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Abstract: The logistic chaotic system, as a classical complex phenomenon of nonlinear dynamic
systems, has received extensive attention in the field of secure communication. It is generally believed
that the characteristics of chaos are suitable for the needs of encryption systems. In this paper,
a multi-scale entropy theory analysis and statistical analysis are carried out on the chaotic sequences
produced by different parameters and different initial values of logistic systems. According to the
simulation results, the complexity of the chaotic system represented by the logistic system is mainly
decided by parameter µ. Not all characteristic parameters of the chaotic system depend on the initial
values. It is possible to make a reasonable estimation and prediction of the chaotic system from a
macroscopic level. A variance estimation method for the parameter µ is proposed and applied to a
logistic system and to another chaotic system, which is equally effective.
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1. Introduction

Chaos, as a classical complex phenomenon of a nonlinear dynamic system, is widely used in military
and commercial spread spectrum communication systems with high demands for secrecy, because of its
characteristics of wideband, quasi-noise, and sensitivity to initial state [1]. The chaotic system, a logistic
chaotic map, has been paid much attention by researchers and has been studied extensively. In 1978,
Feigenbaum [2] made a detailed analysis of its mathematical properties. The literature [3] has realized
the bifurcation control of the multiple periods of the logistic model. The authors of [4] discussed the
influence of delay time on the transition probabilities between the metastable state and the stable state
of a logistic system. The authors of [5] applied the model to the evolution of biomolecular networks.
The authors of [6,7] made a detailed description of the bifurcation and fractional dimension of the
multiple complex logistic systems. The authors of [8] studied the chaotic fractal characteristics of C-K
mapping, which is partially similar to logistic sequences. It can be seen that the logistic model has had
a lot of research done on its local features, and these research work plays an important role in the field
of information communication.

As a chaotic system, unpredictability and uncertainty are its most important features. From the
point of view of information theory, to study the whole uncertainty of a function, in addition to
studying its closed expression, we can also make a statistical analysis and a quantification of the discrete
sequences generated by it. In information theory, the best way to quantify uncertainty is entropy. A
modified permutation entropy was proposed in literature [9], in order to obtain a quantitative estimate
of the Kolmogorov-Sinai entropy in hyper-chaotic models. The authors of [10] introduced a multivariate
permutation entropy (MvPE) method and used it to quantify the complexity of chaotic systems. As an

Entropy 2019, 21, 663; doi:10.3390/e21070663 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-8965-5470
http://dx.doi.org/10.3390/e21070663
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/21/7/663?type=check_update&version=3


Entropy 2019, 21, 663 2 of 13

application, MvPE was applied to analyze the complexity of chaotic systems, including a hyper-chaotic
Hénon map, fractional-order simplified Lorenz system, and financial chaotic system. A multivariate
multi-scale distribution entropy (MMSDE) was also presented in the literature [11], which was used to
assess the complexity of a complex dynamical system. In literature [12,13], randomness and quantifying
complexity from information theory were described in detail, and the complexity analysis method
was an important measure for the sequences in the stream ciphers. The authors of [14] defined the
concept of uniformity through learning the theory of an exclusive sphere, and made a comparative
analysis between the Lyapunov exponent and the uniformity of a logistic system, and concluded that
the chaotic characteristic of a logistic system is more and more random with the parameter increasing.
The greater the randomness of the sequence, the greater the complexity, the higher the entropy, and the
greater the difficulty for the sequence to be restored. In recent years, the research on the logistic system
model has mainly been focused on its application. The authors of [15] constructed an as-box based on
logistic mapping for the advanced encryption standard (AES). The authors of [16] extended further
analytical study of the complex dynamics existing in two coupled logistic maps, and utilized it in a
suggested real-time text encryption system. However, there are few studies on logistic sequences from
a macro perspective, and there is an insufficient understanding of some of the overall characteristics of
the system. Only then, will the anti-interference and interception capability of the spread spectrum
sequence of the actual secure communication system be affected [17–20].

This paper applies an MSE algorithm in the complexity analysis of a logistic chaotic system.
The distribution characteristics of a logistic chaotic sequence were analyzed from a macroscopic
perspective, focusing on the multi-scale entropy distribution characteristics of the system. Moreover,
through numerical simulation, it is concluded that the multi-scale entropy of the system is basically
determined by the parameter µ, and the dependence of the multi-scale entropy of the system on the
initial value is not obvious, and the multi-scale entropy of the system also increases with the increase
of parameter µ. In view of the logistic system, the definite expression of a chaotic system obtains the
uncertain sequence, and the uncertain sequence implies certain definite components on the whole.
In addition, on the basis of a large number of statistical data, a parameter-µ estimation method for the
logistic chaotic system is proposed, and the statistical table of the data estimation is obtained.

2. Features of Logistic Chaotic System

One-dimensional logistic mapping is as follows:

xn+1 = µxn(1− xn), 0 ≤ x ≤ 1, 0 < µ < 4 (1)

where xn is the status value of the logistic mapping, and parameter µ is the coefficient of the iterative
equation. The chaotic phenomenon is induced by adjusting µ. Within the range of µ ∈ (3.57, 4],
the logistic mapping induces the chaotic phenomenon. If the parameter µ and the initial value of
system x0 are given, an iterative computation by Equation (1) can obtain the logistic sequence at
random lengths. According to the different parameter of µ, the following situations take place after
substantial iterations:

1. If µ ∈ (0,1), the system stability value is 0;
2. If µ ∈ (1,3), the system has two stable points x = 0 and x = 1 − 1/µ;

3. If µ ∈ (3,3.499), the system has two periodic points, that is, ε =
1+µ±

√
(µ+1)(µ+3)
2µ .

4. If µ ∈ (3.499,3.544), the system has four periodic points;
5. If µ ∈ (3.544,3.564), the system has eight periods.

Hereafter, the system generates doubling period bifurcation. After many bifurcations, it is
generally believed that when x∞ = 3.570, the logistic system enters a chaotic state.
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3. Multi-Scale Entropy (MSE) of Time Sequence

At present, the approximate entropy (ApEn) algorithm proposed by Pincus et al. [21], and the
improved approximate entropy algorithm proposed by Richman et al. [22–24] (the sample entropy
(SampEn) algorithm) are widely used in the complexity measurement algorithm of chaotic sequences.
A heaviside function was adopted to measure the similarity between the two, and it was very sensitive
to the values of the threshold (r) and phase space dimension (m). However, SampEn did not calculate
its own matching statistics, so SampEn was a measure generated by new information. This was an
improvement on ApEn, but a meaningless ln0 would appear in the case of no template matching.
The authors of [25,26] proposed the multi-scale entropy (MSE) algorithm, which can avoid these
phenomena to some extent.

An MSE algorithm based on SampEn is used to describe the degree of irregularity of the time
series on different scales. The MSE algorithm involves three parameters—τ, m, and r. Where τ is the
scale factor, m is the embedded dimension, and r is the threshold value (also known as the similarity
coefficient). Parameter r defines the similarity criterion of the comparing vectors. If the absolute
difference of any two vector components is greater than r × SD, the two vector components are different.
Otherwise, they are considered as equal. Theoretically, r is acceptable between 0 and 1. However,
for discrete-time sequences, a higher resolution ratio inevitably needs a lower r, and a larger r value
comes with a lower entropy value. The computational procedures of the logistic sequences are shown,
as follows [27]:

1. Set x1, x2, . . . , xL as a discrete-time sequence, including L points. Conduct coarse-graining
conversion on the original time series, and divide the original time series into non-overlapping
windows with a length of τ. Calculate the average value of each window, and obtain the new
coarse-graining time series. Each new data point is derived from Equation (2), as follows:

y(τ)j =
1
τ

jτ∑
i = ( j−1)τ+1

x(i), j = 1 v L/τ. (2)

In Equation (2), τ is the scale factor. Each coarse-graining time series has a length of L/τ.
Equation (3) and Equation (4) are the methods for computing the coarse-graining of the time
series, in which τ = 2 and τ = 3. When τ is 1, it is the original series.

x1 x2 x3 x4 x5 x6 . . . . . . xi xi+1 . . . . . .
. . . . . . . . . . . .

y1 y2 y3 . . . . . . y j . . . . . .

,

y j =
xi+xi+1

2 .

(3)

x1 x2 x3 x4 x5 x6 · · · · · · xi xi+1 xi+2 · · · · · ·

. . .
...

. . .
...

. . .
...

y1 y2 · · · · · · y j · · · · · ·

,

y j =
xi+xi+1+xi+2

3 .

(4)

2. Then, for a different τ, compute the SampEnon coarse-graining time series. SampEn originates
from ApEn. However, the calculation of the approximate entropy also involves comparing its own
data, which may induce certain errors. In order to reduce the errors, in the literature [28], for the
given threshold value r, Richman calculated the ratio between the number of d

[
Y(τ)(i), Y(τ)( j)

]
< r

and the total distance N − m, denoted as Cτ,m
i (r).

Cτ,m
i (r) =

1
N −m

num
{
d
[
Y(τ)(i), Y(τ)( j)

]
< r

}
, (i, j = 1 ∼ N −m + 1), i , j) (5)
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3. Calculate the average of all points, as follows:

Cτ,m(i) = (N −m + 1)−1
N−m+1∑

i = 1

Cτ,m
i (r) (6)

4. Add dimension m by 1, repeat procedures 2–3, and obtain Cτ,m+1
i (i) of scale τ, then recalculate

the average Cτ,m+1
i (i). In the actual calculation, use SampEn, as follows:

SampEn(τ, m, r) = − ln
[

Cτ,m+1

Cτ,m

]
. (7)

MSE is as follows:

MSE =
{
τ
∣∣∣∣SampEn(τ, m, r) = − ln

[
Cτ,m+1(r)/Cτ,m(r)

]}
. (8)

4. Macroscopic Characteristics of Logistic Chaotic Sequences

In order to measure the overall characteristics of the logistic chaotic sequence, all of the initial
values and parameters (µ) that can be obtained for the sequence are taken. A simulation experiment is
conducted in MATLAB R2010. Logistic sequences are generated after 10,000 iterations of Equation (1).
The system accuracy utilizes the default double precision of MATLAB. In the MSE analysis, parameter
r is generally 15% of the standard deviation (SD) and remains unchanged at all scales, and does not
recalculate for each coarse-graining time series [29]. For SD, in the process of the initial normalization,
the variance changed by coarse-graining is related to the time structure of the original time series, so it
should be considered by the calculation of entropy. However, initial normalization may also prevent
an MSE value of two different time series from being impacted by variance, and the impact comes
from the organization of the sequence itself. The difference value of the two adjacent points in the
same chaotic sequence is shown in the following Equation (9).

∆d = xn+1 − xn = µxn(x− xn) − xn = µx2
n + (µ− 1)xn (9)

If xn =
µ−2
2µ , that is ∆dmax =

(µ−1)2

4µ , xn+1 =
µ2
−1

4µ ; besides, if xn =
µ+1
2µ , xn+1 =

µ2
−1

4µ ; if xn = 1/2,

xn+1 = 1/µ. Hence, if xn ∈
[µ−1

2µ , µ+1
2µ

]
(the width of this interval is 1/µ), it is mapped to xn+1 ∈

[
µ2
−1

4µ , µ
4

]
(width of the interval is 1/4µ). Thus, it can be seen that after one iteration, previously wide area is
mapped to the upper bound zone of the system, and the interval is decreased.

Substantial experiments with different parameters were carried out in order to obtain extensive
results. More representative results were selected and are shown in Figures 1–3. N = 1000, 2000,
and 5000 were chosen as the lengths for the chaotic sequences. Set the parameters of MSE as m = 2,
and r = 0.15. The scale factor was τ = 2. The initial values were x0 ∈ (0, 1). The step was 0.01; 100 points
were utilized. The parameters were µ ∈ (3.5, 4), and the step was 0.005. Calculate the MSE of the
logistic chaotic time series. Figure 1 shows the analysis results of MSE for the time series N = 1000,
where Figure 1a is a 3D figure of the MSE results, Figure 1b is the means of different MSE values when
µ is fixed, Figure 1c shows the variances of the MSE values, and Figure 1d is the coefficient variables of
a different µ.
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Figure 1. N = 1000 multi-scale entropy (MSE) results: (a) 3D figure of MSE; (b) means of 

different MSE values; (c) variances of MSE; (d) coefficient of variable of a different μ. 
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Figure 2. N = 2000 MSE results: (a) 3D figure of MSE; (b) means of MSE; (c) variances of 

MSE; (d) coefficient of variable of a different μ. 

0

0.5

1

3.5
3.6

3.7
3.8

3.9
4
0

0.5

1

1.5

 

x0

μ
 

M
s
E

n

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

μ

M
s
E

n

3.5 3.6 3.7 3.8 3.9 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

μ

V
ia

re
n
t

3.5 3.6 3.7 3.8 3.9 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

μ

C
V

Figure 1. N = 1000 multi-scale entropy (MSE) results: (a) 3D figure of MSE; (b) means of different MSE
values; (c) variances of MSE; (d) coefficient of variable of a different µ.
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Figure 2. N = 2000 MSE results: (a) 3D figure of MSE; (b) means of MSE; (c) variances of MSE;
(d) coefficient of variable of a different µ.
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Figure 3. MSE results: (a) 3D figure of MSE; (b) means of MSE; (c) variances of MSE; (d) coefficient of
variable of a different µ.

As shown in Figures 1a–3a, when µ is fixed, regardless of the data length or the initial value of the
system, the MSE values of the logistic system remain unchanged. When µ increases, MSE increases
as well. For a specific µ, some mutational points may show up when the entropy increases, and the
logistic system maintains a bifurcated rather than chaotic status. As a result, the MSE values of the
mutational points approach µ < 3.57 or even lower. Some information is summarized, as follows:

1. The 3D graph in Figure 3a appears smoother than Figures 1a and 2a. In the same statistic
conditions and threshold conditions, time series with longer lengths indicate a more stable
statistical probability and lower degrees of dispersion. Hence, the length of the sequences has an
impact on MSE.

2. In Figure 1c,d, the MSE value changes significantly. Because the length of the sequence is reduced
by half during the process of coarse-graining. For the MSE method, although the number of
points were reduced, the coarse-graining time series is not a subset of the original time series.
On the contrary, the series includes all of the information about the original time series. Therefore,
the error caused by the reduction of length of the coarse-graining time series is likely to be lower
than that caused by the subset of the original time series. That is to say, coarse-graining time
series on large time scales is likely more irregular (and is assigned a higher MSE value) than the
original time series.

3. Figure 2c,d indicate the variance and coefficient variables of a sequence at N = 2000. The mean
value of the variances, excluding the maximum and minimum values, is about 0.0012. There are
23 coefficient of variable (CV) that exceed 5%, including the value near the parameter µ = 3.57,
and the sequence is not in a completely chaotic status. Figure 3c,d indicate the variances and
coefficient variables of sequences at N = 5000. The maximum variance is 2.5× 10−3. The remaining
points are not more than 0.1× 10−3, other than the points near µ = 3.57. The range of coefficient
variables is from 1% to 3%. In other words, the changes of the initial value do not change the
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MSE values of the series. Not all chaotic characters of the logistic system have dependency on the
initial value. For this, it is possible to make a reasonable estimation and prediction on a chaotic
system from macroscopic perspectives.

5. The Parameter Estimation of Chaotic Sequences

This section explains the mean variance method based on statistical analysis theory. Then, it is
applied on a logistic chaotic sequence and tent chaotic sequence.

5.1. The Parameter Estimation of the Logistic Chaotic Sequence

In the field of secure communication, the sensitivity to the initial value is an important feature
of the logistic chaotic sequence cipher. The initial value (x0) and parameter (µ) are two important
keys of sequence cryptography. Dubois [30] presented the exact closed solution when researching the
recurrent generation of logistic chaos maps. It was indicated that the solution of the logistic growth
model is not unpredictable, which is consistent with the experimental results mentioned in Section 4.

For a logistic chaotic cipher sequence with an adequate length, the key space of the chaotic
sequence cipher can be reduced by taking the current iteration value of x as a key, without considering
the initial value (x0), as long as the reasonable value of parameter (µ) is estimated.

The method of estimating parameter µ is based on the theory of statistical analysis. The variance
mean method is used to obtain parameters uniformly in each interval within the range of the initial
value and the parameter µ, and to generate chaotic sequences according to logistic chaotic mapping.
First, a data table based on the mean of variances is generated. When estimating the parameters of a
logistic sequence, the variance of the sequence can be obtained, and then the value range of parameter
µ can be estimated roughly by looking at the table. The calculation process is as follows.

The initial values range x0 ∈ [0, 1], and the step is 0.01. The parameter is µ ∈ [3.6, 4.0], the step is
0.05, the length N = 10,000, and the variances of the series are shown in Figure 4. The formulation of

variance is Var(r) =
∑n

i = 1 xi−µ
n , and µ ∈ [3.6, 4.0]. Figure 4a indicates that different initial values for

the same parameter (µ) have no impacts on variance distribution. Figure 4b shows the relationship
between the means of variances and parameter µ. Figure 4c indicates that the maximum coefficient
variable is not greater than 1%. Considering the relationship between the initial value and MSE value,
the parameter µ of the series can be estimated when the logistic sequence has an adequate length.
For the chaotic series, the key space of the time series password can be reduced.
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Figure 4. Results of variance analysis for N = 104: (a) 3D figure of variance with different initial series;
(b) the means of variances for different initial values; (c) CV of a different µ.

According to the previous study, the initial value x0 does not impact the MSE values of a chaotic
series. If a chaotic series has adequate length, the current value of x is a key. Parameter µ is the only key
involved. Figure 4b divided into four regions is shown in Figure 5. The relations of the four sections
are arranged in Table 1, which are the variances and µ. The range of the parameter µ can be obtained
by calculating the variance of a sufficiently long chaotic sequence. Despite the fact that the exact value
of the parameter cannot be obtained, it reduces the key space of the sequence to some extent. When the
variance of the sequence belongs to Regions 1 or 2, the corresponding range of µ is unique and does
not overlap with the other. But if the variance is in Regions 3 or 4, because there are some overlaps in
the two regions, the parameter µ is harder to determine. The specific variance of the corresponding
parameter µ is shown in Table 1.

Table 1. Different regions and the corresponding variance.

Region µ Variance

Section 1 3.600–3.735 0.03805–0.04899
Section 2 3.735–3.825 0.04899–0.07406
Section 3 3.825–3.865 0.07406–0.11110
Section 4 3.865–3.995 0.08394–0.11880
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In Region 3, the range of µ is from 3.825 to 3.865. As shown in Figure 6, in this region, the chaotic
sequences are periodical, while in other regions they are opposite. Figure 7 shows the logistic chaotic
mapping at µ = 3.835. Figure 8 shows the logistic mapping at µ = 3.85. In general, the parameter µ of
Region 3 is not selected, because of its periodical. If the variance of a sequence is in Regions 3 or 4,
Region 4 will have a higher probability.
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5.2. The Parameter Estimated of the Tent Chaotic Sequence

The tent chaotic map is also one of the methods used to generate chaotic sequences in secure
communication. As the topologically conjugate of the logistic, the sequence is also applied to the
variance mean estimation method. The tent chaotic system is followed by Equation (10), and its system
mapping is shown in Figure 9.

xn+1 = 1−
∣∣∣1− µxn

∣∣∣ x ∈ [0, 1] (10)

where x0 ∈ [0, 1] and parameter µ ∈ [1.0, 2.0]. After 103 iterations, 10,000 chaotic sequences
with a length of 104 were selected. The three-dimensional distribution of the variance of each
sequence is shown in Figure 10a. The formula for calculating the variance of different parameters is

Var(r) =
∑n

i = 1 xi−µ
n and µ = ∈ [1.0, 2.0]. In the three-dimensional distribution of variance, the CV of

the variances for the same parameter µ are no more than 1.4%, which is shown in Figure 10c. That is,
the chaotic sequence generated by the tent is not dependent on the initial value, and the sequence
is more dependent on parameter µ. Table 2 was generated based on Figure 10b. It is an important
reference to estimate the parameter µ of the tent chaotic sequence. There are five regions in Table 2,
µ will be estimated when the variance of a tent chaotic sequence belongs to one of the five regions.
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Table 2. Five regions of the parameter µ and the corresponding variance.

Region µ Variance

1 1.00–1.19 2.451 × 10−5–0.00605
2 1.20–1.39 0.00657–0.01464
3 1.40–1.59 0.01476–0.02533
4 1.60–1.79 0.02652–0.04637
5 1.80–1.99 0.04774–0.07934
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6. Conclusions

In this paper, through statistical theoretical analysis and mathematical simulation experiments,
the MSE values of chaotic sequences under all of the available parameters are calculated. It is found
that the complexity of the logistic chaotic sequences tends to be uniform and the density of periodic
points is relatively weakened with the continuous increase of the logistic chaotic sequences. The initial
value does not change the entropy value of the sequence too much, so not all of the characteristic
parameters of the chaotic system have initial value dependence. As the chaotic sequence satisfies such
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a distribution characteristic, it is possible to make a reasonable estimation and prediction of the chaotic
system from a macroscopic perspective. Considering that the security algorithm is public, only the key
is secret, that is, the key involved in the chaotic sequence cryptography system is the initial value and
parameter µ of the chaotic map. The statistical analysis and the variance mean method can reduce
the key space and even achieve breakthroughs within a short period of time. Moreover, some system
security engineers and mathematical cryptographers indeed give consideration to this influence when
new solutions are proposed. The logistic chaotic system and the tent chaotic system were both verified
in this paper, which proved that this method was effective.
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