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Abstract: In the framework of statistical learning, we study the online gradient descent algorithm
generated by the correntropy-induced losses in Reproducing kernel Hilbert spaces (RKHS).
As a generalized correlation measurement, correntropy has been widely applied in practice, owing to
its prominent merits on robustness. Although the online gradient descent method is an efficient way
to deal with the maximum correntropy criterion (MCC) in non-parameter estimation, there has been
no consistency in analysis or rigorous error bounds. We provide a theoretical understanding of the
online algorithm for MCC, and show that, with a suitable chosen scaling parameter, its convergence
rate can be min–max optimal (up to a logarithmic factor) in the regression analysis. Our results show
that the scaling parameter plays an essential role in both robustness and consistency.

Keywords: correntropy; maximum correntropy criterion; online algorithm; robustness; reproducing
kernel Hilbert spaces

1. Introduction

Regression analysis is an important problem in many fields of science. The traditional least
squares method may be the most used algorithm for regression in practice. However, it only relies
on the mean squared error and belongs to second-order statistics, whose optimality depends heavily
on the assumption of Gaussian noise. Thus, it usually performs poorly when the noise is not
normally distributed. Alterative approaches have been proposed to deal with outliers or heavy-tailed
distributions. A generalized correlation function named correntropy [1] is introduced as a substitute
for the least squares loss, and the maximum correntropy criterion (MCC) [2–5] is used to improve
robustness in situations of non-Gaussian and heavy-tailed error distributions. Recently, MCC has been
succeeded in many real applications, e.g., wind power forecasting and pattern recognition [6,7].

In the standard framework of statistical learning, let X ∈ Rn be an explanatory variable with
values taken in a compact metric space (X , d), Y be a real response variable with Y ∈ Y ⊂ R. Here we
investigate the application of MCC in the following regression model

Y = fρ(X) + ε, E(ε|X = x) = 0,

where ε is the noise and fρ(x) is the regression function, defined as the conditional mean E(Y|X = x)
at each x ∈ X . The purpose of regression is to estimate the unknown target function fρ according
to the sample z = {zi = (xi, yi)}T

i=1, which is drawn independently from the underlying unknown
probability distribution ρ on Z := X × Y . For a hypothesis function f : X → Y , with the scaling

parameter σ > 0, the correntropy between f (X) and Y is defined by Vσ( f ) := EG
(
( f (X)−Y)2

2σ2

)
where

G(u) is the Exponential function exp {−u} , u ∈ R. For the given sample z, the empirical form of Vσ is
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V̂σ( f ) := 1
T ∑T

i=1 G
(
( f (xi)−yi)

2

2σ2

)
. When applied to regression problems, MCC intends to maximize the

empirical correntropy V̂σ over a certain underlying hypothesis spaceH, that is

fz,H := arg max
f∈H

V̂σ( f ). (1)

MCC in regression problems has shown its efficiency for cases when the noises are non-Gaussian,
and also with large outliers, see [8–10]. It also has drawn much attention in the signal processing,
machine learning and optimization communities [2,5,11–14].

Let K : X ×X → R be a Mercer kernel, i.e., a continuous, symmetric and positive semi-definite
function. We say that K is a positive semi-definite, if for any finite set {u1, · · · , um} ⊂ X and m ∈ N,
the matrix

(
K(ui, uj)

)m
i,j=1 is positive semi-definite. An RKHS (HK, ‖ · ‖K) associated with the Mercer

kernel K is defined as the completion of the linear span of the functions set {Kx := K(x, ·), x ∈ X}.
It has the reproducing property

f (x) = 〈 f , Kx〉K (2)

for any f ∈ HK and x ∈ X . Since X is compact, the RKHS HK is contained in C(X ), the space of
continuous functions on X with the norm ‖ f ‖∞ := sup

x∈X
| f (x)|. Moreover, if X is a Euclidean ball in Rn

with some α > n
2 , then the Sobolev space Hα(X ) is an RKHS. For more families of RKHS in statistical

learning, one can refer to [15]. Denote κ := supx∈X
√

K(x, x), then, by the reproducing property (2),
there holds

‖ f ‖∞ ≤ κ‖ f ‖K, f or any f ∈ HK. (3)

Denote `σ : R×R→ R as the correntropy induced regression loss, given by

`σ(u, v) := σ2
(

1− G
(
(u− v)2

2σ2

))
= σ2

(
1− exp

{
− (u− v)2

2σ2

})
.

Associated with this regression loss `σ and the RKHSHK, MCC for regression (1) in the context
of learning theory is reformulated as

fz := arg min
f∈HK

1
T

T

∑
i=1

`σ( f (xi), yi). (4)

Notice that `σ is not convex, MCC algorithms are usually implemented by various gradient
descent methods [14,16,17]. In this paper, we take the online gradient descent method as follows to
solve the above optimization scheme (4) since it is scalable to large datasets and applicable to situations
where the samples are presented in sequence.

Definition 1. Given the sample z = {zi = (xi, yi)}T
i=1, the online gradient descent method for MCC is defined

by f1 = 0, and

ft+1 = ft − η`′σ( ft(xt), yt)Kxt , t ∈ N, (5)

where η > 0 is the step size and `′σ denotes the derivative of `σ with respect to the first variable.

In the literature, most MCC algorithms have been implemented for linear models and cannot be
applied to analysis of data with nonlinear structures. Kernel methods provide efficient non-parametric
learning algorithms for dealing with nonlinear features. So, RKHS are used in this work as hypothesis
spaces in the design of learning algorithms.
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An online algorithm for MCC has been used in practical applications for more than one
decade, but there still is a lack of the theoretical guarantee or strict analysis for its asymptotical
convergence. Because the optimization problem arising from MCC is not convex, the global
optimization convergence of the online algorithm (5) for MCC is not unconditionally guaranteed.
This also makes the theoretical analysis for MCC essentially difficult. In fact, vast numerical studies
show that MCC can lead robust estimators while keeping convenient convergence properties.
Thus, our goal is to fill the gap between the theoretical analysis and the optimization process so
that the output function of the online algorithm (5) can converge to a global minima while the existing
work can not ensure the global optimization of this output. To this end, we study the approximation
ability of fT+1 generated by (5) at the T-iteration to the regression function fρ. We derive the explicit
error rate for (5) with suitable choice of step sizes, which is competitive with those in the regression
analysis. In this work, we show that the scaling parameter σ plays an important role in providing
robustness and a fast convergence rate.

2. Preliminaries and Main Results

We begin with some preliminaries and notations. Throughout the paper, we assume that the
unknown distribution ρ on Z = X ×Y can be decomposed into the marginal distribution ρX on X
and the conditional distribution ρ(·|x) at each x ∈ X . We also require that |Y| < M almost surely for
some M > 1. In the regression analysis, the approximation power of fT+1 by (5) is usually measured
in terms of the mean squared error in L2

ρX -metric ‖ fT+1 − fρ‖ρ, that is defined as ‖ · ‖ρ = ‖ · ‖L2
ρX

:=(∫
X | · |

2dρX
) 1

2 .
To present our main result for the error bound of fT+1 − fρ, the assumption on the target function

fρ will be given as below. Define an integral operator LK : L2
ρX −→ L2

ρX associated with the kernel
K by

LK( f ) :=
∫
X

f (x)KxdρX , f ∈ L2
ρX .

By the reproducing property (2) ofHK, for any f ∈ HK, it can be expressed as

LK( f ) =
∫
X
〈 f , Kx〉KKxdρX . (6)

Since K is a Mercer kernel, LK is compact and positive. Denote Lr
K as the r-th power of LK, then it

is well defined for any r > 0 by the spectral theorem. Let {λi}i≥1 be the eigenvalues of LK, arranged in
decreasing order. The corresponding eigenfunctions {φi}i≥1 form an orthonormal basis of L2

ρX space.
Hence, the regularity space Lr

K(L2
ρX ) is expressed as [18]

Lr
K(L2

ρX ) :=

{
f =

∞

∑
i=1

λr
j aiφi : ‖L−r

K f ‖ρ =
∞

∑
i=1

a2
i < ∞

}
.

It implies that for any r1 > r2 > 0, there holds Lr1
K (L2

ρX ) ⊂ Lr2
K (L2

ρX ). In particular, we know that

Lr
K(L2

ρX ) ⊆ HK for any r ≥ 1
2 and L

1
2
K(L2

ρX ) = HK satisfying

‖ f ‖K = ‖L−
1
2

K f ‖ρ, ∀ f ∈ HK. (7)

Throughout the paper, the regularity assumption holds for fρ, i.e.,

fρ = Lr
K(g), f or some r > 0 and g ∈ L2

ρX 2
, (8)

and ‖L−r fρ‖ρ = ‖g‖ρ.
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This assumption is called the source condition [19] in inverse problems and it characterizes the
smoothness of the target function fρ. Obviously, the larger the parameter r is, the higher the regularity
of fρ is. The general source conditions considered in inverse problems usually take the form of

fρ = ψ(LK)h, f or some h ∈ HK (9)

where ψ is non-decreasing and ψ(0) = 0, called the index function. It is clear that when r > 1
2 ,

The above assumption is a special case of (9) with ψ(LK) = Lr− 1
2

K and h = L
1
2
Kg. It should be pointed

that our analysis in this work also can applied to more general cases by taking source conditions (9).
We are now in a position to state our convergence rate for (5) in L2

ρX -space as well as in HK by
choosing the step size η := η(T). For brevity, let κ = 1 without losing generality and denote the
expectation Ez1,··· ,zt as Et for each t ∈ N.

Theorem 1. Define { ft}T+1
t=1 by (5). Suppose that the assumption (8) holds for r > 0. Take η = T−

2r
2r+1 and

T >

(
24
(
(1/2e)1/2 + 1

)2
log(T)

) 2r+1
2r

, then

ET

[
‖ fT+1 − fρ‖2

ρ

]
≤ C max

{
T−

2r
2r+1 log(T), T

5
2r+1 σ−4

}
(10)

and if r > 1
2 ,

ET

[
‖ fT+1 − fρ‖2

K

]
≤ C′max

{
T−

2r−1
2r+1 , T

5
2r+1 σ−4

}
(11)

where the constants C, C′ are independent of T, σ, and will be given in the proof.

Remark 1. Besides the error ‖ fT+1 − fρ‖ρ, the error bound (11) inHK-norm is also given if r > 1
2 , i.e., fρ ∈

HK. By (3), it leads the pointwise convergence of fT+1 to fρ since for each u ∈ X , | fT+1(u) − fρ(u)| ≤
‖ fT+1 − fρ‖K. Compared with the global error ‖| fT+1 − fρ‖ρ, the error rate in HK characterizes the local
performance of (5) and is much stronger. Furthermore [18], when the kernel K lies in Cα(X × X ) for some
α > 0, its associated RKHSHK can be embedded into Cα/2(X ), whose partial derivative up to order α/2 are
continuous with ‖ f ‖Cα/2(X ) = ∑|s|≤ α

2
‖D α

2 f ‖∞. So, the convergence inHK implies that fT+1 will converge to

fρ in C
α
2 , that ensures the convergence of the derivatives of fT+1 to those of fρ.

Remark 2. It has been proved in [20] that the min–max optimal rate for regression problems is of order
O
(

T−
2r

2r+s

)
when there exists constants Cs > 0, 0 < s ≤ 1 such that the following effective dimension

condition holds, i.e.,

Trace((LK + λI)−1LK) ≤ Csλ−s, f or any λ > 0,

where Trace(·) denotes the trace of the operator. This condition measures the complexity [15,20,21] ofHK with
respect to the marginal distribution ρX . It is always satisfied with s = 1 by taking the constant Cs = Trace(LK).
Hence, the min–max optimal rate for capacity-independent cases is of order O

(
T−

2r
2r+1

)
by taking a universal

parameter s = 1.

When σ ≥ T
2r+5

4(2r+1) , we see that our convergence rate in L2
ρX -norm is of order O

(
T−

2r
2r+1 log(T)

)
.

Thus, it is nearly optimal in the capacity-independent sense that up to a logarithmic factor, it matches the
min–max optimal rate above. We also find that the convergence rates (10) and (11) keep decreasing as the
regularity parameter r increases. Hence, the online algorithm (5) does not suffer from the saturation phenomenon
existing in Tikhonov regularization schemes [22], where the error rate of the estimators will not improve if r is
out of the range (0, 1]. This again shows the advantage of the online algorithm (5).
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Remark 3. Recent paper [2] investigated the approximation ability of the empirical scheme (4) over general
hypothesis spacesH. This work shows that with a complexity parameter 0 < β ≤ 2, their error rate is of order

O(T−
2

2+β ) if the scaling parameter σ = T
1

2+β . To be fair, do not take the capacity of H into consideration by
taking β = 2. Then, their order reduces to O(T−

1
2 ), which is far from capacity-independent optimality and

inferior to our rates.
In the work [17], iterative regularization techniques (alternatively called early stopping) are taken to solve

the optimization problems associated with general robust losses including the correntropy induced loss `σ,
where the whole sample z are presented at each iteration. In their analysis, under the polynomial decay of the
eigenvalues {λi}, that is, there exists some constants Cb > 0 and b ≥ 1 such that

λi ≤ cbi−b, ∀i ≥ 1,

the obtained rate is O(T−
2br

2br+1 ) if r ≥ 1
2 , else, it is O(T−

2br
b+1 ). This decay is also a measurement for the

complexity ofHK, please refer to [21]. Recall that the compactness of X implies that ∑i λi < ∞ and λi ≤ ci−1

for some c > 0. So, their rate for capacity-independent cases is O(T−
2r

2r+1 ) if r ≥ 1
2 , else, it is O(T−r). We can

see that our results in (10) are superior in the case 0 < r < 1
2 . It shows in theory that the online algorithm (5)

for MCC can achieve better approximation rate when fρ is not inHK.

Remark 4. It is easy to check that the roots of the second derivative of `σ is ±σ, i.e., when | f (x)− y| < σ,
this loss is convex and behaves as the least squares loss; when | f (x)− y| ≥ σ, the loss function becomes concave
and rapidly tends to be flat as the value of | f (x)− y| goes to infinity. It implies that `σ satisfies the redescending
property, and with a suitable chosen scaling parameter σ, `σ can reject gross outliers while keeping a prediction
accuracy. In Theorem 1, we observe that σ should be large enough to guarantee the nice convergence, which
coincides with the work in [2]. They also pointed that too small σ may prevent the estimator to converge to
fρ. In a recent paper [23], correntropy with small σ is interpreted as modal regression. According to the above
discussions and empirical studies [2,14,17], we conclude that the value of σ would determine the learning target
and a moderate σ may be more appropriate for balancing the convergence and robustness in practice.

Based on the above remarks, we see that the convergence rate of online kernel-based MCC is
comparable to that of the least squares that has appeared in the literature [24]. Meanwhile, MCC’s
redescending property will produce robustness to various outliers including sub-Gaussain, Student’s
t-distribution, and Cauchy distribution. These all shows the superiority of MCC in a variety of
applications, such as clustering, classification and feature selection [14]. At the end of this section,
we would like to point out that although our work is carried out under the boundness condition of Y ,
it can be extended to more general situations such as the moment conditions [20].

3. Proofs of Main Result

In this section, we prove our main results in Theorem 1. First, we derive the uniform bound for
the iteration sequence { ft}T+1

t=1 by (5).

Lemma 1. Define { ft}T+1
t=1 by (5). If 0 < η ≤ 1, then

‖ ft‖K ≤ Mη
1
2 (t− 1)

1
2 , t ∈ N. (12)

Proof. We prove (12) by induction. It is trivial that (12) holds for t = 1. Suppose (12) holds for

t ≥ 2. Notice that `′σ( ft(xt), yt) = G
(
− ( ft(xt)−yt)

2

2σ2

)
[ ft(xt)− yt] . Write (12) as ft+1 = ft − ηHt where

Ht = G
(
− ( ft(xt)−yt)

2

2σ2

)
[ ft(xt)− yt]Kxt . Then by (2),
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‖ ft+1‖2
K = ‖ ft‖2

K − 2η〈 ft, Ht〉K + η2‖Ht‖2
K

= ‖ ft‖2
K − 2ηG

(
− ( ft(xt)− yt)2

2σ2

)
[ ft(xt)− yt] ft(xt) + η2‖Ht‖2

K

and

‖Ht‖2
K = G

(
− ( ft(xt)− yt)2

σ2

)
[ ft(xt)− yt]

2 K(xt ,xt)

≤ G
(
− ( ft(xt)− yt)2

σ2

)
[ ft(xt)− yt]

2 .

Then, we have

‖ ft+1‖2
K ≤ ‖ ft‖2

K + η

{
ηG
(
− ( ft(xt)− yt)2

2σ2

)
[ ft(xt)− yt]

2 − 2( ft(xt)− yt) ft(xt)

}
G
(
− ( ft(xt)− yt)2

2σ2

)
.

For the part of the above inequality, we have

ηG
(
− ( ft(xt)− yt)2

2σ2

)
[ ft(xt)− yt]

2 − 2( ft(xt)− yt) ft(xt)

=

(
ηG
(
− ( ft(xt)− yt)2

2σ2

)
− 2
)( ft(xt)− yt)−

yt

ηG
(
− ( ft(xt)−yt)2

2σ2

)
− 2

2

+
y2

t

2− ηG
(
− ( ft(xt)−yt)2

2σ2

) .

Since η ≤ 1, it follows that ηG
(
− ( ft(xt)−yt)

2

2σ2

)
− 2 < 0 and 2− ηG

(
− ( ft(xt)−yt)

2

2σ2

)
≥ 1. Recall that

|y| ≤ M for all y ∈ Y , then

ηG
(
− ( ft(xt)− yt)2

2σ2

)
[ ft(xt)− yt]

2 − 2( ft(xt)− yt) ft(xt) ≤
y2

t

2− ηG
(
− ( ft(xt)−yt)2

2σ2

) ≤ M2.

Based on the above analysis,

‖ ft+1‖2
K ≤ ‖ ft‖2

K + ηM2G
(
− ( ft(xt)− yt)2

2σ2

)
≤ ‖ ft‖2

K + ηM2 ≤ M2η(t− 1) + ηM2 = M2ηt.

Then the proof is completed.

Next, we will establish a proposition which is crucial to prove the convergence rates in Theorem 1.
It is closely related to the generalization error of ft. Define the generalization error E( f ) for any
measurable function f : X → R by

E( f ) =
∫
Z
( f (x)− y)2dρ.

The regression function fρ that we want to learn or approximate is a minimizer of E( f ) , that is

fρ = arg min{E( f ) : f is a measurable f unction f rom X to Y}.

A simple computation yields the relation for f : X → R

‖ f − fρ‖2
ρ = E( f )− E( fρ). (13)
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For brevity, set the operator πt
k(LK) := ∏t

j=k(I − ηLK) for k, t ∈ N and πt
t+1(LK) := I.

Proposition 1. Define { ft}T+1
t=1 by (5). If the step size 0 < η < 1, then we have

ET

[
‖ fT+1 − fρ‖2

ρ

]
≤ 2

∥∥∥πT
1 (LK) fρ

∥∥∥2

ρ
+ 2η2

T

∑
t=1

2
(
(1/2e)1/2 + 1

)2

1 + η(T − t)
Et−1 [E( ft)]

+ 2ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)∆t

∥∥∥∥∥
2

ρ

 , (14)

furthermore, if fρ ∈ HK,

ET

[
‖ fT+1 − fρ‖2

K

]
≤ 2

∥∥∥πT
1 (LK) fρ

∥∥∥2

K
+ 2η2

T

∑
t=1

Et−1 [E( ft)] + 2ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)∆t

∥∥∥∥∥
2

K

 , (15)

where ∆t is defined in the proof.

Proof. Denote

∆t =

[
G(0)− G

(
− ( ft(xt)− yt)2

2σ2

)]
[ ft(xt)− yt]Kxt

=

[
1− G

(
− ( ft(xt)− yt)2

2σ2

)]
[ ft(xt)− yt]Kxt (16)

and define a random variable ξ( ft, zt) := LK( ft − fρ)− ( ft(xt)− yt)Kxt .

By (5), we have that for any t ∈ N,

ft+1 − fρ = ft − fρ − η [ ft(xt)− yt]Kxt + η∆t = (I − ηLK) ( ft − fρ) + ηξ( ft, zt) + η∆t.

Applying the above equality iteratively from t = T to t = 1, we get that by f1 = 0,

fT+1 − fρ = −πT
1 (LK) fρ + η

T

∑
t=1

πT
t+1(LK)ξ( ft, zt) + η

T

∑
t=1

πT
t+1(LK)∆t. (17)

It follows from the elementary inequality that ‖g1 + g2‖2
ρ ≤ 2‖g1‖2

ρ + 2‖g2‖2
ρ for any g1, g2 ∈

L2
ρX , that

ET

[
‖ fT+1 − fρ‖2

ρ

]
≤ 2ET

∥∥∥∥∥−πT
1 (LK) fρ + η

T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

∥∥∥∥∥
2

ρ

+ 2ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)∆t

∥∥∥∥∥
2

ρ

 . (18)

To prove (14), we consider the part of the first term on the right-hand side of (18)

ET

∥∥∥∥∥−πT
1 (LK) fρ + η

T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

∥∥∥∥∥
2

ρ

 =
∥∥∥πT

1 (LK) fρ

∥∥∥2

ρ

+ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

∥∥∥∥∥
2

ρ

− 2ET

〈πT
1 (LK) fρ, η

T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

〉
ρ

 . (19)
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Observe that ft is only dependent on {z1, · · · , zt−1}, not on zt. Thus, by the fact that
∫
X ydρ =

fρ(x), we have

Ezt [ξ( ft, zt)] = 0, t = 1, · · · , T. (20)

We consider the second term on the right-hand side of (19). It can be rewritten as

ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

∥∥∥∥∥
2

ρ

 = η2
T

∑
t=1

T

∑
l=1

ET

〈
πT

t+1(LK)ξ( ft, zt), πT
l+1(LK)ξ( fl , zl)

〉
ρ

.

When t < l ≤ T, by (20),

ET

〈
πT

t+1(LK)ξ( ft, zt), πT
l+1(LK)ξ( fl , zl)

〉
ρ
= El−1Ezl

〈
πT

t+1(LK)ξ( ft, zt), πT
l+1(LK)ξ( fl , zl)

〉
ρ

= El−1

〈
πT

l+1(LK)π
T
t+1(LK)ξ( ft, zt),Ezl ξ( fl , zl)

〉
ρ
= 0.

Obviously, the above equality holds for l < t ≤ T. So, with (7), we get

η2
T

∑
t=1

T

∑
l=1

ET

〈
πT

t+1(LK)ξ( ft, zt), πT
l+1(LK)ξ( fl , zl)

〉
ρ

= η2
T

∑
t=1

Et

[∥∥∥πT
t+1(LK)ξ( ft, zt)

∥∥∥2

ρ

]
≤ η2

T

∑
t=1

∥∥∥∥πT
t+1(LK)L

1
2
K

∥∥∥∥2
Et

[∥∥∥∥L−
1
2

K ξ( ft, zt)

∥∥∥∥2

ρ

]

= η2
T

∑
t=1

∥∥∥∥πT
t+1(LK)L

1
2
K

∥∥∥∥2
Et

[
‖ξ( ft, zt)‖2

K

]
.

To bound Et

[
‖ξ( ft, zt)‖2

K

]
, we have

Et

[
‖ξ( ft, zt)‖2

K

]
= Et

[
‖( ft(xt)− yt)Kxt‖

2
K

]
− ‖Et [( ft(xt)− yt)Kxt ]‖

2
K

≤ Et−1Ezt

[
‖( ft(xt)− yt)Kxt‖

2
K

]
≤ Et−1Ezt

[
( ft(xt)− yt)

2
]
= Et−1 [E( ft)]

where the last inequality is derived from (3). Applying Lemma A1 with β = 1
2 , l = t + 1 and k = T,

we have

T

∑
t=1

∥∥∥∥πT
t+1(LK)L

1
2
K

∥∥∥∥2
=

T−1

∑
t=1

∥∥∥∥πT
t+1(LK)L

1
2
K

∥∥∥∥2
+

∥∥∥∥πT
T+1(LK)L

1
2
K

∥∥∥∥2

≤
T−1

∑
t=1

2
(
(1/2e)1/2 + 1

)2

1 + η(T − t)
+ 1 ≤

T

∑
t=1

2
(
(1/2e)1/2 + 1

)2

1 + η(T − t)
.

Based on the above analysis, we have

ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

∥∥∥∥∥
2

ρ

 ≤ η2
T

∑
t=1

2
(
(1/2e)1/2 + 1

)2

1 + η(T − t)
Et−1 [E( ft)] . (21)
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Now, we estimate the last term on the right-hand side of (19). Using (20) again, we have

ET

〈πT
1 (LK) fρ, η

T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

〉
ρ


=

〈
πT

1 (LK) fρ, η
T

∑
t=1

πT
t+1(LK)Et−1Ezt [ξ( ft, zt)]

〉
ρ

= 0. (22)

Plugging (21) and (22) into (19), we get

ET

∥∥∥∥∥−πT
1 (LK) fρ + η

T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

∥∥∥∥∥
2

ρ

 =
∥∥∥πT

1 (LK) fρ

∥∥∥2

ρ

+ η2
T

∑
t=1

2
(
(1/2e)1/2 + 1

)2

1 + η(T − t)
Et−1 [E( ft)] . (23)

This together with (18) yields the desired conclusion (14).
Now we turn to bound fT+1 − fρ inHK-norm. By (17) again, we have

ET

[
‖ fT+1 − fρ‖2

K

]
≤ 2ET

∥∥∥∥∥−πT
1 (LK) fρ + η

T

∑
t=1

πT
t+1(LK)ξ( ft, zt)

∥∥∥∥∥
2

K

+ 2ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)∆t

∥∥∥∥∥
2

K

 .

Following the similar procedure in estimating (14), we also get

ET

[
‖ fT+1 − fρ‖2

K

]
≤ 2

∥∥∥πT
1 (LK) fρ

∥∥∥2

K
+ 2η2

T

∑
t=1

∥∥∥πT
t+1(LK)

∥∥∥2
Et−1 [E( ft)] + 2ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)∆t

∥∥∥∥∥
2

K

 .

Noticing that
∥∥πT

t+1(LK)
∥∥ ≤ 1, then the bound (15) is obtained.

Based on the error bounds of fT+1 − fρ in Proposition 1, we need to estimate the generalization
error E( ft).

Lemma 2. Define { ft}T+1
t=1 by (5). If

0 < η ≤ min
{

1,
1
8

(
(1/2e)1/2 + 1

)−2
(log(et) + 1)−1

}
, (24)

then for t ≥ 2,

Et−1 [E( ft)] ≤ 2E( fρ) + 4‖ fρ‖2
ρ + 64η2σ−4(t− 1)2

(
sup

1≤k≤t−1
{‖ fk‖K, M}

)6

. (25)

Proof. We shall prove (25) by induction. Obviously, (25) holds for t = 2. Suppose (25) holds for t ≥ 2.
Applying (14) with T = t, then

Et

[
‖ ft+1 − fρ‖2

ρ

]
≤ 2

∥∥πt
1(LK) fρ

∥∥2
ρ
+ 2η2

t

∑
k=1

2
(
(1/2e)1/2 + 1

)2

1 + η(t− k)
Ek−1 [E( fk)] + 2Et

∥∥∥∥∥η
t

∑
k=1

πt
k+1(LK)∆k

∥∥∥∥∥
2

ρ


≤ 2

∥∥πt
1(LK) fρ

∥∥2
ρ
+ 2η2

t

∑
k=1

2
(
(1/2e)1/2 + 1

)2

1 + η(t− k)
Ek−1 [E( fk)] + 2η2

(
t

∑
k=1
‖πt

k+1(LK)‖‖∆k‖∞

)2

. (26)
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Since the Gaussian G is Lipschitz continuous, we have that for each 1 ≤ k ≤ T,

‖∆k‖∞ ≤
∥∥∥∥[G(0)− G

(
− ( fk(xk)− yt)2

2σ2

)]
[ fk(xk)− yk]Kxk

∥∥∥∥
∞

≤
∣∣∣∣[G(0)− G

(
− ( fk(xk)− yk)

2

2σ2

)]
[ ft(xk)− yk]

∣∣∣∣ ‖Kxk‖K

≤ ( fk(xk)− yk)
2

2σ2 | fk(xk)− yk| ≤
(‖ fk‖∞ + M)3

2σ2 ≤ (‖ fk‖K + M)3

2σ2

where the last inequality is derived from (3).
Notice that by 0 < η ≤ 1, there holds ‖πt

k(LK)‖ ≤ ∏t
l=k ‖I − ηLK‖ ≤ 1 for each 1 ≤ k ≤ t ≤ T.

Then the last term on the right-hand side of (26) is bounded as

2η2

(
t

∑
k=1
‖πt

k+1(LK)‖‖∆k‖∞

)2

≤ 32η2σ−4t2

(
sup

1≤k≤t
{‖ fk‖K, M}

)6

. (27)

For the first term 2
∥∥πt

1(LK) fρ

∥∥2
ρ
, it is easy to get that 2

∥∥πt
1(LK) fρ

∥∥2
ρ
≤ 2‖ fρ‖2

ρ.
Putting the above estimates into (26) and using the relation (13) with f = ft+1, we have

Et [E( ft+1)] = Et

[
‖ ft+1 − fρ‖2

ρ

]
+ E( fρ)

≤ E( fρ) + 2‖ fρ‖2
ρ + 32η2σ−4t2

(
sup

1≤k≤t
{‖ fk‖K, M}

)6

+ 2η2
t

∑
k=1

2
(
(1/2e)1/2 + 1

)2

1 + η(t− k)
Ek−1 [E( fk)]

≤ E( fρ) + 2‖ fρ‖2
ρ + 32η2σ−4t2

(
sup

1≤k≤t
{‖ fk‖K, M}

)6

+ 2η2
t

∑
k=1

2
(
(1/2e)1/2 + 1

)2

1 + η(t− k)

2E( fρ) + 4‖ fρ‖2
ρ + 64η2σ−4(t− 1)2

(
sup

1≤k≤t−1
{‖ fk‖K, M}

)6
 . (28)

By the restriction (24) of η and Lemma A3, we know that

2η2
t

∑
k=1

2
(
(1/2e)1/2 + 1

)2

1 + η(t− k)
≤ 4η

(
(1/2e)1/2 + 1

)2
(log(et) + 1) ≤ 1

2
.

Plugging it into (28), we have

Et [E( ft+1)] ≤ E( fρ) + 2‖ fρ‖2
ρ + 32η2σ−4t2

(
sup

1≤k≤t
{‖ fk‖K, M}

)6

+
1
2

2E( fρ) + 4‖ fρ‖2
ρ + 64η2σ−4(t− 1)2

(
sup

1≤k≤t−1
{‖ fk‖K, M}

)6


≤ 2E( fρ) + 4‖ fρ‖2
ρ + 64η2σ−4t2

(
sup

1≤k≤t
{‖ fk‖K, M}

)6

.

Then the proof is completed.

With these preliminaries in place, we shall prove our main results.
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Proof of Theorem 1. We shall prove Theorem 1 by Proposition 1. First, we will use (14) to estimate
the error rate for (5) in L2

ρX -space. For the first term on the right-hand side of (14), applying Lemma A2

with f = fρ and η = T−
2r

2r+1 , we have that∥∥∥πT
1 (LK) fρ

∥∥∥2

ρ
≤ 4 ((r/e)r + 1)2 ‖L−r

K fρ‖2
ρT−

2r
2r+1 = 4 ((r/e)r + 1)2 ‖g‖2

ρT−
2r

2r+1 .

For the second term on the right-hand side of (14), the choice of η and T in Theorem 1 implies
that the restriction (24) holds. Then we can put the bound (12) into (25) and get that for t ≥ 2

Et−1 [E( ft)] ≤ 2E( fρ) + 4‖ fρ‖2
ρ + 64M6σ−4η5(t− 1)5

≤
(

2E( fρ) + 4‖ fρ‖2
ρ + 64M6

)
(1 + σ−4η5(t− 1)5)

≤
(

2E( fρ) + 4‖ fρ‖2
ρ + 64M6

)
(1 + σ−4η5T5) := cM,ρ(1 + σ−4T

5
2r+1 ).

This together with Lemma A3 yields that

η2
T

∑
t=1

2
(
(1/2e)1/2 + 1

)2

1 + η(T − t)
Et−1 [E( ft)] ≤ 2

(
(1/2e)1/2 + 1

)2
cM,ρη(log(eT) + 1)(1 + σ−4T

5
2r+1 )

≤ 4
(
(1/2e)1/2 + 1

)2
cM,ρ log(T)(T−

2r
2r+1 + σ−4T

5−2r
2r+1 ).

Finally, we bound the last term on the right-hand side of (14). Notice that∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)∆t

∥∥∥∥∥
ρ

≤ η
T

∑
t=1
‖πt

t+1(LK)‖‖∆t‖∞.

Then, using the estimate (27) and the bound (12) of { ft}, we have

ET

∥∥∥∥∥η
T

∑
t=1

πT
t+1(LK)∆t

∥∥∥∥∥
2

ρ

 ≤ η2

(
T

∑
t=1
‖πT

t+1(LK)‖‖∆t‖∞

)2

≤ 16η2σ−4t2

(
sup

1≤t≤T
{‖ ft‖K, M}

)6

≤ 16M6σ−4T
5

2r+1 .

Based on the above analysis, the conclusion (10) is obtained by taking

C = 8 ((r/e)r + 1)2 ‖g‖2
ρ + 16

(
(1/2e)1/2 + 1

)2
cM,ρ + 32M6.

Similarity, we can get the conclusion (11) by taking

C′ = 8
(
((2r− 1)/2e)r− 1

2 + 1
)2
‖g‖2

ρ + 8cM,ρ + 32M6.
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Appendix A. Useful Lemmas

The following two lemmas are slightly modified forms of Lemma 3, Lemma 7 in [24], respectively.

Lemma A1. Let β > 0 and 0 < η ≤ 1. Then for any t ∈ [l, k], there holds

‖πk
l (LK)Lβ

K‖
2 ≤

2
(
(β/e)β + 1

)2

1 + η2β(k− l + 1)2β
.

Lemma A2. If f ∈ Lr
K(L2

ρX ) for some r > 0, then

‖πT
1 (LK) f ‖ρ ≤ 2 ((r/e)r + 1) ‖L−r

K f ‖ρη−rT−r.

In addition, if r > 1
2 , then

‖πT
1 (LK) f ‖K ≤ 2

(
((2r− 1)/2e)r− 1

2 + 1
)
‖L−r

K f ‖ρη−r+ 1
2 T−r+ 1

2 .

Lemma A3. For any 0 < η ≤ 1, there holds for t ≥ 2,

t

∑
k=1

1
1 + η(t− k)

≤ η−1(log(et) + 1).

Proof. By the elementary inequality ∑t
k=1 k−1 ≤ log e(t + 1), we know that for t ≥ 2,

t

∑
k=1

1
1 + η(t− k)

=
t−1

∑
k=1

1
1 + η(t− k)

+ 1 ≤ η−1
t−1

∑
k=1

(t− k)−1 + 1 = η−1
t−1

∑
k=1

1
k
+ 1

≤ η−1 log(et) + 1 ≤ η−1(log(et) + 1).

Then the proof is completed.
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