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Abstract: Routers are of great importance in the network that forward the data among the
communication devices. If an attack attempts to intercept the information or make the network
paralyzed, it can launch an attack towards the router and realize the suspicious goal. Therefore,
protecting router security has great importance. However, router systems are notoriously difficult
to understand or diagnose for their inaccessibility and heterogeneity. A common way of gaining
access to the router system and detecting the anomaly behaviors is to inspect the router syslogs
or monitor the packets of information flowing to the routers. These approaches just diagnose the
routers from one aspect but do not correlate multiple logs. In this paper, we propose an approach to
detect the anomalies and faults of the routers with multiple information learning. First, we do the
offline learning to transform the benign or corrupted user actions into the syslogs. Then, we construct
the log correlation among different events. During the detection phase, we calculate the distance
between the event and the cluster to decide if it is an anomalous event and we use the attack chain
to predict the potential threat. We applied our approach in a university network which contains
Huawei, Cisco and Dlink routers for three months. We aligned our experiment with former work as
a baseline for comparison. Our approach obtained 89.6% accuracy in detecting the attacks, which is
5.1% higher than the former work. The results show that our approach performs in limited time as
well as memory usages and has high detection and low false positives.

Keywords: router security; data correlation; attack detection

1. Introduction

A router is a device that forwards data packets between computer networks. Routers are widely
used in the Internet and have become the traffic center of the network flow. There are a lot of
services, such as the web, file transfer, domain name resolution and dynamic host configuration
server, running on these embedded devices. Even if they run as regular small computers and have the
corresponding secure configuration choices, there is no anomaly detection of prediction software on
them. They depend on firmware updates and firewalls to protect their security. Nowadays, routers are
easily attacked by hackers. First, the users do not have professional knowledge about device security
and set the device improperly. Second, the router is the data forwarding center of the network, and it
is worthy for the hackers to attack them. Third, they are constantly online to forward data and router
systems can have inherent bugs and misconfigurations installed by the developers or administrators.
Besides, all network traffic passes through the routers. Thus, if an adversary manages to attack the
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routers, it can make the whole network paralyzed or gain the data control rights of the whole system.
There are some recent attacks towards mainstream routers shown in Table 1.

Table 1. Different router attack events.

Brand Attack Event Router Type Time Number of Influence

DLink DNS Spoofing DSL-2640B April 2019 15,000
HuaWei Botnet HG523a March 2019 18,000

Cisco Remote Command Execution RV320, RV325 January 2019 10,000
TP-LINK Unrestricted remote control TL-WR940N February 2019 15,000
Netgear Auth Bypass and Loads of Other Bugs RT1900ac February 2018 12,000

Due to the vulnerability of the routers, many methods have attempted to diagnose routers.
Labovitz et al. [1] analyzed the commercial Internet traffic to find the changes and provided the trend
of the traffic of the network and the communication devices. Lee et al. [2] used the method based
on MapReduce to do the flow analysis of the routers. However, not all of the router attacks can
be reflected in traffic change. There are numerous works that concentrate on the routers’ syslogs.
Routers record the events occurring on them by logging these messages, which contain debugging
or error messages, internal states and exceptions. Some current anomaly detection based on log
analysis are inappropriately used in routers. The authors of [3,4] needed to combine the source code
of the systems to do the analysis. Although these works can improve the attack detection accuracy
depending on source codes, they are not practical in real router systems. Apparently, most routers
are closed systems where we cannot get the source codes in most cases, and reverse engineering
of the firmware encounters many difficulties and obstacles [5,6]. Some researchers also concentrate
on pure log diagnosis. Dlog [7] extracted the log templates and presented the cluster of the attacks.
DeepLog [8] constructed the workflow from system logs to detect the anomalies through deep learning.
Dusi et al. used network traffic such as the Tcpdum log [9] to monitor the network and find missing
segments. Balzarotti et al. [10] constructed a system-call trace and analyzed system-call logs to detect if
there were any malicious codes. However, all these works only use the syslogs as the single diagnosis
source and ignore other information of the system, which is also significant in the anomaly detection.
According to our survey of routers, relying solely on syslog messages cannot record all events and
error messages on the device. Log information is recorded in the device at different granularities.
If the system status enters a predetermined state, the corresponding log information will be printed.
Therefore, the router log can form a limited state machine [11]. However, there are countless rampant
attacks in the network and there are some modified versions for router attacks. Some attacks and
anomalies can no longer be reflected in a single source log. Further, many attacks are no longer
recorded in the router’s single log. Therefore, to detect these attacks, it is necessary to correlate and
analyze multiple types of log information. Therefore, we need to use the correlation log information to
improve the accuracy of the anomaly detection. Instead of using just one source log information as
in works [8,12], we leverage multiple sources of logs, such as syslogs, firewall logs, CPU utilization,
LAN status, and memory information to do the training step. With labeled data, we can learn the
benign and malicious events. However, there are some events for which we cannot get labels before
detection. Thus, we use the correlation analysis to perform clustering, which can help us migrate the
labeled training problem. To accelerate the processing of a prohibitive volume of log data, data mining
and machine learning are useful in solving this problem. Our approach consists of three steps: (1) learn
the normal and abnormal states of the routers with the correlation of multiple log data; (2) detect
anomalies with the input of multiple audit data combined with the result of the first step; and (3) use
the longest common subsequences algorithm to find the regular pre-steps before the attack and use
this attack chain to do the prediction in order to achieve proactive protection. We applied our approach
on the real router network, and the results show that our approach can improve the current intrusion
detection techniques. In summary, our key contributions are: (1) We use multi-source logs in the router
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for offline learning and training, which obviously improves the accuracy of attack detection. (2) We
use correlation analysis method to get the relationships among events and find some unlabeled events
during the learning step. (3) We perform anomaly detection by calculating the distance between the
event and the clusters, and accurately classify the anomaly. (4) We use LCS algorithm to find the
pre-steps before the attack, and we can use this chain to predict the attack before it happens.

2. Related Work

Log templates extraction: Qiu et al. [13] proposed the log template extraction method for router
syslogs. They got the idea from the email-spam detection by using a signature sub-tree whose root is the
same message type of the logs. The authors of [14] used a mixture of Hidden Markov Model (HMMs)
from the original logs to model sequence patterns. However, these approaches only concentrate on
normal numerical variables. Besides, they cannot extract various normal type logs. We acknowledge
that logs also contain text parameters and our approach can also deal with these type of messages.
STE [15] takes another method using the following features of log messages: parameters appear less
frequently than template words. The approach gives a score to each word in the log and decides if the
word belongs to the templates by using DBSCAN algorithm. The log messages can be massive and the
word score may be inaccurate for repeated words in some formats. Kimura et al. [16] classified the
words into five classes and gave each class a weight value indicating its template tendency. However,
they neglected the position information of the word since a specific word normally has its unique
position in one template. Log correlation analysis: Log correlation techniques [17–19] are widely
used in the attack diagnosis field. They make causality analysis of DNS logs, HTTP logs, WFP logs
and system logs of the communication platform or device. Then, they correlate these logs to achieve
attack provenance. However, many existing logging techniques are too coarse-grained (e.g., Cisco
routers record the unauthorized IP in both malicious events and benign events). When analyzing
the attack chain and root causes, the coarse granularity will lead to the dependence explosion
problem [20,21]. This makes it difficult to identify the real events related to the attack. Besides,
many log correlation analysis approaches utilize parameter-based causality analysis [22,23]. This can
also cause significant false relations because they do not uncover the real logical or semantic relations
among logs or events [15]. Furthermore, it is difficult to define or identify the events in log entries [7].
Many approaches depend on slide time window to solve this problem [8]. However, setting the
time window is ambiguous and the heavy workload makes it nearly impossible to be used in a
real system. Anomaly detection: Using the syslogs to do the anomaly detection is widely researched
in router device. The authors of [24,25] suppressed many less important and usual log messages
to find hidden anomalies by using the global weight. Because only once appearing events have a
high weight, the methods cannot confirm the clear difference of the results in anomaly detection.
The diagnostic tool FDiag [26] identifies significant events that lead to compute node soft lockup
failure by using the combination of message template extraction, statistical event correlation and
episode construction. However, its diagnostic capabilities are limited to identifying the dates of event
sequences and the correlated events for only one time period. It is successful at identifying the causal
relationships but does not identify the nodes and it requires manual execution of the framework’s
workflow functions. All of these works only focus on anomaly detection and do not consider the attack
prediction and prevention.

3. Overview and Roadmap

The system consists of three main steps which is shown in Figure 1: (1) learn the normal and
abnormal states of the routers with the correlation of multiple log data; (2) detect anomalies with the
input of multiple audit data combined with the result of the first step; and (3) use longest common
subsequences algorithm to find the regular pre-steps before the attack and use this attack chain to do
the prediction in order to achieve proactive protection.
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Figure 1. Work flow of learning and detection.

3.1. Offline Learning (Events→ Logs)

In this phase, we try to find a clear relationship between the event and the router’s multi-source
log. We map events to the corresponding log information characteristics. This approach reveals the
behavior of different types of attacks. In the learning phase, we use the perspective of the administrator
and control the router. Administrators can perform normal and malicious behavior on the routers.
Furthermore, the corresponding multi-source log information can be observed and we can use these
data to perform the following data analysis work. The advantage of this step is that we do not need to
analyze all the data information of the router and we can know the relationship between user behavior
and log information. However, there are also some unlabeled data that we use the log correlation
analysis method to solve. We try to find the relationships among the events and put them in the same
cluster according to the strength among their ties.

3.2. Anomaly Detection (Logs→ Events)

In this step, we try to detect the anomaly and we consider the problem from the perspective of the
user. At this point, we only get the log information. First, we collect the relevant router multi-source log
information and try to identify the event in the log information. Next, we examine the corresponding
information of this event and do the anomaly detection. Finally, we try to cluster the attack to a specific
cluster and tell users which attack it is. In this phase, we try to translate the log to the corresponding
behaviors and do the outlier detection. The advantage of this approach is that we can detect the
attack pretty quickly according to the distance calculation. Data mining is useful in this approach in
identifying the event and the cluster approach can find the information violation during this phase.

3.3. Anomaly Prediction (Logs→ Events→ Attack chain)

Only detecting the anomalies is not enough for us. Because we intend to protect the routers
security proactively, we must predict the attack before it happens. As we have spotted the attack,
we trace back the logs and find the regular pre-steps before the attack. We regard each event before
attack as an alarm of the whole attack chain and we use longest common subsequence algorithm to
find the adversary’s sneaking actions. With the found attack chain, we can predict the anomalies by
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spotting the current condition or event on the routers. Thus, we can achieve the goal of protecting the
routers in advance without the attack happening.

4. Methodology

Our primary goal is to prove that multi-source log information can improve the accuracy of
abnormal event detection. To achieve this, we need to know the relationship between user behavior
and multi-source logs and identify events and anomaly detection through multi-source log information.
In this section, we explain how different user behaviors are recorded in different logs and how they
can be used to detect different attacks.

Table 2 shows how a sampling of actions (Nos. 1–3 are normal user events and Nos. 4–6 are
attacks) affects different logs. After analyzing how actions reflect on each log, we can identify some
important logs that need to be checked primarily: Syslog, CPU utilization, LAN status and Memory
utilization. We not only analyze the normal user events but also the attacks, which is different from
the analysis approach in [27]. All of the logs can be obtained from the router log system as we login as
administrator and this does not need any extra help from the developers.

Table 2. Log correlation table.

Action Firewall DNS CPU Utilization FTP LAN Status Auth Memory

Admin Login x x x
Wireless Connect x x x
Remote Control x x x x
DOS Attack x x x x
Violence Crack Login x x x x
ARP Spoofing x x x x x

4.1. Data Preprocessing

Preprocessing the input log information is essential to remove noise that can confuse the learning
process and influence the results [28]. Experiments have shown that the learning result is sensitive
to the input data, especially with noisy data. As shown in Table 2, there are many types of logs in
the logging system of the routers and not all of them are conducive to the learning, especially when
learning across a network with many routers. First, we only pick the types we want, which are Syslog,
CPU utilization, LAN status and Memory utilization. During the learning phase, we can know when
we do the exact actions and we can get the corresponding types of information or logs. With some
test data that we generated by ourselves, the training dataset includes labeled data. We attacked the
routers by using open source attack tools and our own codes. Thus, we could get the logs and data of
the attack. For the benign action, we also obtained the logs from the admin point of view. However,
we could not perform the learning with the raw log data because there are many redundant logs in
the files. Thus, we needed to eliminate these useless copies. As there are also numerous variants in
the syslog entries, we also eliminated the variants and extracted the log templates. We used regular
expression to process the variants in the logs and extract the log templates from the raw log data.

4.2. Feature Vectorization

Table 3 shows the CPU utilization and the items in the table have different meanings. usr means
CPU time spent in user space; sys means CPU time spent in kernel space; nice means CPU time spent
on low priority processes; idle means CPU time spent idle; io means CPU time spent in IO waiting
(on disk); hardirq means CPU time spent servicing/handling hardware interrupts; and so f tirq means
CPU time spent servicing/handling software interrupts. In the table, there are seven items describing
the utilization of CPU and we can form these items into a seven-dimension vector.
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Table 3. Examples of CPU utilization.

Time %usr %sys %nice %idle %io %hardirq %softirq

19:45:18 10.4% 85.1% 0% 5.8% 3.3% 1.2% 0%
19:45:20 10% 85.7% 0% 4.5% 3% 1.3% 0%
19:45:22 9.7% 86% 0% 6.1% 2.7% 1.6% 0%

Table 4 is the memory allocation information. We can also form entries into vectors. The advantage
of this method is that we do not need to have expert knowledge in advance and we can use its
information vector to get the feature information relevant to the corresponding behavior.

Table 4. Examples of memory utilization.

Time Used Free Shared Buff Cached

19:45:18 85,396 K 34,592 K 0 K 9216 K 23,888 K
19:45:20 95,264 K 19,820 K 0 K 8596 K 21,920 K
19:45:22 95,432 K 19,652 K 0 K 8596 K 22,076 K

For the Lan logs, we get some tuples from the log, such as TX Packet Sent, TX Underrun, TX Bus
Error, RX Packet Received, RX Overflow, and RX Bus Error (TX, transport; RX, receive). Extracting
the characteristics from syslogs is complicated because they are in the form of text. We performed this
part of work in our former work Dlog [7]. There are many features we denoted for a log sequences,
such as number of IP, time duration, severity level and so on. The feature vector is finally formed as a
17-dimension vector.

4.3. Clustering

Since we converted different types of log information into corresponding vectors, we should
create different collections based on different events. However, the initial vector is not available
for calculation. Because the dimensions in the vector are too high, it consumes a lot of computing
resources and slows down the calculations. Therefore, we needed to convert high-dimensional vectors
into low-dimensional vector datasets. It is often helpful to use a dimensionality-reduction technique
such as PCA prior to performing machine learning [29]. PCA finds the principal components of the
dataset and transforms the data into a new, lower-dimensional subspace,which will help improve the
performance of clustering. The whole process is shown in Figure 2. As for the learning dataset, we
learned 569 benign events and 154 anomalies from our own test codes and faults report. We could
learn some known attacks and cluster them into categories before detection. However, for the novel
malicious events, the approach based on history learning cannot gain a good result. Thus, we propose
a cluster method based on log correlation. Traditional machine learning has difficulty identifying
untrained data.

A is defined as an attack-related log set, and B is defined as a benign log set. In the optimal case,
|eA| � |eAB| and |eB| � |eAB| (|eA| and |eB| represents the edge number among their own clusters
and |eAB| represents the edge number between these two clusters). However, in real environment,
the case |eA| � |eAB| often emerges and this will reduce the accuracy of identification of the clusters.
To eliminate the above problem, we assigned corresponding weights to the edges and achieved
the goal ωA·|eA| > ωAB·|eAB| (ωA is the weight assigned to |eA| and ωAB is the weight assigned to
|eAB|). That means the algorithm should assign a global weight vector~α to each of the edge. Thus,
the equations still hold:
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∑
eεeA

k

∑
i=1

αi · ei > ∑
eεeAB

k

∑
i=1

αi · ei

∑
eεeB
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∑
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eεeAB
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∑
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αi · ei

(1)

where k is the dimension number of edge vector, ei is ith value of vector~e, and we set the dot product
result as the weight of each edge (ω = ∑k

i=1 αi · ei). However, the weight can be negative value due to
this method and ω is not the global optimal solution in graph. Thus, we converted the above formula
into a quadratic optimal problem:

max~α ∑
eεeA

k

∑
i=1

αi · ei + ∑
eεeAB

k

∑
i=1

αi · ei − λ ∑
eεeA

k

∑
i=1

αi · ei −
1
2
~αT ·~α

s.t.0 ≤~αTe ≤ 1

(2)

where λ is the trade-off parameter to balance between the first two terms and the third term in the
target function. Regularizer 1

2~α
T ·~α is to avoid the over fitting problem. The target function is convex

and the output weight vector~α is global optimum. After the graph is converted into a weight map,
it is necessary to extract the cluster of points from the graph efficiently. This project uses the Louvain
algorithm [30] for unsupervised node identification because the algorithm can efficiently process
large-scale network nodes.

We define Av,m as the weight between node v and node w. kv = ∑eεw Av,m is the weight sum
connected to node w. cv is the cluster where node v is assigned. Function δ means that if i = j, then
δ(i, j) = 1, and δ(i, j) = 0 otherwise. Modularity is defined as:

Q =
1

2m ∑
v,m

[Av,m −
kik j

2m
]δ(cv, cw), where m =

1
2m ∑

v,m
Av,m (3)

The modular value of the point ranges from −1 to 1, which is used to calculate the density value
of the node’s connectivity in the graph. After the above formula initializes the module, the Louvain
algorithm is used to perform the two-step operation of the greedy optimization: first, the point v is
moved to the set C of its neighbor point w. Second, the maximum value of the modular change is
evaluated by the algorithm, and v moves to the set with the largest module change. The set obtained
by the calculation is the respective classification set of the attack and the normal point.

Figure 2. Log collaborative association analysis.
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4.4. Anomaly Detection

For each cluster, we calculate two centers: (1) K-means center Cmn: mean value of each point
in the cluster; and (2) K-medoids Cmd: a represented point in the cluster. Then, we calculate each
node’s distances to both of the centers. We denote the point of a cluster(k) as Nk

x , which is shown in
Equation (4):

Nk
x ε cluster(k), cluster(k)| = n, x = 1, 2, . . . , n (4)

In cluster(k), the points have the same dimensions (v). We define the distance between two nodes
Nk

i = (Ik
i1, Ik

i2, . . . , Ik
iv), Nk

j = (Ik
j1, Ik

j2, . . . , Ik
jv) as:

d(Nk
i , Nk

j ) =
√
(Ik

i1 − Ik
j1)

2 + (Ik
i2 − Ik

j2)
2 + · · ·+ (Ik

iv − Ik
jv)

2 (5)

As there are two centers, we calculate two radii of the cluster: one is to the K-means center Cmn

and the other is to the K-medoids Cmd. Then, we compare these two radii and choose the maximal one
as the threshold of the distance, which is shown in Equation (6).

Tk
mn = d(Nk

I , Ck
mn), where I = arg max d(Nk

i , Ck
mn)

Tk
md = d(Nk

I , Ck
md), where I = arg max d(Nk

i , Ck
md)

Th = MAX(Tk
mn, Tk

md)

(6)

As the input point Nx arrives, we first cluster it to the nearest group and calculate the distance to
the two centers. We choose the minimum one as the distance which is used for comparison with the
threshold (Equation (7)). If the distance is larger than the threshold, then it cannot be a cluster in the
normal event group and we can judge it as an abnormal event. Otherwise, it is the event that can be
grouped into our learning one and it is normal, which is shown in Figure 3.{

MIN(d(Nx, Cmn), d(Nx, Cmd)) > Th : Abnormal

MIN(d(Nx, Cmn), d(Nx, Cmd)) ≤ Th : Normal
(7)

After we detected the attack, we matched it to the learned attack pattern. If the attack can match
the template, we can tell the user which type the attack belongs to. Then, we can recommend the
corresponding solution and patch for the attack. However, if the attack is not in the cluster set,
we should send it to the appropriate expert for subsequent authentication. If the expert confirms the
corresponding attack and can give a solution, we return this result to the training process, which can
gradually improve the accuracy of the anomaly detection.

Figure 3. Anomaly detection based on the distance (example of two dimensions).
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4.5. Attack Prediction

To predict the attack, we need to know the clues before the attack happens. Thus, we should find
the relationships among the attack events and pre-attack events. We can refer to the records on router
device. If an attack sniffs the routers, some types of log entries will record the clue on them (at least
reflect the system conditions objectively) , but the syslogs or secure logs may not show these actions
(they are printed according to the developers’ subjective intention). For example, if an adversary uses
Nmap to scan the router, LAN status and CPU utilization of routers will turn to a different condition
compared with the normal status. The primary solution is to detect this kind of regular pre-attack
event. However, some steps before the attack are not malicious and they are just the normal process,
but they are also the key steps of the attack chain. If we just detect the abnormalities, we will miss
the whole attack chain. For example, after the attacker cracks the password of the router, he will also
login into the system and this seems to be a normal action which none of the log entries will indicate
as spurious. Constructing the whole logical attack chain and identifying the attacker’s action are
challenges in our log correlation analysis work. In dynamic programming, we can find the longest
common subsequence of two strings. For instance, S1 is AqeTptQnF and S2 is AxTbirQlcF, in which
the LCS is ATQF. We can get the pre-attack condition sequence before the attack and each event or
condition can be viewed as the letter in the above string. If we manage to find the same subsequence
condition before one attack, we can identify the regular pre-steps before the attack. Primitively, we can
leverage divide and conquer to get the common subsequence between two condition chains. If there
are N chains in the attack sampling, the LCS calculation should be N − 1. Although divide and conquer
can theoretically outline the regular attack steps, the result may hide some different attack steps.
For instance, an adversary intends to crack the login password of a router. He can take different ways
to make it. In one way, he can exam the input parameters of the login page and do a brute force
crack. In the other way, he can scan the open ports of the router. Then, he analyzes and discovers the
vulnerabilities of the router. Finally, he launches the attack and manages to crack in by using the bugs
of the system. Regular divide and conquer can eliminate pre-attack steps. Thus, we design the algorithm
to determine the regular pre-attack steps.

With Algorithm 1, we can find the LCS of each of the two pre-attack’s history condition.
The contents of the same attack (LS[i][]) may not have the common subsequences. Thus, we cannot
do the LCS algorithm iteratively and we should construct the contents as a tree, which can show the
attack path towards the attack.

Algorithm 1 LCS cluster tree building algorithm.
Require: Sampling cluster A, Cij ε A (i = 1 to p and j = 1 to x)
Ensure: The pre-attack steps array LS[][] of each attack ai

1: for (i = 1; i < p; i++) do

2: k = 0;
3: for (m = 2; m <= x; m++) do

4: for (n = 1; n <= m; n++) do

5: s = LCS(Cim, Cin);
6: if (s!= null) then

7: LS[i][k++]=s;
8: Build_Tree(s);
9: end if

10: end for
11: end for
12: end for
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5. Evaluation

We evaluated our approach in various routers including Huawei, Cisco, Tenda, TPlink and
DLink. We first collected the logs of benign user actions and attacks to do the training step.
Then, we calculated the distance between event and cluster to detect the anomalies. Finally, we used
the routers conditions and information to find the regular pre-steps before the attack with the help
longest common subsequences.

5.1. Experiment Setup

We set up the experimental platform as shown in Figure 4. We tried to reproduce the real
adversary’s attack process. First, we collected the system information by active and passive information
collection. We used some open source tools to collect the router’s information such as open port,
system version, IP address, etc. With the system information, we mined the vulnerabilities of the
system. Manually discovery and tool-support discovery were both leveraged in this step. By collecting
the target system’s feedback, we could find some vulnerabilities of the system and prepare for the
attack. During the attack, we used open source code, penetration tools or our own code to do the
attack. We also obtained the feedback and system state of the router and evaluated the attack results.
Finally, we also analyzed the most efficient attack methods and instructed the following adversary
actions. We could construct a map of the attack and use the most efficient attack to destroy the
router. Through this platform, we could get the corresponding logs and system data of the attack and
malicious behavior. We configured the syslog options of the routers in the network and made them
send the logs to our syslog server, and we used the SQL server to record the log files. As shown in
Table 5, we used different tools or methods to launch a variety of attacks towards the routers. We tried
to crack the routers’ login user name and password by our own java codes using the format of the
data post to the router’s web front. The other attacks were launched by the tools in the platform of
Windows 7 or Ubuntu 12.07.

Figure 4. Work flow of the attack towards routers.
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Table 5. Attacks and tools.

No. Attack Types Method or Tool OS

1 Login Password Violence Crack Java code Windows 7

2 Wifi Password Violence Crack fern-wifi-cracker Ubuntu 12.07

3 IP Spoofing Attack Nmap Windows 7

4 SSL Attack THC-SSL Windows 7

5 DOS Attack HULK Ubuntu 12.07

6 ARP Spoofing Attack WinArpAttacker Windows 7

7 Gateway Monitoring Attack WinArpAttacker Windows 7

5.2. Performance of Multiple Information Learning

During the learning phase, we evaluated the turnaround time and memory costs of data cleaning,
feature vectorization and clustering. As shown in Figure 5, we selected the logs which range from
10,000 to 90,000 and calculated the corresponding costs. We compared the time cost with Dlog and we
could achieve apparent lower time cost. In the data cleaning, we eliminated the redundant log copies
and processed the variants in the logs according to the regular expressions. With regular expressions,
we could obviously reduce the time of log templates extraction. The time cost of feature vectorization
occupied the most turn-around time of the learning. We should process the CPU utilization, LAN status,
Memory utilization and syslog, which would cost a lot of time and memory space. We used DBSCAN
as the cluster algorithm and found that the time cost rose quickly as the log increased. The time
complexity of DBSCAN is O(n2), as shown in Figure 5.

Figure 5. Time cost of multiple information learning.

5.3. Time Window Setting

It is important to set the window size during the identification of the events from logs. If we set
the size of window too small, the events would be break up and this would influence the accuracy of
events detection. Otherwise, if we set the window too big, there would be more than one events in one
log chunk and we would not be able to identify the real events from the log. Thus, deciding the time
window size is critical in identifying the events. We arranged the window size from 0 to 120 s and
obtained the experiment results in Figure 6. We achieved relatively high detection accuracy between
the window size 35 s and 50 s when we used the raw log size of 10,000. The duration of the average
event was 1 min. Thus, we could get the accuracy rate from 96.5% to 80%.
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Figure 6. Time window influences on identifying event number and accuracy.

5.4. Anomaly Detection Accuracy

We also evaluated the performance of anomaly detection of our approach. A DOS attack was
launched towards routers and we leveraged different approaches to the learning and diagnosis steps.
Then, we gathered the key-values of recall and precision of the attack detection, which were calculated
as Equations (8) and (9), and compared their results.

Precision =
Correctly detected attacks

Total inserted attacks
(8)

Recall =
Correctly detected attacks

Total detected attacks
(9)

We aligned our former work SyslogDigest [13] and NetPro [31] as the baselines. NetPro conducts
confidential inferencing and verification by using the pre-defined communication rules. It can find
the positive and passive attacks of the routers in the MANETs. The rules are denoted according to the
communication rules by the expert. To start the reasoning process, the raw unstructured logs must
be transformed to high-level structured rules. In this process, there is time cost in the transformation
and it is easy to make some faults. SyslogDigest extracts the log templates and detects the network
events with the sub-type tree of the log sequences. To use the method of SyslogDigest, the primary
requirement is that the messages must be the same log type. However, the log type cannot be decided
in advance. Thus, it is impractical to cluster them in the same structure.

Figure 7 shows that our approach can improve the anomaly detection and the average accuracy
rate was 89.6% which is 5.1% higher than NetPro. Compared with SyslogDigest, our approach had a
lower false positive rate.

Figure 7. Precision and recall of attack detection.
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5.5. Attack Prediction Performance

We performed the experiment to show the performance of attack prediction, as shown in Figure 8.
We launched these seven attacks during three months and we learned the corresponding characteristics
of these attacks. We chose the points ranging from 0.1 to 1 in recall and counted the average values.
We could gain relatively good feedback in predicting IP spoofing attack and ARP spoofing attack,
as shown in Figure 8. We analyzes the form of these logs and found that the structure of the log
chunks are so unique when the routers are under these two attacks. Thus, we could identify the
pre-attack steps and predict them precisely. Predicting password violence crack login and WiFi had
lower precision and recall than the former two attacks because sometimes our approach regarded the
normal login faults or device connection as the attack. We also noticed that predicting the DOS attack
was not as good as in ARP spoofing attack. As we referred to the logs of the DOS attack, we found that
the log chunks are sometimes the subset of the SSL spoofing attack. Thus, our approach would predict
it falsely. In our future work, we should mitigate the above faults and improve our detection and
prediction approach to satisfy more rigorous conditions. As we accumulate more training datasets,
deep learning should be considered and we can also combine the idea of blockchain to conduct the
data diagnosis work.

Figure 8. Precision and recall of attack clustering.

6. Conclusions

To detect the anomalies and predict an attack on the routers, we propose an approach using
multi-source syslogs and log correlation. The approach in this paper consists of three main steps.
First, we collect and formalize the data and we do the training step. We extract the characteristics and
form the log sequences as vectors. Second, we calculate the events’ distance from the cluster and decide
if it is an anomaly. Third, we innovatively transform the attack chain construction problem as the
longest common subsequences finding problem. We analyze the syslogs according to the conditions
and extract the log sequences from the event. Our approach analyzes different types of logs from
multiple angles and granularities. With the attack chain, we can protect the routers before the attack
happens. As our experimental results show, our approach could improve the anomaly detection
accuracy rate by about 5.1% compared to the former work and it is practical to be used in a real
router environment.
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