ Sg

ri
Rg

log
ri/Rg
1/Ng

, the within-set revenue inequality for group Sg,

and (b)
∑G

g=1 RgZg, the weighted average of the within-set revenue inequalities. We discuss each
in turn.

If each SNG in set Sg receives an equal revenue share, then ri/Rg = k (say). However, as∑
i ∈ Sg

(
ri/Rg

)
= 1, it follows that k = 1/Ng. When each SNG has an equal share of the group’s revenue,

i.e., ri/Rg = 1/Ng, i ∈ Sg, then there is no dispersion of the revenue distribution within the group,
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the perfect equality. Accordingly, the extent to which the Ng ratios deviate from unity is a measure of
revenue inequality within set Sg.

ri/Rg

1/Ng
, i = 1, . . . , Ng (26)

The within-set measure of revenue inequality, the term in square brackets of Equation (25), is a
weighted average of the logarithms of the ratios in Equation (26), the weights being the conditional
revenue shares.

4.2. The between-Set Inequality

The second term on the right-hand side of Equation (24) is the between-set inequality:

G∑
g=1

Rg log
Rg

Ng/N
. (27)

The basic ingredient of inequality from Equation (27) is the contrast between two sets of shares, the
revenue shares of the G groups, R1, . . . , RG and the corresponding population shares, N1/N, . . . , NG/N.
If all groups receive their pro-rata shares of revenue based on population, i.e., Rg = Ng/N, g = 1, . . . , G,
then there is no dispersion of revenue distribution and we have perfect between-set revenue equality.

In summary, total inequality consists of two components: the weighted average of the within-set
inequality and the between-set inequality. Interestingly, it is clear that both components are of the
form of the expected information content of an indirect message which was previously discussed
in Section 2. For the within-set inequality, the prior and posterior probabilities are 1/Ng and ri/Rg,
respectively. Similarly, for a between-set inequality, Ng/N and Rg are prior and posterior probabilities.
Furthermore, from Equation (24), the revenue inequality, can be written as:

log N −H(r) =
N∑

i=1

ri log Nri =
N∑

i=1

ri log
ri

1/N
. (28)

The far right-hand side of Equation (28) reveals that total revenue inequality can also be expressed
in the form of the expected information content of an indirect message. In this case, the prior and
posterior probabilities are 1/N and ri, respectively. With this perspective, it is clear that the message that
transforms the vector [1/N, . . . , 1/N]′ into [r1, . . . , rN]

′ is equivalent to two sub-messages. The first
message transforms

[
1/Ng, . . . , 1/Ng

]′
into

[
r1/Rg, . . . , rg/Rg

]′
, g = 1, . . . , G, which could be called

“the within-set message”, and the second message transforms [N1/N, . . . , NG/N]′ into [R1, . . . , RG]
′,

which is “the between-set message”.
The entropic analysis of fiscal arrangements can, of course, be extended to the expenditure shares

of SNGs in exactly the same manner as applied above to revenue shares.

4.3. A Note on Notation

In the above discussion, the results are formulated in logarithmic terms. For future reference, it is
convenient to take the antilogarithm of the inequality measure.

Recall the second component on the right-hand side of Equation (24), the between-set inequality,
which is a weighted average of the logarithms of the ratios of the set revenue shares and the

corresponding institutional shares,
G∑

g=1
Rg log

Rg
Ng/N . Let mi and qi be the revenue share and institutional

share of the ith region, that is, mi = Mi/M, where Mi, M are the revenue of the ith region and the total
economy, and qi = Qi/Q, where Qi, Q are the number of SNGs in the ith region and the total number
of SNGs in the economy. As a result, mi

qi
= Mi/M

Qi/Q = Mi/Qi
M/Q . The numerator of this ratio is revenue
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per SNG of the ith region, while the denominator is revenue per SNG. If m = [m1, . . . , mN]
′ and

q = [q1, . . . , qN]
′, the between-region inequality can be expressed in terms of information theory as:

I(m : q) =
N∑

i=1

mi log
mi
qi

.

The ratio mi/qi is “deflated” per SNG revenue of the ith set. The term “deflated” here means that
revenue is expressed as relative to national revenue for SNG. The above I(m : q) is the logarithm of a
weighted average of deflated revenue per SNG, so that the corresponding geometric mean is:

eI(m:q) =
N∏

i=1

(
mi
qi

)mi

. (29)

If all SNGs receive their pro rata share based on a number of SNGs, then mi/qi = 1 for each
i,

∏N
i=1(mi/qi)

mi = 1 and there is no revenue dispersion. Accordingly, the further is the mean
from Equation (29) away from unity, the greater is revenue inequality across sets. Similarly, on the
expenditure side, the geometric mean is:

eI(s:q) =
N∏

i=1

(
si
qi

)si

. (30)

where s = [s1, . . . , sN]
′ and q = [q1, . . . , qN]

′ with si and qi is the expenditure share and institutional
share of the ith region.

4.4. A Numerical Example

One of the contributions of this paper is illustrated with a simple example. Consider two
hypothetical nations V and L which exhibit the same degree of fiscal decentralisation, using typical
measure of fiscal decentralisation index as discussed in [17]. It is now further assumed that these two
countries consist of four subnational regions: A, B, C and D, each with different level of revenue (and
expenditure). Table 1 provides data for this example.

Table 1. Illustrating Fiscal Inequality.

Region/
Measures

Country V Country L

Own-Sourced
Revenue Share in Total Own-Sourced

Revenue Share in Total

($ millions) Actual Average Difference ($ millions) Actual Average Difference

(1) (2) (3) (4) (5) = (4) − (3) (6) (7) (8) (9) = (8) − (7)

1. A 3000 0.010 0.250 0.240 3300 0.011 0.250 0.239
2. B 125,000 0.427 0.250 −0.177 271,390 0.926 0.250 −0.676
3. C 97,000 0.331 0.250 −0.081 10,810 0.037 0.250 0.213
4. D 68,000 0.232 0.250 0.018 7500 0.026 0.250 0.224
5. Total 293,000 1.000 1.000 0.000 293,000 1.000 1.000 0.000

6. Standard
deviation 0.178 0.000 0.451 0.000

7. Entropy 0.484 0.602 0.146 0.602

8. Fiscal
Inequality 0.118 0.000 0.456 0.000

Column 2 shows that there is one small region in country V, region A. Revenue from region B is
almost double that of D and forty times higher than that of region A. Columns 3 and 4 present the
actual and average revenue shares for 4 regions in country V. By contrast, in country L, there is one
large and three small regions. Region B accounts for more than 92 percent of the total revenue of all
regions, and the remaining 8 percent is spread across the three small regions A, C, and D.
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• Row 6 presents the standard deviations of the revenue shares of the two, 0.178 and 0.451. This
clearly reveals that the distribution of revenue of country L is more dispersed than in V.

• Row 7 gives the values of the fiscal entropy, defined as where is the revenue share of SNG. The
entropy value in country V is 0.484 and 0.146 in country L, as shown in columns 3 and 7 of row 8,
respectively. If we were to assume alternatively that each region accounts for the same share of
25 percent, as shown by columns 4 and 8, there is no inequality, so that fiscal entropy for both
countries is as in row 8, columns 4 and 8.

• Row 8 presents the fiscal inequality, the difference between the maximum level of the entropy, or
0.602, and the actual level. Fiscal inequality is 0.118 and 0.456 for countries V and L, respectively.
Higher fiscal inequality in L means a greater degree of revenue dispersion among SNGs and,
as a result, suggests a lower degree of fiscal decentralisation because revenue is allocated more
disproportionately across regions.

To summarise this example, countries V and L may exhibit the same degree of fiscal decentralisation
as discussed in [17]. But as there is much more fiscal inequality in country L, it can be reasonably
concluded that the true situation may be different: there is less fiscally decentralised in country L.
As such, studies on measuring various aspects of fiscal activities such as fiscal decentralisation
should carefully take into account the dispersion of revenue (and expenditure) across regions.
The entropic approach developed in this paper is able to accommodate these dispersions across
subnational governments.

4.5. An Entropic Approach for Measuring Fiscal Decentralisation

We now turn to the application of this new framework into the Vietnamese context using its fiscal
data across provinces and districts.

Table 2 presents the fiscal inequalities across subnational regions in Vietnam in 2015. The samples
include 61 provinces and 5 major cities under direct management of the national government (Ha Noi,
Ho Chi Minh City, Hai Phong, Da Nang and Can Tho) in Vietnam except for Binh Phuoc, and Ha Tinh
provinces due to the unavailability of data. It is clear that within-province fiscal inequality accounts
for 81.6 per cent and 93.6 per cent total inequality in terms of revenue and expenditure, respectively.
This implies that the within-province fiscal inequality plays a more important role in total inequality
of the distribution of revenue and expenditure across subnational regions in Vietnam. This is partly
because each subnational region includes both provincial and local governments, and the provincial
government is significantly larger than any local government within the same region. For example, for
Ho Chi Minh City, the total share of 14.1 per cent in 2015, the state (city) government accounts for 9.9
per cent leaving only 4.2 per cent to be divided among the 24 local governments (districts) in Ho Chi
Minh City. Another implication from the fiscal inequalities is that it is a more equality in an allocation
of expenditure across subnational regions rather than that of revenue.

Table 2. Fiscal inequalities across subnational governments, Vietnam 2015.

Inequality Measure Revenue Expenditure

Total Inequality 0.762 0.625
Between-province inequality 0.140 0.039

Within-province inequality (WSI) 0.621 0.586
WSI as the percentage of total inequality 81.6 93.8

The above analyses indicate that, for revenue and expenditure, a within-province inequality
accounts for 81.6 percent and 93.8 per cent, of the total fiscal inequality in Vietnam respectively. Overall,
in Vietnam, within-province inequality appears to be a dominant factor. It is argued that a significantly
higher percentage of the within-province inequality in total fiscal inequality, for both revenue and
expenditure, in Vietnam demonstrates that dispersion of revenue raising capacity and expenditure
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responsibility across local governments is substantial. As such, it is the claim of this paper these
dispersions should be incorporated into any measurement of a degree of fiscal decentralization for a
particular country.

As a preliminary recommendation in the context of Vietnam, the simple average of the percentage
of both within-province inequality from revenue and expenditure, to be named the average dispersions
of revenue and expenditure (or DRE) which is 87.7 per cent, being the simple average of 81.6 per cent and
93.8 per cent, should be considered. Further tests should be conducted on the above analyses to ensure
that any incorporation of the dispersion of revenue and expenditure across subnational governments in
measuring the degree of fiscal decentralization is robust and truly reflects the relationship between the
national government and the subnational governments in the allocation of revenue raising autonomy
and expenditure responsibility.

As an illustration for the case of Vietnam, in 2015, total revenue from subnational governments
(including governments at the provincial and district levels) is 288,524 billion Vietnam Dong (VND).
Total national government revenue in 2015 is VND998,217 billion. Total subnational government
expenditure is VND1,033,973 billion and total national government expenditure is VND1,265,625
billion. A degree of fiscal decentralization for Vietnam is 0.22, being the ratio between total revenue
from subnational governments and total revenue from both national and subnational governments,
or 0.45, being the ratio between total subnational government expenditure and total government
expenditure. One of these two ratios have been used in measuring fiscal decentralization in previous
empirical analyses.

Until 2010, even with the most recently advanced index of fiscal decentralization, the IFD [17], the
degree of fiscal decentralization in Vietnam is 0.35, being the geometric mean of the so-called “Fiscal
Autonomy” of 0.28 (being the ratio between revenue and expenditure of subnational governments) and
“Fiscal Importance” of 0.45 (being the ratio between total expenditure from subnational governments
and total government (including subnational and national) expenditure.

This paper considers that the dispersions of revenue raising capacity and expenditure responsibility
are important and as such, these dispersions, derived from the framework of fiscal decentralization,
should be incorporated into the final and true degree of fiscal decentralization of Vietnam. As a result,
the true degree of fiscal decentralization in Vietnam is recommended to be approximately 0.31, which
is the product between the IFD (0.45) and the DRE (87.7 per cent or 0.877).

5. Concluding Remarks

It has been widely considered that fiscal decentralization is an important aspect for a sustainable
economic growth regardless of the current level of income across countries in the world. One of
the difficult issues is to measure satisfactorily the degree of fiscal decentralisation across countries.
In previous analyses, measurement of fiscal decentralisation in public finances has been very crude.
Typically, either revenue or expenditure from subnational governments (“SNGs”) has been employed
without taking into account the fiscal autonomy of lower level governments. Vo [17,18] developed the
fiscal decentralisation index, the first of its kind, which accounts for both fiscal autonomy and fiscal
importance of subnational governments. We argue that while Vo’s index is an advance on current
practice, it is still not perfect as it assumes there is no dispersion of revenue and expenditure across
regions. This index of fiscal decentralisation in relation to government revenue and expenditure are
insensitive with the different distributions of revenue and expenditure among SNGs and a number of
SNGs—the fundamental aspects for any country. In response to these potential limitations, an entropic
approach to the analysis of subnational fiscal inequality has been developed in this paper. In response
to this weakness, fiscal entropy and fiscal inequality measures are developed using information theory
in this paper.

An application of the entropic approach developed in this paper for the case of Vietnam
demonstrates that a true degree of fiscal decentralization of the country has effectively been reduced
in comparison with other estimates. It is because Vietnam has experienced a high degree of fiscal
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dispersions across subnational governments in both raising revenue autonomy and expenditure
responsibility between the national government and the provincial and district governments. As such,
future academic studies on the issue of fiscal decentralization should consider the important aspect of
fiscal dispersions across subnational governments in any measurement.
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