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Abstract: Accurately calculating the entropy of liquids is an important goal, given that many
processes take place in the liquid phase. Of almost equal importance is understanding the values
obtained. However, there are few methods that can calculate the entropy of such systems, and fewer
still to make sense of the values obtained. We present our multiscale cell correlation (MCC) method
to calculate the entropy of liquids from molecular dynamics simulations. The method uses forces
and torques at the molecule and united-atom levels and probability distributions of molecular
coordinations and conformations. The main differences with previous work are the consistent
treatment of the mean-field cell approximation to the approriate degrees of freedom, the separation of
the force and torque covariance matrices, and the inclusion of conformation correlation for molecules
with multiple dihedrals. MCC is applied to a broader set of 56 important industrial liquids modeled
using the Generalized AMBER Force Field (GAFF) and Optimized Potentials for Liquid Simulations
(OPLS) force fields with 1.14*CM1A charges. Unsigned errors versus experimental entropies are
8.7 J K−1 mol−1 for GAFF and 9.8 J K−1 mol−1 for OPLS. This is significantly better than the 2-Phase
Thermodynamics method for the subset of molecules in common, which is the only other method
that has been applied to such systems. MCC makes clear why the entropy has the value it does
by providing a decomposition in terms of translational and rotational vibrational entropy and
topographical entropy at the molecular and united-atom levels.

Keywords: structure; thermodynamics; probability distribution; force; torque; coordination;
conformation; molecular dynamics simulation

1. Introduction

Molecular liquids are present in numerous systems in chemistry and biology. However, methods
to calculate their entropy are scarce or limited in scope. Entropy quantifies the probability distribution
of quantum states of a system and, together with energy, determines a system’s stability. The most
common route used to determine entropy is indirect, being as a difference with respect to a reference
state, typically the ideal gas or a non-interacting set of atoms. The entropy difference may be
extracted from integrated heat capacity changes or from the Gibbs energy difference, either as its
temperature derivative or as a difference with enthalpy [1]. While there is a range of methods to
compute entropy [2–10], those that use single molecular dynamics or Monte Carlo simulations are
advantageous because of the ease of using standard simulation methods and because such approaches
directly yield and explain entropy and structure in terms of the full probability distribution of the
system of interest. However, because the ensemble of molecular configurations generated by standard
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simulation methods is only a tiny fraction of the full ensemble corresponding to a system’s entropy,
special techniques are required to extrapolate to the full probability distribution and entropy.

The probability distributions to evaluate entropy are typically over the coordinates of the
system, which may be Cartesian coordinates, bonds-angles-dihedrals, or interatomic distances.
Histogram-based methods, because of their arbitrary bin-widths, can only give the entropy difference
relative to a reference, which is typically the uniform distribution. Even then, the entropy difference
may be unrealistic for strongly interacting systems such as those with covalent bonds because of
the omission of quantum effects which necessarily keep the entropy non-negative. For this reason,
histogram methods are often restricted to softer degrees of freedom such as dihedrals or atomic
distances. The simplest approach ignores coordinate correlations by considering each coordinate
separately, for example, in dihedral angles [11]. Higher-order correlations can be included such
as the radial distribution function [12–14] or a mutual-information expansion [15,16] but at greater
computational expense and complexity, even for second-order, although some correlations are small
and can be excluded [17–19]. Extensions to higher orders are difficult and do not necessarily lead to
more accuracy [15,20]. Mutual information in terms of discrete rotamers has been found to converge
much faster, enabling up to eighth order [21]. An alternative strategy for high-dimensional data
sets is the k-Nearest Neighbours method [16,22–24] which more adaptively estimates density from
the distances between configurations but at the price of having many distances to compute and still
requiring a lot of data to converge.

Significant simplification of the theory, greater speed of convergence and a route to the
direct calculation of entropy is provided by assuming a multivariate Gaussian probability
distribution [25]. Entropy is directly computed from the quantum states of the set of harmonic-oscillator
eigenvectors [26,27]. The main limitation of the method is the suitability of the Gaussian distribution,
given that typical potential energy surfaces for flexible molecules [28] or liquids [27,29] have multiple
minima, compounded by the difficulty of how to specify the minima. A hybrid solution to this
problem is to replace the diagonal elements of the coordinate covariance matrix with the entropy
of the probability distributions [30,31]. Another solution is to incorporate multiple Gaussians [32].
An approach particularly relevant to the case of liquids is the 2-Phase Thermodynamics (2PT) method,
which calculates entropy from the spectrum of vibrational frequencies derived from the velocity
auto-correlation function and the gas-phase fluidicity [33]. Another viable method for liquid-phase
entropy is the cell approximation which maps regions of the potential energy surface into single,
representative energy wells, whose entropy is determined from the force [34] plus an entropy
term for the probability distribution of the energy wells [35]. This is the method we have been
working to generalise, progressing from liquid argon [34] to liquid water with its rotational vibration
and orientational degrees of freedom [35–37], organic liquids with an internal one-dimensional
dihedral entropy [38], single molecules with internal entropy based on force correlation [39],
and molecular liquids in a multiscale framework from atom to united atom to molecule to system [40].
This development has been supported by extensive parallel studies on the entropy of aqueous
solutions [41–47]. With the main ideas now in place to make the method general, to encapsulate
the main features of the method we name it Multiscale Cell Correlation (MCC).

Here we extend MCC to calculate the entropy of 56 important industrial liquids. These represent
a class of system which no other method has been capable of calculating entropy except for the
2PT method, which has been tested on a smaller subset of 14 liquids [48], argon [33], water [49],
carbon dioxide [50], and methanol and hexane including torsional fluidicity [51]. The first improvement
here in MCC is a more appropriate application of the mean-field cell approximation to the weakly
correlated non-bonded and dihedral degrees of freedom and not to the correlated bonded and
angular degrees of freedom as had been done in previous work [39,40]. Strong correlations for
the bonded atoms invalidate the cell approximation and can be accounted for in the force covariance
matrices. Related to this, force and torque covariances are evaluated separately because of their
weak correlation [40]. The second key improvement is a new way to account for correlation between
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dihedrals by using a covariance matrix of conformation correlation, a method that scales with the
square of the number of dihedrals. The 56 liquids are tested using two force fields: OPLS (Optimized
Potentials for Liquid Simulations) with 1.14*CM1A charges [52] and GAFF [53] (Generalized AMBER
Force Field), for both of which parameters can be generated in an automated fashion for a wide range
of molecules. A decomposition of the entropy in six terms gives an insightful and intuitive explanation
of why molecules have the entropy they do. Compared to our earlier study in which a comparison
with 2PT was inconclusive because there were few liquids in common, MCC is found to be significantly
closer to experiment than 2PT, which in most cases underestimates experiment. An analysis of entropy
components suggests that the internal entropy of 2PT is responsible for this underestimation, even
when torsional fluidicity is included [51]. The findings show that MCC is well placed to scale to
complex multi-component systems with multiple length scales.

2. Theory

2.1. Entropy Decomposition

The entropy of molecular liquids is well captured at two different length scales [40]: the molecule
(M) level and the united-atom (UA) level. A united atom is defined here as a non-hydrogen atom
together with any bonded hydrogen atoms and is taken as a rigid body with both translational and
rotational degrees of freedom rather than only translation as for a point-particle unless there are no
hydrogens. Such an approach captures softer collective dihedral motion of hydrogens while ignoring
their individual stretching and bending motions which have negligible entropy, owing to the low mass
of hydrogen and its higher bond and angle vibrational frequencies. At the other extreme of the whole
system, the entropy of its three translational and three rotational degrees of freedom is negligible
on a per-molecule basis. Coordinate systems at the molecule and united-atom levels are defined as
before [40]. For a molecule this is its three principal axes with the origin at the centre of mass. For a
united atom the axes and centre of mass depend on the number of bonded united and hydrogen
atoms. All non-linear molecules and united atoms have three translational degrees of freedom. Linear
molecules in terms of their united atoms or linear united atoms in terms of their hydrogens have two
rotational degrees of freedom. United atoms with no hydrogens have no rotational degrees of freedom.

In the cell approximation the potential energy surface is partitioned into energy wells, and in the
multiscale approximation this partitioning is done at the molecule and united-atom levels. This brings
about two kinds of entropy term: vibrational relating to the average size of the energy wells, termed a
cell, and topographical relating to the probability of the energy wells. The vibrational term at each
level is further partitioned according to the translational (transvib) and rotational (rovib) degrees of
freedom. The translational component of the topographical entropy at the molecular level is zero for a
pure liquid because exchanging identical molecules leads to no change. The rotational topographical
entropy (topo) at the molecule level is termed the orientational entropy. At the united-atom level the
translational topographical entropy is the conformational entropy, while the rotational component,
corresponding to hydrogen-bond arrangements, is negligible for the liquids studied here. The total
entropy per molecule for a liquid is therefore taken as the sum of six terms

Stotal = Stransvib
M + Srovib

M + Stopo
M + Stransvib

UA + Srovib
UA + Stopo

UA (1)

2.2. Molecular Vibrational Entropy

All four vibrational entropy terms are calculated in the harmonic approximation using the
equation for a collection of Nvib quantum harmonic oscillators

Svib = kB

Nvib

∑
i=1

(
hνi/kB T

ehνi/kBT − 1
− ln

(
1− e−hνi/kBT

))
(2)
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where kB is Boltzmann’s constant, h is Planck’s constant, T is temperature and νi are the vibrational
frequencies. Different to previous work [40], translational and rotational vibrational entropy are
evaluated separately, justified by the absence of correlations between the forces and torques that are
used to evaluate them. For Stransvib

M , Nvib = 3 and νi are calculated using [39,40]

νi =
1

2π

√
λi

kBT
(3)

where λi are the eigenvalues of the 3× 3 mass-weighted force covariance matrix of the molecule with
elements 〈F′i F′j 〉, with i and j ranging over the three axes x, y, z and averaging over all molecules in all
simulation frames. Mean-field, mass-weighted forces are defined as F′i = Fi/

(
2
√

m
)

where m is the
molecule’s mass, and Fi is half the component of net force on all the atoms of the molecule rotated into
the molecule’s coordinate frame. In practice, this matrix is essentially diagonal because forces along
different axes are negligibly correlated. The halving is done in the mean-field cell approximation [34,35]
whereby every pairwise energy term and therefore its negative coordinate derivative, the force,
is partitioned equally between the atoms involved. The mean-field cell approximation is justified in
liquids because average molecular energies and forces in many-body systems are weakly correlated
with the position of any other neighbouring molecule. Only over the short duration of a repulsive
collision is the correlation significant. To calculate Srovib

M with Equation (2), Nvib = 3 unless the
molecular is linear with respect to its united atoms, in which case Nvib = 2. The vibrational frequencies
νi are calculated using Equation (3) with eigenvalues from the Nvib×Nvib moment-of-inertia-weighted
torque covariance matrix of the molecule, whose elements are 〈τ′i τ′j 〉, where τ′i = τi/

(
2
√

Ii
)

for each
axis i = x, y, z and Ii is the respective moment of inertia, with torque halving being done as for
the forces.

2.3. United-Atom Vibrational Entropy

The procedure at the united-atom level to evaluate Stransvib
UA and Srovib

UA in Equation (1) is similar
to that at the molecule-level but with some differences. United atoms are used in place of molecules
to evaluate the forces, torques, masses and moments of inertia. Nvib in Equation (2) for united-atom
translation equals 3N − 6, where N is the number of united atoms and the six vibrations removed
correspond to the six largest eigenvalues which are already accounted for as molecular translation and
rotation. Nvib in Equation (2) for united-atom rotation depends on the number of non-linear, linear and
point united atoms, as well as the linearity of the whole molecule. Non-linear and linear united atoms
contribute 3 and 2 degrees of freedom, respectively, and the largest six or five eigenvalues are removed
if the molecule is non-linear or linear. A notable difference compared to the molecule level is that the
mean-field cell approximation is not made for bonded atoms or bonded 1–3 interactions corresponding
to angles. The forces of such atoms are strongly correlated, a correlation that is accounted for in the
covariance matrix. However, the mean-field approximation is still made for united-atom rotation
and dihedral vibration whose correlations with neighbours are weak relative to the overall torque
or force or which largely average out to zero because of averaging in different reference frames.
Consequently, forces in the united-atom matrix are not halved but united-atom torques are halved.
To implement the cell approximation for dihedrals, the Ndih lowest eigenvalues of the united-atom
force covariance matrix are halved twice (force-squared), where Ndih is the number of united-atom
dihedrals, because these eigenvalues correspond to the soft conformational eigenvectors.

2.4. Molecular Topographical Entropy

The molecular topographical entropy Stopo
M in Equation (1) only has a rotational contribution

for a pure liquid, referred to as the orientational entropy. Based on the idea that neighbouring
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molecules discretize a molecule’s rotational motion, Stopo
M is estimated using an average of the number

of orientations weighted by the probability p(Nc) of molecular coordination number Nc using [40]

Stopo
M = kB ∑

Nc

p(Nc) ln
[
max

(
1, (N3

c π)1/2/σ
)]

(4)

where σ is the symmetry number of the molecule according to its united atoms. The max function
only takes effect for the very small values of Nc which are rare. Thus there are ∼ N1/2

c orientations per
rotational axis, and every orientation is taken to have the same probability, σ/(N3

c π)1/2, justified by
the weak correlation of these moderately polar molecules with their neighbours. For linear molecules
with two axes of rotation [40], the equation is

Stopo
M = kB ∑

Nc

p(Nc) ln [max (1, Nc/σ)] (5)

Molecules with a single united atom may still have orientational entropy at the atom-level if their
hydrogens sufficiently break symmetry, so as to form distinct energy wells. Ammonia is included in
this category, as water had been earlier [40], but methane and hydrogen sulfide are not. Nc is evaluated
using the parameter-free relative angular distance (RAD) method [54,55] according to the centre of
mass of each molecule. RAD determines Nc from a single configuration in good agreement with
those using a cut-off at the first minimum in the radial distribution function. It avoids the need for a
mean-field, spherically-symmetric cut-off that must either be chosen arbitrarily or evaluated from the
pre-computed radial distribution function.

2.5. United-Atom Topographical Entropy

The topographical entropy at the united-atom level, Stopo
UA , also called the conformational entropy,

is derived from the distribution of discrete conformations for all flexible dihedrals involving united
atoms. Unlike in the previous work on liquid entropy [40] in which the molecules only had a maximum
of one flexible dihedral, a number of molecules here have multiple dihedrals. Given that they may
be correlated, we present a new method to account for this using a conformation correlation matrix.
Each molecule has Ndih dihedrals, taken as four consecutive, bonded united atoms. The topographial
entropy of dihedrals at the atomic level and involving hydrogen are ignored, either because they have
only one conformation by symmetry, such as a methyl group, or because they have negligibly more
than one conformation, such as a hydroxyl, owing to limited variable hydrogen-bonding capability
to neighbour molecules. The molecules considered here have three conformations per dihedral:
trans (t), gauche− (g−) and gauche+ (g+), defined with boundaries in dihedral angle at 120◦, 0◦ and
−120◦, respectively. Thus each molecule has available 3Ndih conformations. Every combination of
conformations for each molecule is termed a conformer, and the total possible number of conformers
is 3Ndih . Overall we ensure there is no double-counting of identical conformers by treating g− and g+
as distinct and dividing by the rotational symmetry number in Equations (4) and (5). We construct the
3Ndih × 3Ndih correlation matrix ρ which has elements

ρij = pijrij/Pm(i) (6)

where pij is the probability of simultaneously having the conformation pair i and j, normalised such
that ∑3m+2

i=3m ∑3n+2
j=3n pij = 1 for the square sub-block over all conformation i and j of the respective

dihedrals m and n, and rij is the Pearson correlation coefficient of conformations i and j, given by

rij =
pij − pi pj[

(pi − p2
i )(pj − p2

j )
]1/2 (7)
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where pi is the probability of conformation i. Note that rii = 1, pii = pi, and pij = 0 if i and j
belong to the same dihedral. Pm(i) in Equation (6) are normalisation constants, one per dihedral m,

that are defined to ensure ∑3m+2
i=3m ∑3Ndih

j=1 ρij = 1 for each dihedral m. Thus ρij represents the fraction
of correlation that conformation pair ij makes to the total correlation that i’s dihedral m has with
all conformations of all dihedrals. Similar to the von Neumann entropy of the density matrix [56],
the total conformational entropy is given by

Stopo
UA = −kB

3Ndih

∑
i=1

λi ln(λi) (8)

where λi, the eigenvalues of ρ, are the probability of each conformer eigenvector, and each
conformer eigenvector itself comprises the probabilities of each conformation. Unlike the density
matrix, whose trace equals 1 [56], the trace of ρ ranges from 1, corresponding to full correlation
between conformations, to a maximum of Ndih, corresponding to fully uncorrelated conformations.
For a molecule with uncorrelated conformations or with only one dihedral [40], its eigenvalues
would be the diagonal elements of ρ and the conformer eigenvectors would be the individual
conformations. At the other extreme of full correlation, as would occur when there is only one single
conformer, one eigenvalue would equal 1 with its eigenvector being that very conformer, while the
remaining eigenvalues would be zero. For cases of intermediate correlation between conformations,
the eigenvector conformers would have various contributions from the correlated conformations,
with entropy ranging from zero to the fully disordered value for all Ndih dihedrals.

2.6. Molecular Dynamics Simulations

The entropy was calculated for a series of 56 liquids using molecular dynamics simulations.
All simulations were carried out with the sander module of the AMBER 14 simulation package [57].
Each system consists of 500 identical molecules in the liquid phase in a cubic box. The force
fields used were GAFF [53] with AM1-BCC charges for all molecules and OPLS-AA with the
1.14*CM1A charges [52] for all molecules except acetonitrile, carbon dioxide, hydrogen sulfide and
tetrafluoroethylene for which charges were not available on the LigParGen webserver [52]. In place
of this for carbon dioxide, a simulation was run with the TraPPE (Transferable Potentials for Phase
Equilibria) force field [58]. All molecules were built in standard geometry using xleap of AMBER 14.
GAFF force-field parameters were generated with antechamber [59] and all molecules were placed
in a cubic box of side 6 nm using Packmol [60]. For OPLS, the GROMACS topology and coordinate
files were obtained by uploading a pdb of each molecule to the LigParGen webserver [52] with the
1.14*CM1A charges, the coordinates of the box of molecules were generated in GROMACS 5.1 [61],
and the topology and coordinate files were converted into AMBER format using the AMBER ParmEd
tool. Note that these OPLS charges differ to those in previous work [40] with the OPLS force field
which had charges fitted to liquid-phase properties [62]. TraPPE parameters for carbon dioxide were
added directly in by hand.

For equilibration, each system was minimized with 500 steps of steepest descent minimization,
thermalized in a 100 ps molecular dynamics simulation at constant volume and temperature using
a Langevin thermostat with a collision frequency of 5 ps−1, and brought to the correct density with
1 ns of molecular dynamics simulation at constant pressure using the Berendsen barostat with a
time constant of 2 ps. For data collection, forces and coordinates were saved every 1 ps in a further
1 ns simulation under the same conditions, which earlier work had shown to be easily sufficient
for converged values [40], in which as few as ten frames was often sufficient to achieve converged
integer values in units of J K−1 mol−1. The pressure was 1 bar and the temperature was 298 K
unless the liquid was gaseous at that temperature, in which case the boiling temperature at 1 bar
was used as listed in Table 1. The exception is carbon dioxide, which does not liquefy at ambient
pressure and so the pressure was set to 5.99 bar and temperature 220 K which is in the liquid-phase
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region, close to the triple point and matches conditions used in a 2PT study [50]. Simulations used
SHAKE on all bonds involving hydrogen atoms, a non-bonded cutoff of 8 Å, periodic boundary
conditions, particle-mesh Ewald summation with default parameters in AMBER, and a 2 fs timestep.
Table 3 contains all the liquids simulated, for five of which the following abbreviations are used:
dimethylformamide (DMFA), dimethylsulfoxide (DMSO), N-methyl acetamide (NMA), tert-butyl
alcohol (TBA) and tetrafluoroethylene (TFE). Symmetry numbers in Equations (4) and (5) are listed in
Table S1. Entropies were calculated with in-house C++ and Perl code, reading in the force, coordinate
and topology files and writing out eigenvalues and coordination numbers.

Table 1. Boiling Temperature of Liquids [63] that are Gaseous at Ambient Conditions.

Liquid T/K Liquid T/K Liquid T/K Liquid T/K

ammonia 240 ethane 185 hydrogen sulfide 213 methylamine 267
butane 272 ethene 170 methane 112 propane 231
carbon dioxide 220 a ethylamine 291 methanethiol 279 TFE 197
diazene 275

a Pressure is 5.99 bar.

3. Results

3.1. Entropy Values

Figure 1 presents the entropy of 50 of the liquids calculated by MCC for the OPLS and GAFF force
fields plotted against the respective experimental values [63–70]. Table 2 gives the mean unsigned
and signed deviations, slopes, intercepts, Pearson correlation coefficients R2, and zero-intercept slopes
of entropies by the MCC and 2PT methods with respect to experiment. Table 3 contains the MCC
entropy values for all 56 liquids, together with values from experiment, the MCC entropy of carbon
dioxide with the TraPPE force field, and values using the 2PT method with the OPLS and GAFF
force fields for fifteen liquids [48], carbon dioxide [50] and methanol and hexane including torsional
fluidicity [51]. Statistical errors are negligible for the precision given.

Figure 1. Multiscale cell correlation (MCC) entropy values versus experiment for OPLS (blue), GAFF
(red), and TraPPE (green), together with the line of perfect agreement (dotted).
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Table 2. Statistical Data for MCC and 2-Phase Thermodynamics (2PT) versus Experiment.

Data Set (Number 〈|S− Sexpt|〉/ 〈S− Sexpt〉/ Slope Y-Intercept/ R2 Zero-Intercept
of Liquids) J K−1 mol−1 J K−1 mol−1 J K−1 mol−1 Slope

MCC OPLS a (46) 9.8 0.6 0.94 11.7 0.95 1.00
MCC GAFF (50) 8.7 −0.3 0.93 13.0 0.96 0.99
2PT OPLS b (12) 15.5 −15.6 1.05 −25.3 0.84 0.92
2PT GAFF (14) 28.0 −24.4 0.97 −19.5 0.55 0.87
MCC OPLS a (12) 4.9 2.3 0.87 26.7 0.89 1.01
MCC GAFF (14) 7.6 4.0 0.93 16.5 0.93 1.02

a OPLS with 1.14*CM1A charges [52]; b OPLS with charges optimised to liquid-phase properties [62].

Table 3. Entropy by Experiment, MCC and 2PT (J K−1 mol−1).

Liquid Experiment a MCC 2PT [48]

OPLS GAFF OPLS GAFF

acetic acid 158, 194 177 180 147 128
acetone 200 202 206 198 187
acetonitrile 150 143 145
ammonia 87 b 71 92
aniline 191, 192 205 205
benzene 173, 175 183 182 172 161
benzyl alcohol 217 216 208
benzaldehyde 221 204 204
butane 227, 230, 231 214 212
butanol 226, 228 244 235
2-butoxyethanol 293 301
carbon dioxide 118 c 111 d 106 112 d

chloroform 202 e 203 210 193 226
cyclohexane 204, 206 220 212
diazene 121 125 116
dichloromethane 175 190 191
diethanolamine 248 256
diethyl ether 253, 254 237 236
DMFA 214 222
DMSO 189 183 202 164 159
1,4-dioxane 197 206 199 179 159
ethane 127 125 127
ethanol 160, 161, 177 177 175 141 127
ethene 118 114 120
ethyl acetate 259 254 252
ethylamine 189 f 181 185
ethylene glycol 167, 180 172 175 141 121
formamide 151 153
formic acid 128, 132, 143 156 145
furan 177 181 186 167 157
hexane 290, 295, 296 273 272 251 g

hexanol 287 288 281
hydrazine 122 120 116
hydrogen peroxide 110 h 126 125
hydrogen sulfide 106 i 101
methane 79 j 73 78
methanethiol 163 177 172
methanol 127, 130, 136 139 139 117 g, 122 109
methylamine 150 128 133
NMA 205 206 181 168
octanol 335 331
pentane 259, 263 251 250
pentanol 255, 259 264 257
piperidine 210 234 222
propane 171 176 176
propanol 193, 214 213 206
pyridine 178, 179, 210 191 189
styrene 238, 241 223 223
TBA 190, 198 218 217
tetrahydrofuran 204 188 192 196 159
TFE 184 207 195 185
toluene 219, 221 224 223 204 190
triethylamine 309 f 292 295
m-xylene 252, 254 248 248
o-xylene 246, 248 245 245
p-xylene 244, 247, 253 243 243

a Reference [63] Experimental errors < 1 J K−1 mol−1 ; b Reference [64]; c References [50,69]; d TraPPE force
field [58]; e Reference [65]; f Derived in Table S2 using References [63,70]; g Reference [51]; h Reference [67];
i Reference [68]; j Reference [66].
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The experimental entropies for most liquids were taken from the NIST Chemistry Webbook [63].
If more than one value was reported by different authors, all values were included, although for acetic
acid, ethanol, ethylene glycol, formic acid, propanol and pyridine the spread is substantial, exceeding
10 J K−1 mol−1. Entropies were found elsewhere for ammonia [64], chloroform [65], methane [66],
hydrogen peroxide [67], hydrogen sulfide [68] and carbon dioxide [69]. Values for ethylamine and
triethylamine were calculated from the experimental gas-phase entropy, enthalpy of vaporization,
and either heat capacity at constant pressure or partial pressure [63,70] (see Table S2 for details). For the
remaining six liquids no values could be found in the literature. The experimental entropy is averaged
if there is more than one value.

The entropy values calculated by MCC agree well with experiment, with Table 2 showing a mean
unsigned error of less than 10 J K−1 mol−1, GAFF being slightly better than OPLS. The small mean
signed errors, the slopes being marginally less than one, and the positive y-intercept suggest that MCC
is slightly missing the dependence on molecular size, although forcing the line through zero brings
about the correct unity slope. The excessive entropies seen for larger molecules in the earlier version of
the theory [40] no longer occur because we no longer halve forces for hard internal degrees of freedom
in the mean-field approximation.

Comparisons with experiment are affected by the accuracy of the force field. To compare MCC
with 2PT, Table 2 contains the statistical quantities for the liquids studied by the 2PT method [48] listed
in Table 3, comprising 14 with the GAFF force field [53] and 12 with the OPLS force field [62] together
with the corresponding MCC values with GAFF and OPLS with 1.14*CM1A charges [52]. For both force
fields, the mean unsigned error for 2PT is three times that of MCC, largely because the 2PT values are
too small, shown by the negative mean error, negative y-intercept, and poorer correlation. The slope is
close to unity but decreases when forced through the origin. The difference between the two methods
is unlikely solely due to the different OPLS force fields, given the trend is present for GAFF, that the
2PT values using the earlier OPLS force field better reproduce liquid-phase entropy, and that the
same trend was observed earlier when comparing with the same force field [40,71]. The variability
in experiment for acetic acid and ethanol may affect this comparison, in that MCC is closer to the
higher value and 2PT closer to the lower value, but this would be insufficient to affect the overall
trend. The poorer MCC performance of OPLS with 1.14*CM1A charges compared to GAFF likely
reflects the over-polarization of the charges to optimise their free energy of hydration [52]. This also
likely explains the better performance of OPLS than GAFF for 2PT. Including the localized bond
charge corrections, an alternative provided by LigParGen, is unlikely to lead to any improvement
in entropy, given their mixed performance in calculating enthalpies of vaporization and density of
liquids [52]. The more positive signed error for OPLS indicates that its entropies overall are larger than
the GAFF entropies, implying that the combined intermolecular and intramolecular OPLS interactions
are marginally weaker than GAFF. Contrary to this trend, the largest deviations between the force
fields are OPLS being ∼20 J K−1 mol−1 lower than GAFF for ammonia and DMSO.

3.2. Entropy Components

To give deeper understanding into the values of the entropies, their six components in
Equation (1) are illustrated in Figure 2 for the case of GAFF (Table S2 has numerical values for both force
fields). Plotted in Figure 3 are the entropy components as a function of molecular mass, and Table 4 lists
data for the lines of best fit. The first observation is the dominance of the molecular translational and
rotational entropy, being more than half the total entropy for all but the largest molecules. Stransvib

M has
a weak dependence on mass, deviating lower for systems at colder temperatures. Srovib

M has a stronger
mass-dependence and is lower for colder and linear molecules and those forming hydrogen bonds.
One point to emphasise about our decomposition is that linear molecules in terms of united atoms,
such as ethane or acetonitrile, have negligible rotational entropy about their long axis at the molecule
level. The entropy about this axis including hydrogens is instead assigned to the united-atom level.
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Figure 2. MCC entropy components for GAFF (bottom to top): molecular-translational (dark blue),
molecular rotational (blue), molecular topographical (cyan), united-atom translational (dark red)
united-atom rotational (red), and united-atom topographical (orange).

Srovib
UA is slightly smaller, making up about a quarter of the total. It primarily comprises the

twisting of united atoms such as methyls (∼17 J K−1 mol−1) and hydroxyls (∼13 J K−1 mol−1) as
well as hydrogen bending, such as in benzene, and thus relates more specifically to the number of
hydrogens. As mentioned earlier, for linear molecules with two united atoms, it also includes the
entropy of rotation about the long axis because this term would otherwise be zero without hydrogen.
For example, for ethene Srovib

M is smaller than for other molecules, and most of its Srovib
UA is rotational

entropy about the long axis, leaving about 3 J K−1 mol−1 for internal motion. The remaining three
terms are more variable and together make up about a quarter to a third of the total. The orientational
term Stopo

M weakly increases with mass and is smaller for molecules with higher symmetry or those
that form hydrogen bonds, which tend to reduce Nc. Stransvib

UA mainly comprises dihedral vibration of
united atoms and has a strong dependence on mass, as does the conformational term Stopo

UA , which is
one of the smallest terms and only present for 13 liquids. The lines of best fit for each component
indicate moderate predictability based on mass, but a thorough treatment is beyond the scope of
this work. Comparing the force fields, GAFF has marginally higher molecular vibrational entropy
(1.5 J K−1 mol−1) and higher Stopo

UA (5.2 J K−1 mol−1) whereas OPLS has more Srovib
UA (2.2 J K−1 mol−1).

Of the most extreme deviations, Stopo
UA of GAFF is 14 J K−1 mol−1 higher than OPLS for 2-butoxyethanol

and 12 J K−1 mol−1 higher for diethanolamine. Why this is so is revealed by an inspection of the
probability distributions in Table S4 which indicate that the reduced Stopo

UA for OPLS is because of
stronger internal hydrogen-bonding. In more detail than looking at overall entropy, these trends imply
that GAFF compared to OPLS has weaker intermolecular interactions, consistent with the charge
over-polarisation of OPLS mentioned earlier [52], more evenly occupied conformations, and stronger
intramolecular interactions, particularly relating to united-atom rotation.
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Figure 3. MCC entropy components for GAFF versus molecular mass for all liquids. The colouring is
as in Figure 2.

Table 4. Lines of Best Fit for the Entropy Components versus Molecular Mass.

Component Slope/ Y-Intercept/ R2 Component Slope/ Y-Intercept/ R2
J K−1 g−1 J K−1 mol−1 J K−1 g−1 J K−1 mol−1

Stransvib
M 0.21 50 0.54 Stransvib

UA 0.42 14 0.63
Srovib

M 0.35 28 0.70 Srovib
UA 0.43 6 0.34

Stopo
M 0.09 16 0.13 Stopo

UA 0.39 16 0.87

A direct comparison of entropy components with 2PT for the 15 liquids in common [48] cannot be
done because different OPLS force fields are used, but in general the 2PT molecular translational and
rotational entropies are larger than the equivalent MCC terms, and the MCC terms become slightly
larger upon inclusion of the orientational term. However, the three MCC united-atom terms are
larger than the internal vibrational 2PT term, which in that work did not include a fluidicity term,
as noted earlier [40]. However, later formulation of such a term [51] applied to ethane, methanol and
hexane shows that the torsional fluidicity is only a few percent of the vibrational term, thus not being
responsible for the difference with MCC.

3.3. Covariance Matrices and Coordination and Dihedral Distributions

Representative plots in Figure 4 show the force and torque covariance matrices respectively for
the liquids using the GAFF force field (see Figures S3 and S4 for all molecules). Similar to the combined
force-torque matrices in earlier work [40], force covariance matrices show maximum auto-correlation
along the diagonal and strong anti-correlation for bonded atoms. Correlations between more distant
atoms are only evident for more rigid molecules, consistent with their lower vibrational entropy.
Torque covariance matrices have weak correlations, most ranging from negligible up to a tenth of the
diagonal self-correlation, consistent with the mean-field approximation made for united-atom rotation.
Only very rigid molecules such as ethene display large correlations but their associated entropy is very
small. Molecule-level matrices are not shown, being near-purely diagonal.
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Figure 4. Panels for five representative liquids (GAFF) illustrating the UA force (left) and torque (right)
covariance matrices and coordination-number probability distributions p(Nc) (lower). For the matrices,
white and black represent correlations of 1 and −1, respectively, with grey in between. The matrix
origin is at the lower left

Representative p(Nc) distributions of five liquids with the GAFF force field are shown in
Figure 4 (see Figure S3 for all liquids). As expected for liquids, these distributions are broad and roughly
Gaussian, most peaking between Nc = 5 and 10. As Equation (4) makes clear, larger coordination brings
about larger orientational entropy. The outliers with higher coordination are the six-membered rings
such as cyclohexane, piperidine and 1,4-dioxane, and carbon dioxide, versus the hydrogen-bonded
molecules whose hydrogen-bonds bring about more directed interactions and lower Nc, such as
methanol, diethanolamine and octanol, the last of which is slightly liquid-crystalline.

The dihedral probability distributions pi are given in Table S4 for the 13 molecules with
united-atom dihedrals. Of the 11 molecules with more than one dihedral, the correlation matrix brings
about only a small reduction in entropy relative to the ideal value for independent dihedrals, indicating
that conformations in these non-ring systems are weakly correlated. The largest reductions are−4.2 and
−1.0 J K−1 mol−1 for OPLS and GAFF triethylamine, followed by −1.0 and −0.4 J K−1 mol−1

for OPLS and GAFF 2-butoxyethanol and −0.6 J K−1 mol−1 for both OPLS and GAFF octanol.
However, for the ring molecules, such as cyclohexane, piperidine and 1,4-dioxane, which have six fully
correlated dihedrals the method correctly picks out their two possible conformers as eigenvectors with
eigenvalues according to their probability, with all other eigenvalues being zero. In the short timescale
here, only a few molecules in each system convert to the other conformer. Achieving equilibrium is
unnecessary for cyclohexane and 1,4-dioxane because both conformers are identical and contribute no
entropy. However, the equatorial and axial conformers of piperidine are distinct, with the equatorial
hydrogen on the nitrogen being lower in energy by 1.7 K J mol−1 [72], which would increase entropy
by ∼5 J K−1 mol−1.

4. Discussion

We have extended our MCC method to calculate entropy for a much broader range of 56 liquids
than the 14 liquids studied previously [40]. To emphasise the advantages of MCC, it is simple in its
theoretical formulation, informative by giving an entropy decomposition over all degrees of freedom,
rapidly convergent in the number of simulation frames required, scalable to large systems with its
multiscale formulation, near-general and applicable to a huge range of molecular systems, and accurate
to the level of the thermal energy kBT for the liquids studied here.

Of the improvements incorporated in this work, the first is the recognition that the force-halving
arising from the mean-field cell approximation should not be applied to bonded united atoms because
of their strong correlation. This leads to lower entropies than previously [40], which is especially
important for the larger molecules such as toluene or cyclohexane. The good agreement obtained
earlier for single flexible molecules [39] was likely obtained due to a cancellation of errors, with the
missing rotational entropy of united atoms offsetting the larger entropy due to force halving in the force
covariance matrix. Nonetheless, averaged out correlations in the force and torque covariance matrices
owing to conformational fluctuations may account for MCC entropies being lower than experiment for
larger molecules. A more minor modification from previous work [40] relates to the use of separate
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force and torque covariance matrices, rather than a combined force-torque covariance matrix, owing to
weak correlation between forces and torques, a change which improves the computational efficiency
of the method. This work shows that subunit torques are weakly correlated in most cases, meaning
that even the torque covariance may be unnecessary.

The second principle improvement is the correlation matrix to account for the correlation of
dihedral conformations by expressing the conformational distribution in terms of a basis of conformers.
A key feature of the correlation-matrix method is that it efficiently scales to large systems, with matrix
size increasing as N2

dih. Considering each conformer separately goes exponentially as 3Ndih and would
become unfeasible beyond Ndih > 10. The traditional approach using correlations in continuously
valued dihedral angles has an even worse exponential dependence and goes as NNdih

bin , where Nbin
is the number of bins. This is already problematic for Ndih > 2, but it can be somewhat relieved by
nearest-neighbour methods [16,22–24]. It is reasonable to assume that dihedral correlations need only
be considered for local energy wells rather than for the numerical value of the dihedral, given that this
correlation is unlikely to change on the timescale of molecular vibration.

A third issue to consider in future work is the multiscale approximation in how different levels
of hierarchy are defined, how to avoid the double-counting of entropy between different levels of
hierarchy, and how to streamline the theory further so that it is essentially equivalent at every level of
hierarchy to maximise generality. Ideally, the determination of each level would be automated and
dynamic, adjusting to the level of order in the system. Care is needed to ensure that the translational
or rotational entropy duplicates that at the higher level for every level of hierarchy so that it is cleanly
removed. The theory for vibrational entropy is already quite general for any level of hierarchy, while the
topographical terms require more work to fuse Equations (4) and (8) into the same formulation. This
would involve generalising the orientational entropy to be non-ideal so that orientations have different
weightings according to the orientations of the neighbouring molecules, as has been already studied
for water with its strongly directional hydrogen bonds [35,37,42,44]. Including the united-atom
orientational entropy could be extended to other molecules such as alcohols and amines. Nonetheless,
the framework is in place to scale the method to simulated systems of greater complexity.

5. Conclusions

We have presented the multiscale cell correlation method to calculate the entropy of 56 molecular
liquids from molecular dynamics simulations. The entropies are in excellent agreement with
experiment for the OPLS and GAFF force field, with GAFF performing slightly better. Agreement
is better than that of the 2PT method, which can also calculate the entropy of molecular liquids.
The components of entropy give an insightful and intuitive understanding of the values obtained.
With suitably chosen levels of hierarchy, the method is readily scalable to larger and more
complex systems.
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Probability distribution functions p(Nc) of coordination number.
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Abbreviations

The following abbreviations are used in this manuscript:

MCC Multiscale Cell Correlation
2PT 2-Phase Thermodynamics
GAFF Generalized AMBER Force Field
OPLS Optimized Potentials for Liquid Simulations
TraPPE Transferable Potentials for Phase Equilibria
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