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Abstract: Analysis of high-dimensional data is a challenge in machine learning and data mining.
Feature selection plays an important role in dealing with high-dimensional data for improvement of
predictive accuracy, as well as better interpretation of the data. Frequently used evaluation functions
for feature selection include resampling methods such as cross-validation, which show an advantage
in predictive accuracy. However, these conventional methods are not only computationally expensive,
but also tend to be over-optimistic. We propose a novel cross-entropy which is based on beta
distribution for feature selection. In beta distribution-based cross-entropy (BetaDCE) for feature
selection, the probability density is estimated by beta distribution and the cross-entropy is computed
by the expected value of beta distribution, so that the generalization ability can be estimated
more precisely than conventional methods where the probability density is learnt from data.
Analysis of the generalization ability of BetaDCE revealed that it was a trade-off between bias
and variance. The robustness of BetaDCE was demonstrated by experiments on three types of data.
In the exclusive or-like (XOR-like) dataset, the false discovery rate of BetaDCE was significantly
smaller than that of other methods. For the leukemia dataset, the area under the curve (AUC) of
BetaDCE on the test set was 0.93 with only four selected features, which indicated that BetaDCE not
only detected the irrelevant and redundant features precisely, but also more accurately predicted
the class labels with a smaller number of features than the original method, whose AUC was 0.83
with 50 features. In the metabonomic dataset, the overall AUC of prediction with features selected by
BetaDCE was significantly larger than that by the original reported method. Therefore, BetaDCE can
be used as a general and efficient framework for feature selection.
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1. Introduction

When a machine learning algorithm learns from high-dimensional data, a huge amount of training
samples is typically required to ensure the predictive power. This problem is known as the “curse of
dimensionality” [1]. Feature selection is, therefore, commonly used to control the dimensionality in order
to make the machine learning model more robust and the data more interpretable. Feature selection is
widely used in various fields such as economics [2], fault diagnosis [3], DNA microarrays [4], etc.

Feature selection algorithms can be broadly divided into three categories: filter, wrapper,
and embedded methods [5]. Filter methods select features without any learning algorithms and
evaluate features individually with evaluation criterion such as mutual information [6], pair t-scores [7],
and relief-based methods [8]. By contrast, wrapper methods evaluate subsets of features by learning
algorithms such as random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN),
and neural network (NN), together with searching algorithms such as sequential forward selection [9],
genetic algorithm [10], and fuzzy C-means [11,12], to search for the optimal subset of features.
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Embedded methods are quite similar to wrapper methods except that an intrinsic building metric is
used in the model during training. For example, the least absolute shrinkage and selection operator
(LASSO) method uses a linear model to shrink many features to zero by L1 penalty. Other embedded
methods include Bolasso [13], FeaLect [14], and support vector machine–recursive feature elimination
(SVM-RFE) [15–17]. Among the three categories, filter methods are the most computationally efficient
but usually have the worst performance. They are generally used as a preprocessing method for feature
selection. Wrapper and embedded methods perform better than filter methods, but with a higher
computational cost.

The evaluation function is the basis of feature selection that determines the quality of the finial
models [18]. Different from filter methods, most methods of high performance, including wrapper
and embedded methods, are based on evaluation of the accuracy by cross-validation [19,20]. Other
evaluation functions based on information theory include Akaike information criterion (AIC) and
Bayesian information criterion (BIC), which are derived via the maximum entropy principle [21,22]
and minimum description length [23] respectively. AIC and BIC both have a term of accuracy,
and the difference lies in the penalty for the number of features. Under some circumstances, AIC is
asymptotically equivalent to leave-one-out cross-validation [24,25]. However, cross-validation itself
can result in over-optimistic estimates and poor generalization ability, thus leading to poor performance
for feature selection [26,27].

Many recent studies on feature selection focused on the methods of optimizing feature subsets.
New searching methods were applied to select the optimal feature subset. For example, whale
optimization-related approaches were used for wrapper feature selection [28]. Other new approaches
include evolutionary population dynamics and grasshopper optimization [29], binary dragonfly
optimization [30], artificial bee colony optimization [31], etc. Combined methods of optimization for
feature selection were applied in several studies. For example, Mafarja et al. combined the whale
optimization with simulated annealing [32]. Faris et al. combined binary salp swarm algorithm with
crossover scheme for feature selection [33]. However, few studies were conducted on evaluation
function, which is another important element for feature selection other than the searching method.

Hence, we propose a new algorithm, named beta distribution-based cross-entropy (BetaDCE),
for feature selection. BetaDCE tries to estimate probability density of prediction using beta distribution,
and it selects feature subsets by cross-entropy that maximizes its generalization ability. In Section 2,
we discuss the basic theory. The results of feature selection by BetaDCE and the discussion are given in
Sections 3 and 4, respectively.

2. Materials and Methods

2.1. Beta Distribution-Based Cross-Entropy

The main objective of BetaDCE is feature selection, although it can also be used for prediction.
Like KNN, BetaDCE tries to make full use of the information of adjacent samples. However,
the characteristic of BetaDCE differing from KNN is that the probability density in the neighborhood is
precisely modeled by beta distribution.

To evaluate feature subsets by BetaDCE, each training sample corresponds to an optimized
number of nearest neighbors (K) which may differ from that of other samples. The parameter K is
optimized by beta distribution K, and the expected value of probability is then used to compute the
cross-entropy as the evaluation function for feature selection (Figure 1).
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Figure 1. Description of beta distribution-based cross-entropy (BetaDCE). Each training sample
corresponds to an optimized K, which is determined by beta distribution. The expected value of
probability is then used to compute the cross-entropy as the evaluation function for feature selection.

2.1.1. Evaluation Function of BetaDCE

Suppose in a binary classification problem there are K nearest neighbors for the investigated
sample, where KA and KB nearest neighbors belong to class A and B respectively. Although other
definitions such as Mahalanobis distance are available, Euclidean distance is used here to define the
nearest neighbors for simplicity. Let PA be the probability of the sample belonging to class A. It can be
concluded that PA conforms to beta distribution with shape parameters of KA + 1 and KB + 1 in case no
prior knowledge is provided. The expected value for PA can be analytically expressed as

E[PA] =
Ka + 1

Ka + Kb + 2
(1)

Similarly, the equation of the expected value for PB can also be obtained. Therefore, the expected
value (E) for the investigated sample can be written as

E =

{
E[PA], E[PA] ≥ E[PB]

E[PB], E[PA] < E[PB]
(2)

The overall cross-entropy for all the training samples can be calculated using the following formula:

H = −
1

nA

nA∑
i=1

ln Ei −
1

nB

nB∑
i=1

ln Ei (3)

where Ei is the expected value for sample i, while nA and nB are the total numbers of samples for
classes A and B, respectively. Equation (3) is used as the evaluation function of BetaDCE to optimize
feature subsets.

2.1.2. Iteration and Optimization

In the procedure of BetaDCE, a feature subset is initialized and then updated iteratively until
a stopping criterion is reached. We define an epoch as a circle of iteration. Epoch i means that all
subsets consisting of i features in the training dataset have had an opportunity to update the optimized
feature subset.
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In epoch i, all subsets consisting of i features are evaluated and then sorted by the values of the
evaluation function defined by Equation (3). If the minimum value of the evaluation function in the
current epoch is not smaller than 0.95 of that in the previous one, we update the optimized subset with
one in the current epoch and exit the iteration. Otherwise, we update the optimized subset with the
first m unique features from the list of sorted feature subsets and go to the next epoch. The number of
unique features m is determined as follows:

Max m
s.t. m!

(i+1)!(m−i−1)! ≤ Ne
(4)

where i is the index of epoch, and Ne is the maximum number of feature subsets to be evaluated in
every epoch, which is a predefined constant to control the amount of computation.

2.2. Investigated Datasets

Three different kinds of datasets were investigated to test the performance of BetaDCE. Firstly,
an exclusive or-like (XOR-like) simulated dataset was used to test the ability for detecting redundant
features by BetaDCE. Then, BetaDCE was used for feature selection in the training set of a leukemia
dataset and prediction of class labels in the independent test set. Finally, in a metabonomic dataset,
we applied BetaDCE to determine the number of features, which was extracted from raw features by
partial least square (PLS) and used to predict whether chemotherapy would yield enough of a positive
response on patients with gastric cancer.

To intuitively demonstrate its performance in feature selection, the model was tested on an XOR-like
dataset. A raw training set containing 280 samples was generated for binary classification, where each
class consisted of 140 samples. Samples of the two classes were crossed in four clusters in an XOR-like
style, with normal distribution for samples in each cluster, to keep it non-linear. The raw training
set was described by two features, and an additional redundant feature was then added, which was
repeated 100,000 times to generate multiple training sets, with each containing one redundant feature,
and the raw training set.

The leukemia dataset was taken from a collection of leukemia patients reported by Golub et al. [34].
The goal of this study was to develop a systematic approach to distinguish acute lymphoblastic
leukemia (ALL) from acute myeloid leukemia (AML) based on the simultaneous measure of thousands
of gene expressions using DNA microarrays. The training set consisted of 27 ALL and 11 AML samples.
An independent collection of 34 leukemia samples (20 ALL and 14 AML) was used for testing. Each
sample was described by 7129 probes from 6817 human genes.

The metabonomic dataset used in this study was about the chemosensitivity prediction of cisplatin
plus 5-fluorouracil in a human xenograft model of gastric cancer [35]. In total, 9265 raw features were
generated from the HPLC/MS profile and then extracted by PLS for prediction. There were 60 patients
in the dataset, where 17 were sensitive to chemotherapy and the remaining were considered as the
insensitive group.

2.3. Algorithm Implementation

We developed a Python implementation of BetaDCE, which takes advantage of multiple central
processing unit (CPU) cores to significantly accelerate the training process, and the open source code is
now available [36].

Our server had 80 Xeon E7-8870 CPU cores (2.10 GHz) and 120 GB of memory. The training time
of BetaDCE for the leukemia dataset was 149.6 min on a single CPU, and it was shortened to 4.1 min
when 80 CPUs were used. As a comparison, the training time of RF + sequential floating forward
selection (SFFS) for the leukemia dataset was 380.3 min.
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3. Results

3.1. Generalization Ability of BetaDCE

The generalization ability of a supervised learning method is related to both bias and variance.
Higher bias leads to underfit, while higher variance leads to overfit. As for BetaDCE, the expectation
value E combines the information of both bias and variance and can be a criterion for the evaluation of
generalization ability.

Suppose there are two potential numbers of nearest neighbors, K1 = 4 and K2 = 8, to be determined.
Of the four neighbors for K1, three are from the positive class, and one is from the negative class.
For K2, six are from the positive class, and two are from negative class (Figure 2A). K1 and K2 obviously
have the same bias toward the positive class (both are 3:1); however, the probability density of K2
is sharper, which results in lower variance than that of K1 (Figure 2B). E is the expectation value
analyzed from the probability density to combine bias and variance. As a result, E for K2 is bigger
than that for K1; therefore, we should choose K2 as the better number of nearest neighbors for better
generalization ability.
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Figure 2. The generalization ability of BetaDCE. (A) An example comparing two numbers of nearest
neighbors. K1 and K2 are two potential numbers of nearest neighbors, with the same bias, to be
determined. (B) The probability density and E (expected value) for K1 and K2. Although the biases of
K1 and K2 are the same, the probability density and E indicate that we should choose K2 for better
generalization ability.

By analysis of probability density, BetaDCE thereby combines information of both bias and
variance in the model to ensure its generalization ability.

3.2. Analysis of XOR-Like Dataset

The XOR-like dataset was used to test the performance for feature selection. Here, BetaDCE was
compared to KNN and SVM in terms of detecting the redundant feature in the dataset.

To compare the performance, the algorithms were firstly evaluated on the raw training set.
Then, they were compared on the datasets with redundant features by the percentage of redundant
features detected. For KNN, the accuracy of leave-one-out cross-validation was used to evaluate
the performance of features, and the parameter K was optimized automatically in cross-validation.
For SVM, the radial basis function kernel was used as the kernel function. The penalty parameter C
and kernel coefficient were optimized simultaneously in cross-validation. The accuracy of five-fold
cross-validation was used to evaluate the performance of features. For BetaDCE, the objective function
was directly used for evaluation without the procedure of cross-validation, which can be safely done
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without data leakage since our task here is to test whether the model can identify the redundant
features correctly or not, rather than to make a prediction in a test set.

Figure 3 shows the distribution of E on the raw two-dimensional data without additional redundant
features during the training of BetaDCE. E clearly served as a satisfactory boundary for classification.
It should be noted that the number of nearest neighbors of each sample can be determined automatically
in an easy way during training; therefore, no other parameters are needed for training BetaDCE.
The number of nearest neighbors varied considerably from sample to sample, with a minimal value of
one and a maximal value of 68, but most of them were smaller than 10 (Figure 4).
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A permutation test was adopted to test the performance in detecting redundant features in the
dataset. The redundant feature was randomly permuted 100,000 times to calculate the objective
function (BetaDCE) or accuracy of cross-validation (KNN and SVM). In the test, all three methods
were able to detect the raw two-dimensional features. In total, 722 and 28,809 redundant features were
not detected by KNN (Figure 5B) and SVM (Figure 5C), respectively, while all redundant features
were detected by BetaDCE (Figure 5A). The overall false discovery rates were 0.7%, 28.8%, and 0% for
KNN, SVM, and BetaDCE, respectively (Table 1). To test the superiority of BetaDCE to KNN and SVM,
we calculated the false discovery rate every 1000 permutations for all the methods and set the null
hypothesis that the false discovery rate of BetaDCE was not better than that of KNN (SVM). As a result,
both null hypotheses for KNN and SVM were rejected. The false discovery rate of BetaDCE was
significantly smaller than that of KNN (p = 3.8 × 10−21) or SVM (p = 5.7 × 10−124), which indicated
that the performance of BetaDCE for feature selection was much better than that of KNN and SVM
with cross-validation.
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Figure 5. Permutation test for detecting redundant features on the XOR-like dataset. (A) Permuted
result of BetaDCE. The statistics were based on the evaluation function. (B) Permuted result of
k-nearest neighbor (KNN). The statistics were based on the accuracy of leave-one-out cross-validation.
(C) Permuted result of support vector machine (SVM). The statistics was based on the accuracy of
five-fold cross-validation.
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Table 1. Comparison between beta distribution-based cross-entropy (BetaDCE) and other methods for
detecting redundant features on an exclusive or-like (XOR-like) dataset. KNN—k-nearest neighbor;
SVM—support vector machine.

Methods Evaluation Function False Discovery Rate (1-Specificity)

KNN Cross-validation 0.7%
SVM Cross-validation 28.8%

BetaDCE Equation (3) 0%

3.3. Analysis of Leukemia Dataset

3.3.1. Predictive Result of BetaDCE

As described previously, 38 samples of leukemia were analyzed to test whether it was possible
to classify them as ALL or AML based on 7129 genes using DNA microarrays. An independent test
set of 34 leukemia samples was then used to evaluate the performance of the classification model
trained. The performance of BetaDCE was compared with Golub’s method, as well as least absolute
shrinkage and selection operator (LASSO), and random forest (RF) with sequential floating forward
selection (SFFS).

In Golub’s work [34], a total of 50 genes most closely correlated with AML–ALL distinction
in the training set were chosen as the set of informative genes. The class predictor was based on
“weighted votes” of the informative genes. Before training of BetaDCE, all the genes were standardized
to unit variance by subtracting the mean and then dividing by the standard deviation. The evaluation
function decreased during the first few epochs, and the stopping criterion was reached at the fourth
epoch (Figure 6). Figure 7A,B show the bias and variance trade-off for BetaDCE on the leukemia
dataset. As can be seen, the variance was dominant when the number of nearest neighbors was small,
and the bias became the main contribution to predictive results for big numbers of nearest neighbors.
The cross-entropy by BetaDCE is a trade-off between bias and variance. The area under the curve
(AUC) of BetaDCE on the test set was 0.93, which was larger than that of Golub’s method (0.83),
RF + SFFS (0.81), and LASSO (0.81). The comparison between BetaDCE and other methods is shown
in Table 2, which indicated that BetaDCE could provide higher predictive performance with a much
smaller number of selected features.
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evaluations of BetaDCE, bias, and variance. Here, this was the bias and variance trade-off when the
number of nearest neighbors was optimized for the optimal feature subset. Variance was shown in the
form of standard deviation so that it was comparable with bias and the value of BetaDCE. Red solid
line: evaluation by BetaDCE. Blue dashed dotted line: bias. Green dashed dotted line: variance.
The average numbers of nearest neighbors for S1, S2, and S3 were one, 21.4, and 30 respectively. S2 was
the optimal parameter dividing the whole space into overfitting zone (left) and overfitting zone (right).
(B) The bulls-eye diagrams for customized points S1, S2, and S3. Data were simulated according to the
size of bias and variance.

Table 2. Comparison between BetaDCE and other methods on the leukemia dataset. RF—random
forest; SFFS—sequential floating forward selection; LASSO—least absolute shrinkage and selection
operator; AUC—area under the curve.

Methods AUC on Test Set Number of Selected Features

Reported by Golub [34] 0.83 50
RF + SFFS 0.81 3

LASSO 0.81 111
BetaDCE 0.93 4
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3.3.2. Interpretation of the Features Selected by BetaDCE

One advantage of feature selection is that it eases interpretation of the system revealed by data.
For the leukemia dataset, BetaDCE finally selected four genes which were crucial for the distinction
of AML and ALL. The accession numbers of selected genes were M54995_at, M84526_at, X16662_at,
and M22612_f_at. Detailed information about the selected genes is shown in Table 3.

Table 3. Description of genes selected by BetaDCE.

Gene Accession Number Description of the Gene

M84526_at DF: D component of complement (adipsin)
X16662_at ANX8: Annexin VIII
M54995_at PPBP: Connective tissue activation peptide III

M22612_f_at PRSS1: Protease; serine; 1 (trypsin 1)

Furthermore, we measured the predictive power of each input feature by measuring the area
under the curve (AUC) of the receive operating characteristic (ROC) curve. Figure 8 shows the AUCs
of all the features in the leukemia dataset. From the figure, we can see that, among the four genes
selected by BetaDCE, AUCs of M54995_at (0.95) and M84526_at (0.92) were high, whereas AUCs of
X16662_at (0.50) and M22612_f_at (0.51) were at the average level.
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as that in Golub’s work.

3.4. Analysis of the Metabonomic Dataset

The metabonomic dataset was randomly split into a training set (2/3) and a test set (1/3), as described
by Wang et al. [35]. The splits of the dataset were repeated 1000 times, and predictions on test sets were
evaluated by ROC curves. Raw features were generated by the HPLC/MS profile and extracted by
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PLS. Then, BetaDECE or cross-validation was used to determine the number of features for predictive
model. As indicated in Figure 9, the average true positive rate by BetaDCE was higher than that by
cross-validation for most points of false positive rate. A paired comparison by AUC indicated that the
performance of feature selection by BetaDCE was significantly better than that by cross-validation
(p = 2.4 × 10−112).
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4. Discussion

Cross-entropy is widely used as a loss function in machine learning, such as logistic regression and
deep neural networks. It minimizes the difference between the estimated probability distribution and
the true distribution from the perspective of information theory. The estimated probability distribution
needed for cross-entropy is generally predicted from the training samples. However, the prediction
of probability distribution from the limited number of samples could be much more difficult than
the original problem. The variance may be high, especially when the number of samples is small
compared to the number of features.

In view of such difficulties, BetaDCE uses beta distribution as the estimated probability distribution
to calculate cross-entropy. Meanwhile, the expected value of beta distribution is analytically available;
thus, estimation of cross-entropy is easy. Therefore, BetaDCE is efficient because no resampling methods
such as cross-validation are needed, and the parameter K is optimized automatically during training
without the requirement of additional parameters for optimization.
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The limitation of BetaDCE is that, when the number of features in the investigated dataset is huge
compared to number of samples, the solution might be biased from the optimal one. Under such
circumstances, we should enlarge the constant Ne to increase the probability of getting to the optimal
solution at the expense of greater computational effort. This limitation is essentially the problem of
wrapper methods.

5. Conclusions

In summary, we proposed BetaDCE as a novel approach for feature selection. The characteristic
of BetaDCE is that the cross-entropy of a predictive model is computed directly by the expected
value of beta distribution, so that the generalization ability can be estimated more precisely than
conventional methods such as cross-validation. We analyzed the generalization ability of BetaDCE by
trade-off between bias and variance. The performance of BetaDCE was validated on several datasets.
In the XOR-like dataset, the false discovery rate of BetaDCE was significantly smaller than that of
other methods. For the leukemia dataset, the AUC of BetaDCE on the test set was 0.93 with only
four selected features, indicating that the performance of prediction by BetaDCE can be ensured
with a smaller number of features than the original method, whose AUC was 0.83 with 50 features.
In the metabonomic dataset, the overall AUC of the prediction with features selected by BetaDCE was
significantly larger than that by the original reported method.

Although the robustness of BetaDCE was validated in this study, its limitation is that the optimal
solution cannot be promised if there are a huge number of features. In future work, one practical way
of ensuring the optimal solution is to implement the algorithm on a graphics processing unit (GPU)
for efficient parallelization. Another way is to organize the algorithm of BetaDCE as a constrained
mathematical program, so that it can be solved as an embedded method.
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