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Abstract: In this paper, we propose a theoretical framework to analyze the secure communication
problem for broadcasting two encrypted sources in the presence of an adversary which launches
side-channel attacks. The adversary is not only allowed to eavesdrop the ciphertexts in the public
communication channel, but is also allowed to gather additional information on the secret keys via the
side-channels, physical phenomenon leaked by the encryption devices during the encryption process,
such as the fluctuations of power consumption, heat, or electromagnetic radiation generated by the
encryption devices. Based on our framework, we propose a countermeasure against such adversary
by using the post-encryption-compression (PEC) paradigm, in the case of one-time-pad encryption.
We implement the PEC paradigm using affine encoders constructed from linear encoders and derive
the explicit the sufficient conditions to attain the exponential decay of the information leakage
as the block lengths of encrypted sources become large. One interesting feature of the proposed
countermeasure is that its performance is independent from the type of side information leaked
by the encryption devices.

Keywords: information theoretic security; side-channel attacks; Shannon cipher system; one helper
source coding problem; strong converse theorem

1. Introduction

In recent years, it has become very common that one person holds multiple wireless
communication devices and broadcasts the messages through multiple devices. In order to ensure
secrecy, it is a standard practice to encrypt the data before broadcasting them into the public
communication channel. The usual security problem that is considered in such system of broadcasting
encrypted sources is the secrecy against an adversary which eavesdrops the ciphertexts sent via the
public communication channel. However, Kocher et al. [1,2] have shown that an adversary may also
learn “side” information about the secret keys from “side-channel”, i.e., the measurements of physical
phenomenon that occur in the physical devices where the encryption procedures are implemented.
Such adversary is called as side-channel adversary. Examples of the physical phenomenon exploited
by the side-channel adversaries are the fluctuations of time cost [1], the fluctuations of power
consumption [2], and the electromagnetic (EM) radiation [3]. In this paper, we are focusing on a specific
scenario where an adversary is not only eavesdropping on the public communication channel but is also
launching side-channel attacks on multiple communication devices owned by a sender. We consider
that this kind of side-channel attack is feasible in the real world when multiple devices owned
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by the sender relocated in the same area such that the adversary can catch the side information from
the devices directly.

1.1. Modelling Side-Channel Attacks

The adversarial/security model we use in this paper and its relation to a real-world example
are shown in Figure 1. Basically, we adapt the approach in [4] on modeling the side-channel,
where the side-channel is modelled as a rate constraint noiseless channel.

Figure 1. Side-channel attacks in a broadcasting system.

We describe our model in a more formal way as follows. Let us consider two sources X1 and X2,
where each is encrypted in two different encryption devices using secret keys K1 and K2, respectively,
resulting in ciphertexts C1 and C2, respectively. The ciphertexts C1 and C2 are sent by the sender
to multiple receivers through multiple public communication channels. The adversary A is allowed
to obtain: (1) ciphertexts C1 and C2 from the public communication channels, and also (2) “noisy”
digital data Z generated by the probe or the measurement device from the physical phenomenon leaked
by all encryption devices of the sender. The measurement device may just be a simple analog-to-digital
converter that converts the analog data representing physical information leaked by the devices into
“noisy” digital data Z. In our model, we represent the measurement process as a communication
channel W.The adversary A is equipped with a side-channel encoding device ϕA which encodes and
processes Z into the binary data MA. Finally, combining C1, C2, and MA, A will attempt to derive
information on the sources X1 and X2.

1.2. Our Results and Methodology in Brief

We show that we can strengthen the secrecy/security of the Shannon ciphers which are
implemented on multiple physical devices of a sender in a broadcasting system against an adversary
who collects ciphertexts and launches side-channel attacks by a simple method of reencoding
the ciphertexts before releasing them into the public communication channels. This method is based
on post-encryption-compression (PEC) paradigm. We prove that, in the case that all encryption devices
implement one time pad encryption, we can strengthen the secrecy/security using appropriate affine
encoders ϕ1 and ϕ2 which transform the original ciphertexts C1 and C2 into reencoded ciphertexts C̃1 and C̃2.

More formally, we prove that, for any distribution of the secret keys (K1, K2) and any measurement
device (used to convert the physical information from a side-channel into the noisy large alphabet data
Z), we can derive an achievable rate region for (R1, R2, RA), where R1 and R2 are the encoding rates
of ϕ1 and ϕ2, respectively, RA is the encoding rate of adversary’s encoding device ϕA. More precisely,
if we reencode C1 and C2 into C̃1 and C̃2 using ϕ1 and ϕ2 with encoding rates R1 and R2, respectively,
such that R1 and R2 are inside the achievable region, then we can attain reliability and security
in the following sense:
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• anyone with secret keys K1 and K2 can construct appropriate decoders that decrypt and encode
the reencoded ciphertexts C̃1 and C̃2 into original sources X1 and X2 with exponentially decaying
error probability, and

• the amount of information on the sources X1 and X2 gained by any adversary A which collects
the reencoded ciphertexts C1, C2 the encoded side-channel information MA is exponentially
decaying to zero as long as the side-channel encoding device ϕA encodes Z into MA with the rate
RA which is inside the achievable rate region.

Taking the advantage of the homomorphic property of one-time-pad and affine encoding,
we separate the theoretical analysis of reliability and security such that we can deal with each issue
independently. For reliability analysis, similar to the analysis in [4–7], we mainly obtain our result
by adapting the result of Csizár [8] on the universal coding using linear codes. Our main theorem
on security is based on the technique developed in [4] which is actually a combination of two other
techniques. One is a technique developed by Oohama in [9] for deriving approximation error exponents
for the intrinsic randomness problem in some framework of distributed random number extraction.
(This technique is is also used in the security analysis in Santoso and Oohama [6,10].) Another one is
a technique proposed by Oohama [11] to establish exponential strong converse theorem for the one
helper source coding problem. (This technique is used in the security analysis for the side channel
attacks to the Shannon cipher system.)

In addition, since we model the side-channel as a rate constraint noiseless channel, all theoretical
results in this paper are independent from the type of side-channel information the adversary collects
from the encryption devices. This means that the countermeasure we propose in this paper can
be applied against any type of side-channel attacks launched by the adversary, e.g., timing attacks,
electromagnetic radiation or power analysis, and so on.

1.3. Related Works

The use of PEC for communication system can be traced back to the work by Johnson et al., in [12].
However, their main focus is the issue of reliability and they only provide weak secrecy for security,
whereas, in this paper, we provide security based on the strong secrecy [13,14].

Several theoretical models analyzing the security of a cryptographic system against side-channel
attacks have been proposed in the literature. However, most of the existing works are applicable
only for specific characteristics of the leaked physical information. For example, Brier et al. [15] and
Coron et al. [16] propose a statistical model for side-channel attacks using the information from power
consumption and the running time, whereas Agrawal et al. [3] propose a statistical model for side-channel
attacks using electromagnetic (EM) radiations. A more general model for side-channel attacks is proposed
by Köpf et al. [17] and Backes et al. [18], but they are heavily dependent upon implementation on
certain specific devices. Micali et al. [19] propose a very general security model to capture the
side-channel attacks, but they fail to offer any hint of how to build a concrete countermeasure against
the side-channel attacks. One of the closest existing models to ours is the general framework for
analyzing side-channel attacks proposed by Standaert et al. [20]. However, the authors of [20] propose
a countermeasure against side-channel attacks that is different from ours, i.e., noise insertion on
implementation. It should be noted that the noise insertion countermeasure proposed by [20] depends
on the characteristics of the leaked physical information. Another model that is similar to ours
in the sense that it is independent from the type of leaked physical information is proposed by
Chérisey et al. [21,22]. However, the main aim of [21,22] is only establishing the mathematical link
between success probability of side-channel adversary and mutual information and no countermeasure
is proposed.

1.4. Organization of This Paper

This paper is structured as follows. In Section 2, we show the basic notations and definitions
that we use throughout this paper, and we also describe the formal formulations of our model
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and the security problem. In Section 3, we explain the idea and the formulation of our proposed
solution. In Section 4, we state our main theorem on the reliability and security of our solution.
In Section 5, we show the proof of our main theorem. In Section 6, we discuss an alternative formulation
of our model and problem. In Section 7, we show the comparison between our current results in this
paper and our previous works. We put our conclusions in Section 9. We put the proofs of other related
propositions, lemmas, and theorems in the appendix.

2. Problem Formulation

2.1. Preliminaries

In this subsection, we show the basic notations and related consensus used in this paper.
Random Source of Information and Key: For each i = 1, 2, let Xi be a random variable from a finite set
Xi. For each i = 1, 2, let {Xi,t}∞

t=1 be two stationary discrete memoryless sources (DMS) such that,
for each t = 1, 2, . . ., Xi,t take values in finite set Xi and has the same distribution as that of Xi denoted
by pXi = {pXi (xi)}xi∈Xi . The stationary DMS {Xi,t}∞

t=1, are specified with pXi .
We next define the two keys used in the two common cryptosystems. For each i = 1, 2, let (K1, K2)

be a pair of two correlated random variables taken from the same finite setX1×X2. Let {(K1,t, K2,t)}∞
t=1

be a stationary discrete memoryless source such that, for each t = 1, 2, . . ., (K1,t, K2,t) takes values
in X1× X2 and has the same distribution as that of (K1, K2) denoted by

pK1K2 = {pK1K2(k1, k2)}(k1,k2)∈X1×X2
.

The stationary DMS {(K1,t, K2,t}∞
t=1 is specified with pK1K2 .

Random Variables and Sequences: We write the sequence of random variables with length n from
the information sources as follows: Xn

i := Xi,1Xi,2 · · ·Xi,n, i = 1, 2. Similarly, the strings with length
n of X n

i are written as xn
i := xi,1xi,2 · · · xi,n ∈ X n

i . For (xn
1 , xn

2 ) ∈ X n
1 × X n

2 , pXn
1 Xn

2
(xn

1 , xn
2 ) stands

for the probability of the occurrence of (xn
1 , xn

2 ). When the information source is memoryless specified
with pX1X2 , we have the following equation holds:

pXn
1 Xn

2
(xn

1 , xn
2 ) =

n

∏
t=1

pX1X2(x1,t, x2,t).

In this case, we write pXn
1 Xn

2
(xn

1 , xn
2 ) as pn

X1X2
(xn

1 , xn
2 ). Similar notations are used for other random

variables and sequences.
Consensus and Notations: Without loss of generality, throughout this paper, we assume that

X1 and X2 are finite fields. The notation ⊕ is used to denote the field addition operation, while
the notation 	 is used to denote the field subtraction operation, i.e., a	 b = a⊕ (−b) for any elements
a, b from the same finite field. All discussions and theorems in this paper still hold although X1

and X2 are different finite fields. However, for the sake of simplicity, we use the same notation for
field addition and subtraction for both X1 and X2. Throughout this paper, all logarithms are taken
to the natural basis.

2.2. Basic System Description

In this subsection, we explain the basic system setting and basic adversarial model we consider
in this paper. First, let the information source and the key be generated independently by three
different parties Sgen,1, Sgen,2 and Kgen, respectively. In our setting, we assume the following:

• The random keys Kn
1 and Kn

2 are generated by Kgen from uniform distribution. We may have
a correlation between Kn

1 and Kn
2 .

• The sources Xn
1 and Xn

2 , respectively, are generated by Sgen,1 and Sgen,2. Those are independent
from the keys.
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Next, let the two random sources Xn
1 and Xn

2 , respectively, from Sgen,1 and Sgen,2 be sent to two
separated nodes L1 and L2. In addition, let two random key (sources) Kn

1 and Kn
2 from Kgen be also sent

separately to L1 and L2. Further settings of our system are described as follows. Those are also shown in
Figure 2.

1. Separate Sources Processing: For each i = 1, 2, at the node Li, Xn
i is encrypted with the key Kn

i using
the encryption function Enci. The ciphertext Cn

i of Xn
i is given by Cn

i := Enci(Xn
i ) = Xn

i ⊕ Kn
i .

2. Transmission: The ciphertexts Cn
1 and Cn

2 , respectively, are sent to the information processing
center D1 and D2 through two public communication channels. Meanwhile, the keys Kn

1 and Kn
2 ,

respectively are sent to D1 and D2 through two private communication channels.
3. Sink Nodes Processing: For each i = 1, 2, in Di, we decrypt the ciphertext Cn

i using the key Kn
i

through the corresponding decryption procedure Deci defined by Deci(Cn
i ) = Cn

i 	 Kn
i . It is

obvious that we can correctly reproduce the source output Xn from Cn
i and Kn

i by the decryption
function Deci.

Figure 2. Side-channel attacks to the two Shannon cipher systems.

Side-Channel Attacks by Eavesdropper Adversary: An (eavesdropper) adversary A eavesdrops on the public
communication channel in the system. The adversary A also uses a side information obtained
by side-channel attacks. Let Z be a finite set and let W : X1 × X2 → Z be a noisy channel.
Let Z be a channel output from W for the input random variable K. We consider the discrete
memoryless channel specified with W. Let Zn ∈ Zn be a random variable obtained as the channel
output by connecting (Kn

1 , Kn
2 ) ∈ X n

1 ×X n
2 to the input of channel. We write a conditional distribution

on Zn given (Kn
1 , Kn

2 ) as
Wn = {Wn(zn|kn

1 , kn
2)}(kn

1 ,kn
2 ,zn)∈X n

1 ×X
n
2 ×Zn .

Since the channel is memoryless, we have

Wn(zn|kn
1 , kn

2) =
n

∏
t=1

W(zt|k1,t, k2,t). (1)

On the above output Zn of Wn for the input (Kn
1 , Kn

2 ), we assume the following:

• The two random pairs (X1, X2), (K1, K2) and the random variable Z, satisfy (X1, X2) ⊥ (K1, K2, Z),
which implies that (Xn

1 , Xn
2 ) ⊥ (Kn

1 , Kn
2 , Zn).

• By side-channel attacks, the adversary A can access Zn.

We next formulate side information the adversary A obtains by side-channel attacks. For each
n = 1, 2, · · · , let ϕ

(n)
A : Zn →M(n)

A be an encoder function. Set ϕA := {ϕ
(n)
A }n=1,2,···. Let

R(n)
A :=

1
n

log ||ϕA|| =
1
n

log |M(n)
A |
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be a rate of the encoder function ϕ
(n)
A . For RA > 0, we set

F (n)
A (RA) := {ϕ

(n)
A : R(n)

A ≤ RA}.

On encoded side information, the adversary A obtains, we assume, the following:

• The adversary A, having accessed Zn, obtains the encoded additional information ϕ
(n)
A (Zn).

For each n = 1, 2, · · · , the adversary A can design ϕ
(n)
A .

• The sequence {R(n)
A }

∞
n=1 must be upper bounded by a prescribed value. In other words,

the adversary A must use ϕ
(n)
A such that, for some RA and for any sufficiently large n,

ϕ
(n)
A ∈ F

(n)
A (RA).

As a solution to the side channel attacks, we consider a system of broadcast encryption
with post-encryption coding. We call this system as Sys. The illustration of Sys is shown in Figure 3.

1. Encoding at Source node Li, i = 1, 2: For each i = 1, 2, we first use ϕ
(n)
i to encode the ciphertext Cn

i =

Xn
i ⊕ Kn

i . A formal definition of ϕ
(n)
i is ϕ

(n)
i : X n

i →X
mi
i . Let C̃mi

i = ϕ
(n)
i (Cn

i ). Instead of sending Cn
i ,

we send C̃mi
i to the public communication channel.

2. Decoding at Sink Nodes Di, i = 1, 2: For each i = 1, 2, Di receives C̃mi
i from a public communication

channel. Using common key Kn
i and the decoder function Ψ(n)

i : Xm
i × X n

i → X n
i , Di outputs

an estimation X̂n
i = Ψ(n)

i (C̃mi
i , Kn

i ) of Xn
i .

Figure 3. Sys: a system of broadcast encryption with post-encryption coding.

On Reliability and Security: From the description of our system in the previous section, the decoding
process in our system above is successful if X̂n

i = Xn
i holds. Combining this and Equation (5), it is clear

that the decoding error probabilities pe,i, i = 1, 2, are as follows:

pe,i =pe(ϕ
(n)
i , Ψ(n)

i |p
n
Xi
) := Pr[Ψ(n)

i (ϕ
(n)
i (Xn

i )) 6= Xn
i ].

Set M(n)
A = ϕ

(n)
A (Zn). The information leakage ∆(n) on (Xn

1 , Xn
2 ) from (C̃m1

1 , C̃m2
2 , M(n)

A ) is measured

by the mutual information between (Xn
1 , Xn

2 ) and (C̃m1
1 , C̃m2

2 , M(n)
A ). This quantity is formally defined by

∆(n) = ∆(n)(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) := I(Xn
1 Xn

2 ; C̃m2
1 , C̃m2

2 , M(n)
A ).

Reliable and Secure Framework:

Definition 1. A pair (R1, R2) is achievable under RA > 0 for the system Sys if there exists two sequences
{(ϕ

(n)
i , Ψ(n)

i )}n≥1, i = 1, 2, such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0, we have for i = 1, 2,

1
n

log |Xmi
i | =

mi
n

log |Xi| ≤ Ri, pe(ϕ
(n)
i , Ψ(n)

i |p
n
Xi
) ≤ ε,
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and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) ≤ ε.

Definition 2 (Reliable and Secure Rate Region). Let RSys(pX1X2 , pZK1K2) denote the set of all (RA, R)
such that R is achievable under RA. We callRSys(pX1X2 , pZK1K2) the reliable and secure rate region.

Definition 3. A five tuple (R1, R2, E1, E2, F) is achievable under RA > 0 for the system Sys if there exists
a sequence {(ϕ

(n)
i , Ψ(n)

i )}n≥1, i = 1, 2, such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0, we have for i = 1, 2,

1
n

log |Xmi
i | =

mi
n

log |Xi| ≤ Ri, pe(ϕ
(n)
i , Ψ(n)

i |p
n
Xi
) ≤ e−n(Ei−ε),

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) ≤ e−n(F−ε).

Definition 4 (Rate, Reliability, and Security Region). Let DSys(pX1X2 , pK1K2 , W) denote the set
of all (RA, R, E, F) such that (R1, R2, E1, E2, F) is achievable under RA. We call DSys(pX1X2 , pK1K2 , W)

the rate, reliability, and security region.

3. Proposed Idea: Affine Encoder as Privacy Amplifier

For each n = 1, 2, · · · , let φ
(n)
i : X n

i → X
mi
i be a linear mapping. We define the mapping φ

(n)
i by

φ
(n)
i (xn

i ) = xn
i Ai for xn

i ∈ X n
i , (2)

where Ai is a matrix with n rows and mi columns. Entries of Ai are from Xi. We fix bmi
i ∈ Xmi

i .

Define the mapping ϕ
(n)
i : X n

i → X
mi
i by

ϕ
(n)
i (kn

i ) :=φ
(n)
i (kn

i )⊕ bmi
i = kn

i Ai ⊕ bmi
i , for kn

i ∈ X n
i .

The mapping ϕ
(n)
i is called the affine mapping induced by the linear mapping φ

(n)
i and constant

vector bmi
i ∈ X

mi
i . By the definition of ϕ

(n)
i , the following affine structure holds:

ϕ
(n)
i (xn

i ⊕ kn
i ) = (xn

i ⊕ kn
i )Ai ⊕ bmi

i = xn
i Ai ⊕ (kn

i Ai ⊕ bmi
i )

= φ
(n)
i (xn

i )⊕ ϕ
(n)
i (kn

i ), for xn
i , kn

i ∈ X n
i . (3)

Next, let ψ
(n)
i be the corresponding decoder for φ

(n)
i such that ψ

(n)
i : Xmi

i → X
n
i . Note that ψ

(n)
i

does not have a linear structure in general.
Description of Proposed Procedure: We describe the procedure of our privacy amplified system as follows:

1. Encoding at Source node Li, i = 1, 2: First, we use ϕ
(n)
i to encode the ciphertext Cn

i = Xn
i ⊕ Kn

i

Let C̃mi
i = ϕ

(n)
i (Cn

i ). Then, instead of sending Cn, we send C̃mi
i to the public communication

channel. By the affine structure (3) of encoder, we have that

C̃mi
i = ϕ

(n)
i (Xn

i ⊕ Kn
i ) = φ

(n)
i (Xn

i )⊕ ϕ
(n)
i (Kn

i ) = X̃mi
i ⊕ K̃mi

i , (4)

where we set X̃mi
i := φ

(n)
i (Xn

i ), K̃mi
i := ϕ

(n)
i (Kn

i ).
2. Decoding at Sink Node Di, i = 1, 2: First, using the linear encoder ϕ

(n)
i , Di encodes the key Kn

i

received through private channel into K̃mi
i =ϕ

(n)
i (Kn

i ). Receiving C̃mi
i from public communication
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channel, Di computes X̃mi
i in the following way. From (4), we have that the decoder Di can obtain

X̃mi
i = φ

(n)
i (Xn

i ) by subtracting K̃mi
i = ϕ

(n)
i (Kn

i ) from C̃mi
i . Finally, Di outputs X̂n

i by applying

the decoder ψ
(n)
i to X̃mi

i as follows:

X̂n
i = ψ

(n)
i (X̃mi

i ) = ψ
(n)
i (φ

(n)
i (Xn

i )). (5)

Our privacy amplified system described above is illustrated in Figure 4.

Figure 4. Our proposed countermeasure: affine encoders as privacy amplifiers.

4. Main Results

In this section, we state our main results. To describe our results, we define several functions
and sets. Let U be an auxiliary random variable taking values in a finite set U . We assume that the joint
distribution of (U, Z, K1, K2) is

pUZK1K2(u, z, k1, k2) = pU(u)pZ|U(z|u)pK1K2|Z(k1, k2|z).

The above condition is equivalent to U ↔ Z ↔ (K1, K2). In the following argument
for convenience of descriptions of definitions, we use the following notations:

R3 := R1 + R2,X3 := X1 ×X2, k3 := (k1, k2), K3 := (K1, K2).

For each i = 1, 2, 3, we simply write pi = pUZKi . Specifically, for i = 3, we have p3 = pUZK1K2 = p.
Define the three sets of probability distribution with i = 1, 2, 3:

P(pZKi ) :={pUZKi : |U | ≤ |Z|+ 1, U ↔ Z ↔ Ki}. (6)

For i = 1, 2, 3, let us define as follows:

Ri(pi) := {(RA, Ri) : RA, Ri ≥ 0, RA ≥ I(Z; U), Ri ≥ H(Ki|U)}, (7)

Ri(pZKi ) :=
⋃

pi∈P(pZKi
)

Ri(pi). (8)

The two regionsRi(pZKi), i = 1, 2 have the same form as the region appearing as the admissible rate
region in the one-helper source coding problem posed and investigated by Ahlswede and Körner [23].
We can show that the regionRi(pZKi), i = 1, 2, andR3(pZK1K2) satisfy the following property.

Property 1.

(a) The regionRi(pZKi ), i = 1, 2 is a closed convex subset of R2
+. The regionR3(pZK1K2) is a closed convex

subset of R3
+.

(b) The bound |U | ≤ |Z|+ 1 is sufficient to describeRi(pZKi ), i = 1, 2, 3.
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We define several quantities to state our main result. Let i ∈ {1, 2}. We first define a function
related to an exponential upper bound of pe(φ

(n)
i , ψ

(n)
i |p

n
Xi
). Let Xi be an arbitrary random variable

over Xi and has a probability distribution pXi
. Let P(Xi) denote the set of all probability distributions

on Xi. For Ri ≥ 0 and pXi ∈ P(Xi), we define the following function:

E(Ri|pXi ) : = min
pXi
∈P(Xi)

{[Ri − H(Xi)]
+ + D(pXi

||pXi )}. (9)

We next define a function related to an exponential upper bound of ∆(n)(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

).
For each i = 1, 2, 3, we define three sets of probability distributions on U ×Z ×Xi by

P̃(pZKi ) :={p = pUZKi : |U | ≤ |Z|, U ↔ Z ↔ Ki}.

Furthermore, for each i = 1, 2, 3, we define three sets of probability distributions on U ×Z ×Xi by

Q(pKi |Z) := {qi = qUZKi : qKiZ|U = pKiZ|U : for some pi ∈ P̃(pZKi )}.

For each i = 1, 2, 3, for (µ, α) ∈ [0, 1]2, and for qi = qUZKi ∈ Q(pKi |Z), define

ω
(µ,α)
qi |pZ

(z, ki|u) := ᾱ log
qZ(z)
pZ(z)

+ α

[
µ log

qZ|U(z|u)
pZ(z)

+µ̄ log
1

qKi |U(ki|u)

]
,

Ω(µ,α)(qi|pZ) := − log Eq

[
exp

{
−ω

(µ,α)
qi |pZ

(Z, Ki|U)
}]

,

Ω(µ,α)(pZKi ) := min
qi∈Q(pKi |Z

)
Ω(µ,α)(qi|pZ),

F(µ,α)(µRA + µ̄Ri|pZKi ) :=
Ω(µ,α)

i (pKi , W)− α(µRA + µ̄Ri)

2 + αµ̄
,

F(RA, Ri|pZKi ) := sup
(µ,α)∈[0,1]2

F(µ,α)(µRA + µ̄Ri|pZKi ).

In [11] (extended version), Oohama proved several properties on F(RA, Ri|pZKi ), i = 1, 2, 3.
According to [11] (extended version), we have the following property.

Property 2. For any i = 1, 2, 3 and for any τ ∈ (0, (1/2)ρ(pZKi)), the condition (RA, Ri +τ) /∈ Ri(pZKi) implies

F(RA, Ri|pZKi ) >
ρ(pZKi

)

4 · g2
(

τ
ρ(pZKi

)

)
> 0,

where ρ(pZKi ), i = 1, 2, 3, respectively, are some quantities depending on pZKi and g is the inverse function
of ϑ(a) := a + (5/4)a2, a ≥ 0.

Let us define as follows:

Fmin(RA, R1, R2|pZK1K2) := min
i=1,2,3

F(RA, Ri|pZKi ). (10)

Our main result is as follows.

Theorem 1. For any RA, R1, R2 > 0 and any pZK1K2 , there exists two sequence of mappings

{(ϕ
(n)
i , ψ

(n)
i )}∞

n=1, i = 1, 2 such that, for any pXi , i = 1, 2, and any n ≥ (R1 + R2)
−1, we have

1
n

log |Xmi
i | =

mi
n

log |Xi| ≤ Ri,

pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
) ≤ e−n[E(Ri |pXi

)−δi,n ], i = 1, 2 (11)
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and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
K1K2

, Wn) ≤ e−n[Fmin(RA ,R1,R2|pZK1K2 )−δ3,n ], (12)

where δi,n, i = 1, 2, 3 are defined by

δi,n :=
1
n

log
[
e(n + 1)2|Xi | ×

{
1 + (n + 1)|X1| + (n + 1)|X2|

}]
, for i = 1, 2,

δ3,n :=
1
n

log
[
15n(R1 + R2)×

{
1 + (n + 1)|X1| + (n + 1)|X2|

}]
.

Note that, for i = 1, 2, 3, δi,n → 0 as n→ ∞.

Detail of the proof of Theorem 1 will be explained in Section 5.
The functions E(Ri|pXi ) and F(RA, R1, R2|pZK1K2) take positive values if (RA, R1, R2) belongs

to the set

R(in)
Sys (pX1X2 , pZK1K2) := {R1 > H(X1)} ∩ {R2 > H(X2)}

⋂
i=1,2,3

Rc
i (pZKi ).

Thus, by Theorem 1, under (RA, R1, R2) ∈ R
(in)
Sys (pX1X2 , pZK1K2), we have the following:

• On the reliability, for i = 1, 2, pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
) goes to zero exponentially as n tends to infinity,

and its exponent is lower bounded by the function E(Ri|pXi ).
• On the security, for any ϕA satisfying ϕ

(n)
A ∈ F (n)

A (RA), the information leakage

∆(n)(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) on Xn
1 , Xn

2 goes to zero exponentially as n tends to infinity,
and its exponent is lower bounded by the function Fmin(RA, R1, R2|pZK1K2).

• For each i = 1, 2, any code (φ
(n)
i , ψ

(n)
i ) that attains the exponent function E(Ri|pXi ) is a universal

code that depends only on Ri not on the value of the distribution pXi .

Define

D(in)
Sys (pX1X1 , pZK1K2) := {(RA, R1, R2, E(R1|pX1), E(R2|pX2), Fmin(RA, R1, R2|pK1K2)) :

(R1, R2) ∈ R
(in)
Sys (pX1X2 , pZK1K2)}.

From Theorem 1, we obtain the following corollary:

Corollary 1.

R(in)
Sys (pX1X1 , pZK1K2) ⊆ RSys(pX1X1 , pZK1K2),

D(in)
Sys (pX1X1 , pZK1K2) ⊆ DSys(pX1X1 , pZK1K2).

Remark 1. Note that, from the definitions of sets P(pZKi ), Ri(pZKi ), it is easy to see that the set

R(in)
Sys (pX1X1 , pZK1K2) is the intersection of the outer regions of all possible adversarial encoding of A (where

each encoding is represented by one auxiliary variable U) within rate RA. Moreover, since we use the strong
converse theorem developed in [11] instead of the weak converse, we can guarantee that inR(in)

Sys (pX1X1 , pZK1K2),
not only the adversarial decoding success probability, but also the information leakage decays to zero at an
exponential rate.

Remark 2. Thanks to the separation between reliability and security analysis, the results related security in this
paper will still hold even in the case where the sources are correlated. Moreover, our proposed countermeasure
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can strengthen the secrecy even in the case where the marginal distribution of each key Ki, i.e., pKi , (i = 1, 2)
is not uniform.

4.1. Examples of Extremal Cases

In the remaining part of this section, we give two simple examples of R(in)
Sys (pX1X1 , pZK1K2).

Those correspond to extremal cases on the correlation of (K1, K2, Z). In those two examples, we assume
that X1 = X2 = {0, 1} and pX1(1) = s1, pX2(1) = s2. We further assume that pK1,K2 has the binary
symmetric distribution given by

pK1K2(k1, k2) = (1/2)
[
ρ̄k1 ⊕ k2 + ρk1 ⊕ k2

]
for (k1, k2) ∈ {0, 1}2,

where ρ ∈ [0, 0.5] is a parameter indicating the correlation level of (K1, K2).

Example 1. We consider the case where W = pZ|K1K2
is given by

W(z|k1, k2) = W(z|k1) = ρAk1 ⊕ z + ρAk1 ⊕ z for (k1, k2, z) ∈ {0, 1}3.

In this case, we have K2 ↔ K1 ↔ Z. This corresponds to the case where the adversary A attacks only node
L1. Let NA be a binary random variable with pNA(1) = ρA. We assume that NA is independent from (X1, X2)

and (K1, K2). Using NA, Z can be written as Z = K1 ⊕ NA. The inner bound for this example denoted
byR(in)

Sys,ex1(pX1X2 , pZK1K2) is the following:

R(in)
Sys,ex1(pX1X2 , pZK1K2) = {(RA, R1, R2) :0 ≤ RA ≤ log 2− h(θ),

h(s1) < R1 < h(ρA ∗ θ),

h(s2) < R2 < h ((ρ ∗ ρA) ∗ θ) ,

R1 + R2 < h(ρ) + h(ρA ∗ θ) for some θ ∈ [0, 1]}, (13)

where h(·) denotes the binary entropy function and a ∗ b := ab̄ + āb.

One can easily computeR(in)
Sys,ex1(pX1X2 , pZK1K2) based on the solution for the problem of lossless

source coding with helper, which is explained in [24]. The computation of R(in)
Sys,ex1(pX1X2 , pZK1K2)

is given in Appendix A.

Example 2. We consider the case of ρ = 0.5. In this case, K1 and K2 is independent. In this case, we have
no information leakage if RA = 0. We assume that W = pZ|K1K2

is given by

W(z|k1, k2) = ρAk1 ⊕ k2 ⊕ z + ρAk1 ⊕ k2 ⊕ z for (k1, k2, z) ∈ {0, 1}3.

Let NA be the same random variable as the previous example. Using NA, Z can be written as Z = K1⊕K2⊕NA.
The inner bound in this example denoted byR(in)

Sys,ex2(pX1X2 , pZK1K2) is the following:

R(in)
Sys,ex2(pX1X2 , pZK1K2) = {(RA, R1, R2) : 0 ≤ RA ≤ log 2− h(θ),

h(si) < Ri < log 2, i = 1, 2,

R1 + R2 < log 2 + h(ρA ∗ θ) for some θ ∈ [0, 1]}. (14)

Similar to Example 1, one can also easily compute R(in)
Sys,ex2(pX1X2 , pZK1K2) based on the

solution for the problem of lossless source coding with helper, which is explained in [24].
Computation ofR(in)

Sys,ex2(pX1X2 , pZK1K2) is given in Appendix B.
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For the above two examples, we show the section of the regionsR(in)
Sys,exi(pX1X2 , pZK1K2) for i = 1, 2

by the plane {RA = log 2− h(θ)}, which is shown in Figure 5.

Figure 5. Shape of the regionsR(in)
Sys,exi(pX1X2 , pZK1K2 ) ∩{RA = 1− h(θ)},i =, 1, 2.

5. Proofs of the Main Results

In this section, we prove Theorem 1.

5.1. Types of Sequences and Their Properties

In this subsection, we prepare basic results on the types. Those results are basic tools for our
analysis of several bounds related to error provability of decoding or security.

Definition 5. For each i = 1, 2 and for any n-sequence xn
i = xi,1xi,2 · · · xi,n ∈ X n, n(xi|xn

i ) denotes
the number of t such that xi,t = xi. The relative frequency

{
n(xi|xn

i )/n
}

xi∈Xi
of the components of xn

i is called
the type of xn

1 denoted by Pxn . The set that consists of all the types on X is denoted by Pn(X ). Let Xi denote
an arbitrary random variable whose distribution PXi

belongs to Pn(Xi). For pXi
∈ Pn(Xi), set

Tn
Xi

:=
{

xn
i : Pxn

i
= pXi

}
.

For set of types and joint types, the following lemma holds. For the detail of the proof, see Csiszár
and Körner [25].

Lemma 1.

(a) |Pn(Xi)| ≤ (n + 1)|Xi |.
(b) For PXi

∈ Pn(Xi),

(n + 1)−|Xi |enH(Xi) ≤ |Tn
Xi
| ≤ enH(Xi).

(c) For xn
i ∈ Tn

Xi
,

pn
Xi
(xn

i ) = e−n[H(Xi)+D(pXi
||pXi

)].

By Lemma 1 parts (b) and (c), we immediately obtain the following lemma:

Lemma 2. For pXi
∈ Pn(Xi),

pn
Xi
(Tn

Xi
) ≤ e−nD(pXi

||pXi
).

5.2. Upper Bounds on Reliability and Security

In this subsection, we evaluate upper bounds of pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
), i = 1, 2,

and ∆n(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pZK1 K2Un). For pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
), we derive an upper bound that
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can be characterized with a quantity depending on (φ
(n)
i , ψ

(n)
i ) and type Pxn

i
of sequences xn

i ∈ X n
i . We

first evaluate pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
), i = 1, 2. For xn

i ∈ X n
i and pX ∈ Pn(Xi), we define the following functions:

Ξxn
i
(φ

(n)
i , ψ

(n)
i ) :=

 1 if ψ
(n)
i
(
φ
(n)
i (xn

i )
)
6= xn

i ,

0 otherwise,

ΞXi
(φ(n), ψ(n)) :=

1
|Tn

Xi
| ∑

xn
i ∈Tn

Xi

Ξxn
i
(φ

(n)
i , ψ

(n)
i ).

Then, we have the following lemma.

Lemma 3. In the proposed system, for i = 1, 2 and for any pair of (φ(n)
i , ψ

(n)
i ), we have

pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
) ≤ ∑

pXi
∈Pn(Xi)

ΞX(φ
(n)
i , ψ

(n)
i )e−nD(pXi

||pXi
). (15)

Proof of this lemma is found in [26]. We omit the proof.
We next discuss upper bounds of

∆n(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) = I(C̃m1
1 C̃m2

2 , M(n)
A ; Xn

1 Xn
2 ).

On an upper bound of I(C̃m1
1 C̃m2

2 , M(n)
A ; Xn

1 Xn
2 ), we have the following lemma:

Lemma 4.

I(C̃m1
1 C̃m2

2 , M(n)
A ; Xn

1 Xn
2 ) ≤D

(
p

K
m1
1 Km2

2 |M
(n)
A

∣∣∣∣∣∣∣∣ pV
m1
1 Vm2

2

∣∣∣∣ p
M(n)
A

)
, (16)

where pV
m1
1 Vm2

2
represents the uniform distribution over Xm1

1 × X
m2
2 .

We can prove Lemma 4 using a similar method shown in [4]. The detailed proof is given
in Appendix C.

5.3. Random Coding Arguments

We construct a pair of affine encoders (ϕ
(n)
1 , ϕ

(n)
2 ) using the random coding method. For the two

decoders ψ
(n)
i , i = 1, 2, we propose the minimum entropy decoder used in Csiszár [8] and Oohama

and Han [27].
Random Construction of Affine Encoders: For each i = 1, 2, we first choose mi such that

mi :=
⌊

nRi
log |Xi|

⌋
,

where bac stands for the integer part of a. It is obvious that, for i = 1, 2,

Ri −
1
n
≤ mi

n
log |Xi| ≤ Ri.

By the Definition (2) of φ
(n)
i , we have that, for xn

i ∈ X n
i ,

φ
(n)
i (xn

i ) = xn
i Ai,
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where Ai is a matrix with n rows and mi columns. By the definition (2) of ϕ
(n)
i , we have that,

for kn
i ∈ X n

i ,

ϕ
(n)
i (kn

i ) = kn
i Ai + bmi

i ,

where for each i = 1, 2, bmi
i is a vector with mi columns. Entries of Ai and bmi

i are from the field of Xi.
Those entries are selected at random, independently from each other and with uniform distribution.
Randomly constructed linear encoder φ

(n)
i and affine encoder ϕ

(n)
i have three properties shown

in the following lemma.

Lemma 5 (Properties of Linear/Affine Encoders). For each i = 1, 2, we have the following:

(a) For any xn
i , vn

i ∈ X n
i with xn

i 6= vn
i , we have

Pr[φ(n)
i (xn

i ) = φ
(n)
i (vn

i )] = Pr[(xn
i 	 vn

i )A = 0mi ] = |X |−mi . (17)

(b) For any sn
i ∈ X n

i , and for any s̃mi
i ∈ X

mi , we have

Pr[ϕ(n)
i (sn

i ) = s̃mi
i ] = Pr[sn Ai ⊕ bmi

i = s̃mi
i ] = |Xi|−mi . (18)

(c) For any sn
i , tn

i ∈ X n
i with sn

i 6= tn
i , and for any s̃mi

i ∈ X
mi
i , we have

Pr[ϕ(n)
i (sn

i ) = ϕ
(n)
i (tn

i ) = s̃mi
i ] = Pr[sn

i Ai ⊕ bmi
i = tn

i Ai ⊕ bmi
i = s̃mi

i ] = |Xi|−2mi . (19)

Proof of this lemma is found in [26]. We omit the proof.
We next define the decoder function ψ

(n)
i : Xmi

i → X n
i , i = 1, 2. To this end, we define

the following quantities.

Definition 6. For xn
i ∈ X n

i , we denote the entropy calculated from the type Pxn
i

by H(xn
i ). In other words,

for a type PXi
∈ Pn(Xi) such that PXi

= Pxn
i
, we define H(xn

i ) = H(Xi).

Minimum Entropy Decoder: For each i = 1, 2, and for φ
(n)
i (xn

i ) = x̃mi
i , we define the decoder function

ψ
(n)
i : Xmi

i → X
n
i as follows:

ψ
(n)
i (x̃mi

i ) :=


x̂n

i if φ
(n)
i (x̂n

i ) = x̃mi
i and H(x̂n

i ) < H(x̌n
i )

for all x̌n
i such that φ

(n)
i (x̌n

i ) = x̃mi
i , and x̌n

i 6= x̂n
i ,

arbitrary if there is no such x̂n
i ∈ X n

i .

Error Probability Bound: In the following arguments, we let expectations based on the random choice

of the affine encoders ϕ
(n)
i i = 1, 2 be denoted by E[·]. For, i = 1, 2, define

ΠXi
(Ri) := e−n[Ri−H(Xi)]

+
.

Then, we have the following lemma.

Lemma 6. For each i = 1, 2, for any n and for any PXi
∈ Pn(Xi),

E
[
ΞXi

(φ
(n)
i , ψ

(n)
i )

]
≤ e(n + 1)|Xi |ΠX(Ri).

Proof of this lemma is found in [26]. We omit the proof.
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Estimation of Approximation Error: Define

Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

)

:= ∑
(a,kn

1 ,kn
2 )

∈M(n)
A ×X

n
1 ×X

n
2

p
M(n)
A Kn(a, kn

1 , kn
2)× log

[
1 + (enR1 − 1)p

Kn
1 |M

(n)
A
(kn

1 |a) + (enR2 − 1)p
Kn

2 |M
(n)
A
(kn

2 |a)

+(enR1 − 1)(enR2 − 1)p
Kn

1 Kn
2 |M

(n)
A
(kn

1 , kn
2 |a)

]
.

Then, we have the following lemma.

Lemma 7. For i = 1, 2 and for any n, mi satisfying (mi/n) log |Xi| ≤ Ri, we have

E
[

D
(

p
K̃m1 K̃m2 |M(n)

A

∣∣∣∣∣∣∣∣ pV
m1
1 Vm2

2

∣∣∣∣ p
M(n)
A

)]
≤ Θ(R1, R2, ϕ

(n)
A |p

n
ZK1K2

). (20)

Proof of this lemma is given in Appendix D. From the bound (20) in Lemma (7), we know
that the quantity Θ(R1, R2, ϕ

(n)
A |p

n
ZK1K2

) serves as an upper bound of the ensemble average
of the conditional divergence D(p

K̃
m1
1 K̃m2

2 |M
(n)
A
||pV

m1
1 Vm2

2
|p

M(n)
A
).

From Lemmas 4 and 7, we have the following corollary.

Corollary 2.

E
[
∆n(ϕ

(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

)
]
≤ Θ(R1, R2, ϕ

(n)
A |p

n
ZK1K2

).

Existence of Good Code {(ϕ
(n)
i , ψ

(n)
i )}i=1,2:

From Lemma 6 and Corollary 2, we have the following lemma stating an existence of universal
code {(ϕ

(n)
i , ψ

(n)
i )}i=1,2.

Lemma 8. There exists at least one deterministic code {(ϕ
(n)
i , ψ

(n)
i )}i=1,2 satisfying (mi/n) log |Xi| ≤ Ri, i = 1, 2,

such that, for i = 1, 2 and for any pXi
∈ Pn(Xi),

ΞXi
(φ

(n)
i , ψ

(n)
i ) ≤ e(n + 1)|Xi | × {1 + (n + 1)|X1| + (n + 1)|X2|}ΠXi

(Ri).

Furthermore, for any ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆n(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) ≤ {1 + (n + 1)|X1| + (n + 1)|X2|}Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

).

Basically, we can prove Lemma 8 in the same way as to prove a similar lemma shown in [4].
The detailed proof is given in Appendix E.

Proposition 1. For any RA, R1, R2 > 0, and any pZK1K2 , there exist two sequences of mappings

{(ϕ
(n)
i , ψ

(n)
i )}∞

n=1, i = 1, 2 such that, for i = 1, 2 and for any pXi ∈ P(Xi), we have

1
n

log |Xmi
i | =

mi
n

log |Xi| ≤ Ri,

pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
) ≤ e(n + 1)2|Xi | × {1 + (n + 1)|X1| + (n + 1)|X2|}e−nE(Ri |pXi

) (21)
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and, for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) ≤ {1 + (n + 1)|X1| + (n + 1)|X2|} ×Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

). (22)

Proof. By Lemma 8, there exists (ϕ
(n)
i , ψ

(n)
i ), i = 1, 2, satisfying (mi/n) log |Xi| ≤ Ri, such that

for i = 1, 2 and for any pXi
∈ Pn(Xi),

ΞXi
(φ

(n)
i , ψ

(n)
i ) ≤ e(n + 1)|Xi | × {1 + (n + 1)|X1| + (n + 1)|X2|}ΠX(Ri). (23)

Furthermore, for any ϕ
(n)
A ∈ F

(n)
A (RA),

∆n(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

) ≤ {1 + (n + 1)|X1| + (n + 1)|X2|} ×Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

). (24)

The bound (22) in Proposition 1 has already been proved in (24). Hence, it suffices to prove
the bound (21) in Proposition 1 to complete the proof. On an upper bound of pe(φ

(n)
i , ψ

(n)
i |p

n
Xi
), i = 1, 2,

we have the following chain of inequalities:

pe(φ
(n)
i , ψ

(n)
i |p

n
Xi
)
(a)
≤ e(n + 1)|Xi | × {1 + (n + 1)|X1| + (n + 1)|X2|} × ∑

pXi
∈Pn(Xi)

ΠXi
(Ri)e

−nD(pXi
||pXi

)

≤ e(n + 1)|Xi |{(n + 1)|Xi | + 1}|Pn(Xi)|e−nE(Ri |pXi
)

(b)
≤ e(n + 1)2|Xi |{1 + (n + 1)|X1| + (n + 1)|X2|} × e−nE(Ri |pXi

).

Step (a) follows from Lemma 3 and (23). Step (b) follows from Lemma 1 part (a).

5.4. Explicit Upper Bound of Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

)

In this subsection, we derive an explicit upper bound of Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

), which holds

for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA). Define

℘0 := p
M(n)
A ZnKn

1 Kn
2



R1 ≥
1
n

log
1

p
Kn

1 |M
(n)
A
(Kn

1 |M
(n)
A )
− η or

R2 ≥
1
n

log
1

p
Kn

2 |M
(n)
A
(Kn

2 |M
(n)
A )
− η2 or

R1 + R2 ≥
1
n

log
1

p
Kn

1 Kn
2 |M

(n)
A
(Kn

1 , Kn
2 |M

(n)
A )
− η3


.

For i = 1, 2, define

℘i := p
M(n)
A ZnKn

i

{
Ri ≥

1
n

log
1

p
Kn

i |M
(n)
A
(Kn

i |M
(n)
A )
− ηi

 .

Furthermore, define

℘3 := p
M(n)
A ZnKn

1 Kn
2

{
R1 + R2 ≥

1
n

log
1

p
Kn

1 Kn
2 |M

(n)
A
(Kn

1 , Kn
2 |M

(n)
A )
− η3

 .
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By definition, it is obvious that

℘0 ≤
3

∑
i=1

℘i. (25)

We have the following lemma.

Lemma 9. For any ηi > 0, i = 1, 2, 3 and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F (n)

A (RA),
we have the following:

Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

) ≤ n(R1 + R2)℘0 +
3

∑
i=1

e−nηi (26)

≤ n(R1 + R2)

[
3

∑
i=1

℘i

]
+

3

∑
i=1

e−nηi . (27)

Specifically, if n ≥ [R1 + R2]
−1, we have

(n[R1 + R2])
−1Θ(R1, R2, ϕ

(n)
A |p

n
ZK1K2

) ≤
3

∑
i=1

(℘i + e−nηi ). (28)

Proof. By (25), it suffices to show (26) to prove Lemma 9. We set

AR1,R2(K
n
1 , Kn

2 |M
(n)
A ) := (enR1 − 1)p

Kn
1 |M

(n)
A
(Kn

1 |M
(n)
A ) + (enR2 − 1)p

Kn
2 |M

(n)
A
(Kn

2 |M
(n)
A )

+ (enR1 − 1)(enR2 − 1)p
Kn

1 Kn
2 |M

(n)
A
(Kn

1 , Kn
2 |M

(n)
A ).

Then, we have

Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

) = E
[
log
{

1 + AR1,R2(K
n
1 , Kn

2 |M
(n)
A )

}]
. (29)

We further observe the following:

R1 <
1
n

log
1

p
K1Kn

2 |M
(n)
A
(Kn|M(n)

A )
− η1

R2 <
1
n

log
1

p
K1Kn

2 |M
(n)
A
(Kn|M(n)

A )
− η2

R1 + R2 <
1
n

log
1

p
K1Kn

2 |M
(n)
A
(Kn|M(n)

A )
− η3

⇒ AR1,R2(K
n
1 , Kn

2 |M
(n)
A ) <

3

∑
i=1

e−nηi

(a)⇒ log
{

1 + AR1,R2(K
n
1 , Kn

2 |M
(n)
A )

}
≤

3

∑
i=1

e−nηi . (30)

Step (a) follows from log(1 + a) ≤ a. We also note that

log
{

1 + (enR1 − 1)p
Kn

1 |M
(n)
A
(Kn

1 |M
(n)
A ) + (enR2 − 1)p

Kn
2 |M

(n)
A
(Kn

2 |M
(n)
A )

+ (enR1 − 1)(enR2 − 1)× p
Kn

1 Kn
2 |M

(n)
A
(Kn

1 , Kn
2 |M

(n)
A )

}
≤ log[enR1enR2 ] = n(R1 + R2). (31)

From (29)–(31), we have the bound (26).

On upper bound of ℘i, i = 1, 2, 3, we have the following lemma:
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Lemma 10. For any η > 0 and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have that

for each i = 1, 2, we have ℘i ≤ ℘̃i, where

℘̃i := p
M(n)
A ZnKn

i



0 ≥ 1
n log

q̂
i,M(n)
A ZnKn

i
(M(n)
A ,Zn ,Kn

i )

p
M(n)
A ZnKn

(M(n)
A ,Zn ,Kn

i )
− ηi, (a)

0 ≥ 1
n log Qi,Zn (Zn)

pZn (Zn)
− ηi, (b)

RA ≥
1
n

log
Q

i,Zn |M(n)
A
(Zn|M(n)

A )

pZn(Zn)
− ηi, (c)

Ri ≥
1
n

log
1

Q(n)
i,Kn

i |MA
(Kn

i |M
(n)
A )
− ηi



+ 3e−nηi (32)

and that for i = 3, we have ℘3 ≤ ℘̃3, where

℘̃3 := p
M(n)
A ZnKn

1 Kn
2



0 ≥ 1
n log

q̂
3,M(n)
A ZnKn

1 Kn
2
(M(n)
A ,Zn ,Kn

1 ,Kn
2 )

p
M(n)
A ZnKn

1 Kn
2
(M(n)
A ,Zn ,Kn

1 Kn
2 )
− η3, (a)

0 ≥ 1
n log Q3,Zn (Zn)

pZn (Zn)
− η3, (b)

RA ≥ 1
n log

Q̃
3,Zn |M(n)

A
(Zn |M(n)

A )

pZn (Zn)
− η3, (c)

R1 + R2 ≥ 1
n log 1

p
Kn

1 Kn
2 |M

(n)
A

(Kn
1 ,Kn

2 |M
(n)
A )
− η3


+ 3e−nη3 . (33)

The probability distributions appearing in the three inequalities (a), (b), and (c) in the right members
of (32) have a property that we can select them arbitrary. In (a), we can choose any probability distribution
q̂

i,M(n)
A ZnKn

i
onM(n)

A ×Z
n ×X n

i . In (b), we can choose any distribution Qi,Zn on Zn. In (c), we can choose any

stochastic matrix Q̃
i,Zn |M(n)

A
: M(n)

A → Z
n. The probability distributions appearing in the three inequalities (a),

(b), and (c) in the right members of (33) have a property that we can select them arbitrary. In (a), we can choose
any probability distribution q̂

3,M(n)
A ZnKn

1 Kn
2

onM(n)
A ×Z

n ×X n
1 ×X n

2 . In (b), we can choose any distribution

Q3,Zn on Zn. In (c), we can choose any stochastic matrix Q̃
3,Zn |M(n)

A
:M(n)

A → Z
n.

The above lemma is the same as Lemma 10 in the previous work [26]. Since the proof of the lemma
is in [26], we omit the proof of Lemma 10 in the present paper. We have the following proposition.

Proposition 2. For any ϕ
(n)
A ∈ F

(n)
A (RA) and any n ≥ [R1 + R2]

−1, we have

(n[R1 + R2])
−1Θ(R1, R2, ϕ

(n)
A |p

n
ZK1K2

) ≤ 15e−nFmin(RA ,R1,R2|pZK1K2 ). (34)

Proof: By Lemmas 9 and 10, we have for any

(n[R1 + R2])
−1Θ(R1, R2, ϕ

(n)
A |p

n
ZK1K2

) ≤
3

∑
i=1

(℘̃i + e−nηi ). (35)

The quantity ℘̃i + e−nηi , i = 1, 2, 3. is the same as the upper bound on the correct probability
of decoding for one helper source coding problem in Lemma 1 in Oohama [11] (extended version).
In a manner similar to the derivation of the exponential upper bound of the correct probability



Entropy 2019, 21, 781 19 of 30

of decoding for one helper source coding problem, we can prove that, for any ϕ
(n)
A ∈ F

(n)
A (RA), there

exist η∗i , i = 1, 2, 3 such that for i = 1, 2, 3, we have

℘̃i + e−nη∗i ≤ 5e−nF(RA ,Ri |pZKi
). (36)

From (35) and (36), we have that for any ϕ
(n)
A ∈ F

(n)
A (RA) and any n ≥ [R1 + R2]

−1,

(n[R1 + R2])
−1Θ(R1, R2, ϕ

(n)
A |p

n
ZK1K2

) ≤ 5
3

∑
i=1

e−nF(RA ,Ri |pZKi
) ≤ 15e−nFmin(RA ,R1,R2|pZK1K2 ),

completing the proof.

6. Alternative Formulation

Here, we show an alternative way to formulate the main problem we consider in this paper.
Originally, we consider a problem of having a reliable and secure broadcasting communication
in the presence of a side-channel adversary in the case where the sender uses one-time-pad encryption.
We can also formulate it in a slightly more general way as follows.

Let consider a problem of having a reliable and secure broadcasting communication in the presence
of a side-channel adversary, in the case that the sender uses the encoding scheme Φ(n)

i at node Li,

where Φ(n)
i encodes X(n)

i and K(n)
i into C̃(mi)

i for i = 1, 2. We denote the system resulted from
the alternative formulation as AltSys. We illustrate AltSys in Figure 6.

Figure 6. Broadcasting system AltSys from alternative formulation.

6.1. Explanation on Sys and AltSys and Their Comparison

First, recall the “communication” channel W which is present in both systems, Sys and AltSys.
The channel W represents the process of transforming analog raw physical data from the side-channel
into raw digital data which later can be processed further by the side-channel adversary A.

In the broadcasting encryption system with post-encryption coding Sys shown in Figure 3, the main
problem we consider to solve is how to strengthen the secrecy on broadcasting encrypted sources
against side-channel adversary A, where the encryption function is one-time-pad encryption. In
Sys, since the encryption has been explicitly described as one-time-pad encryption in the beginning,
we always treat W as an immediate consequence of the side-channel attacks launched on one-time-pad
encryption processes.

In the broadcasting system AltSys from our alternative formulation, shown in Figure 6, the problem
we consider here is slightly different to the one in Sys. In AltSys, the problem we consider to solve
is whether we can find or construct good encoding schemes that can guarantee the reliability
and security against side-channel adversary A. In AltSys, we can have the properties of W fixed
first, and then we will find good encoding schemes under the condition of the properties of W.
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6.2. Reliability and Security of Alternative Formulation

We can also define the reliability and security of AltSys as follows in the same manner as the ones
shown in Section 2.2.
Defining Reliability and Security: From the description of AltSys shown in Figure 6, the decoding process
is successful if X̂n

i = Xn
i holds. The decoding error probabilities pe,i, i = 1, 2, are defined as follows:

pe,i =pe(Φ
(n)
i , Ψ(n)

i |p
n
Xi

, pn
Ki
) := Pr[Ψ(n)

i (Φ(n)
i (Xn

i , Kn
i )) 6= Xn

i ].

Recall that Xi and Ki are assumed to be independent. Let us set M(n)
A = ϕ

(n)
A (Zn). The information

leakage ∆(n) on (Xn
1 , Xn

2 ) from (C̃m1
1 , C̃m2

2 , M(n)
A ) is measured by the mutual information between

(Xn
1 , Xn

2 ) and (C̃m1
1 , C̃m2

2 , M(n)
A ). We can formally define this quantity by

∆(n) = ∆(n)(Φ(n)
1 , Φ(n)

2 , ϕ
(n)
A |p

n
X1X2

, pn
ZK1K2

) := I(Xn
1 Xn

2 ; C̃m2
1 , C̃m2

2 , M(n)
A ).

Definition 7. A pair (R1, R2) is achievable under RA > 0 for the system AltSys if there exists two sequences
{(Φ(n)

i , Ψ(n)
i )}n≥1, i = 1, 2, such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0, we have for i = 1, 2,

1
n

log |Xmi
i | =

mi
n

log |Xi| ≤ Ri, pe(Φ
(n)
i , Ψ(n)

i |p
n
Xi

, pn
Ki
) ≤ ε,

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(Φ(n)
1 , Φ(n)

2 , ϕ
(n)
A |p

n
X1X2

, pn
ZK1K2

) ≤ ε.

Definition 8 (Reliable and Secure Rate Region). LetRAltSys(pX1X2 , pZK1K2) denote the set of all (RA, R)
such that R is achievable under RA. We callRAltSys(pX1X2 , pZK1K2) the reliable and secure rate region.

Definition 9. A five tuple (R1, R2, E1, E2, F) is achievable under RA > 0 for the system AltSys if there exists
a sequence {(Φ(n)

i , Ψ(n)
i )}n≥1, i = 1, 2, such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0, we have for i = 1, 2,

1
n

log |Xmi
i | =

mi
n

log |Xi| ≤ Ri, pe(Φ
(n)
i , Ψ(n)

i |p
n
Xi

, pn
Ki
) ≤ e−n(Ei−ε),

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(Φ(n)
1 , Φ(n)

2 , ϕ
(n)
A |p

n
X1X2

, pn
ZK1K2

) ≤ e−n(F−ε).

Definition 10 (Rate, Reliability, and Security Region). LetDAltSys(pX1X2 , pK1K2 , W) denote the set of all
(RA, R, E, F) such that (R1, R2, E1, E2, F) is achievable under RA. We call DAltSys(pX1X2 , pK1K2 , W) the rate,
reliability, and security region.

Theoretical Results on the Reliable and Security for Broadcasting System from Alternative Formulation:
In order to provide solution for the problem from our alternative formulation, it is sufficient
to show the existence of encoders and decoders {(Φ(n)

i , Ψ(n)
i )}, i = 1, 2 which can guarantee reliable

and security in the presence of a side-channel adversary. Based on the approach and theoretical
results shown in Section 4 on proving the reliability and security of the broadcast system where
the sender sends encrypted sources using one-time-pad encryption, it is easy to see that we can achieve
the reliability and security for the broadcasting system from alternative formulation of the problem
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(Figure 6) such that the decoding error probabilities pe,i (i = 1, 2) and the information leakage ∆(n)

decay into zero in exponential rates by specifying Φ(n)
i and Ψ(n)

i , i = 1, 2, as follows:

Φ(n)
i (Xn

i , Kn
i ) := ϕ

(n)
i (EncOTP

(n)
i (Xn

i , Kn
i )) for i = 1, 2,

Ψ(n)
i (C̃mi

i , Kn
i ) := ψ

(n)
i (DecOTP

(n)
i (C̃mi

i , ϕ
(n)
i (Kn

i ))) for i = 1, 2,
(37)

where:

• EncOTP
(n)
i : X n

i × X n
i → X n

i is the one-time-pad encryption function defined

as EncOTP(n)
i (a, b) := a⊕ b for (a, b) ∈ X n

i ×X n
i ,

• ϕ
(n)
i : X n

i → X
mi
i is an affine encoder constructed based on a linear encoder φ

(n)
i : X n

i → X
mi
i

as shown in Section 5.3,
• DecOTP

(n)
i : Xmi

i × Xmi
i → Xmi

i is the one-time-pad decryption function defined

as DecOTP(n)
i (a, b) := a	 b for (a, b) ∈ Xmi

i ×X
mi
i ,

• ψ
(n)
i : Xmi

i → X
n
i is a decoder function for linear encoder φ

(n)
i which is associated with the affine

encoder ϕ
(n)
i . (See Section 5.3 for the detailed construction.).

It is easy to see that Theorem 1 actually shows the achievability of reliability and security
for broadcasting system in the presence of a side-channel adversary with the specification of Φ(n)

i

and Ψ(n)
i , i = 1, 2 stated in Equation (37). Hence, the following theorem automatically holds.

Theorem 2. For any RA, R1, R2 > 0 and any pZK1K2 , there exist two sequences of mappings

{(Φ(n)
i , Ψ(n)

i )}∞
n=1, i = 1, 2 such that for any pXi and pKi for i = 1, 2, and any n ≥ (R1 + R2)

−1, we have
1
n

log |Xmi
i | =

mi
n

log |Xi| ≤ Ri,

pe(Φ
(n)
i , Ψ(n)

i |p
n
Xi

, pn
Ki
) ≤ e−n[E(Ri |pXi

)−δi,n ], i = 1, 2 (38)

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(Φ(n)
1 , Φ(n)

2 , ϕ
(n)
A |p

n
X1X2

, pn
K1K2

, Wn) ≤ e−n[Fmin(RA ,R1,R2|pZK1K2 )−δ3,n ], (39)

where δi,n, i = 1, 2, 3 are defined by

δi,n :=
1
n

log
[
e(n + 1)2|Xi | ×

{
1 + (n + 1)|X1| + (n + 1)|X2|

}]
, for i = 1, 2,

δ3,n :=
1
n

log
[
15n(R1 + R2)×

{
1 + (n + 1)|X1| + (n + 1)|X2|

}]
.

Note that, for i = 1, 2, 3, δi,n → 0 as n→ ∞.

It is easy to see that the proof of Theorem 1 that has been explained in Section 5 is also the proof
of Theorem 2. Note that the functions E(Ri|pXi ) and F(RA, R1, R2|pZK1K2) take positive values
if (RA, R1, R2) belongs to the set

R(in)
AltSys(pX1X2 , pZK1K2) := {R1 > H(X1)} ∩ {R2 > H(X2)}

⋂
i=1,2,3

Rc
i (pZKi ).

Then, define the following:

D(in)
AltSys(pX1X1 , pZK1K2) := {(RA, R1, R2, E(R1|pX1), E(R2|pX2), Fmin(RA, R1, R2|pK1K2)) :

(R1, R2) ∈ R
(in)
Sys (pX1X2 , pZK1K2)}.
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Hence, we have the following corollary.

Corollary 3.

R(in)
AltSys(pX1X1 , pZK1K2) ⊆ RAltSys(pX1X1 , pZK1K2),

D(in)
AltSys(pX1X1 , pZK1K2) ⊆ DAltSys(pX1X1 , pZK1K2).

7. Comparison to Previous Results

The following Table 1 shows the comparison between our result in this paper and already existing
published research results which use the PEC paradigm for amplifying secrecy of the system.

Table 1. Comparison of research on application of PEC for secrecy amplification.

Network System Side-Channel Adversary Correlated Keys

Previous work 1 [5,6] Distributed Encryption
(2 senders, 2 receivers)

No Yes

Previous work 2 [4,7] Two Terminals
(1 sender, 1 receiver)

Yes No

This paper Broadcast Encryption
(1 sender, 2 receivers)

Yes Yes

8. Discussion on the Outer-Bounds of Rate Regions and Open Problems

In this paper, we have shown the inner-bound of RSys (resp. RAltSys). Although we have not
touched the issue on the outer-bound of RSys (resp. RAltSys) in this paper, one may find the hints
to derive the outer-bounds in Yamamoto [28]. However, it should be remarked that, in this paper,
we are dealing with the side-channel adversary model, which is different from the wiretap model
in Yamamoto [28]. In order to apply the method in Yamamoto [28] to find the outer-bound of RSys

(resp. RAltSys), one may need to extend the method in Yamamoto [28] so that it can handle the rate
constraint introduced by the side-channel adversary. We left the outer-bounds of RSys and RAltSys

as open problems.
Furthermore, in contrast to the case of RSys (resp. RAltSys) where we found hints

in Yamamoto [28], we are not able to find any hints in the literature on determining the upper-bound
of DSys (resp. RAltSys). We also left the outer-bounds of DSys (resp. RAltSys) as open problems.

9. Conclusions

In this paper, we have proposed a new model for analyzing the reliability and the security
of broadcasting encrypted sources in the case of one-time-pad encryption, in the presence of an adversary
that is not only eavesdropping the public communication channel to obtain ciphertexts but is also
obtaining some physical information leaked by multiple devices owned by the sender while performing
the encryption. We have also presented a countermeasure against such an adversary by utilizing affine
encoders with certain properties. The main distinguishing feature of our countermeasure is that its
performance is independent from the characteristics or the types of physical information leaked from the
devices exploited by the adversary.
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Appendix A. Computation of R(in)
Sys,ex1(pX1X2 , pZK1K2)

In this appendix, we compute the regionR(in)
Sys,ex1(pX1X2 , pZK1K2). Since H(Xi) = h(si), i = 1, 2, we have

R(in)
Sys (pX1X2 , pZK1K2) = {R1 > h(s1)} ∩ {R2 > h(s2)}

⋂
i=1,2,3

Rc
i (pZKi ). (A1)

We computeR(pZK1),R(pZK2), andR(pZK1K2) explicitly. Then, we obtain the form of the region

R(in)
Sys,ex1(pX1X2 , pZK1K2) given by (13). We first computeR(pZKi ), i = 1, 2. Let ÑA be a binary random

variable with pÑA
(1) = ρA. We assume that ÑA is independent from Z. Let N be a binary random

variable with pN(1) = ρ. We assume that N is independent from (Z, ÑA). Using ÑA and N, Ki, i = 1, 2
can be written as

K1 = Z⊕ ÑA, K2 = Z⊕ ÑA ⊕ N = K1 ⊕ N.

Then, by Example 10.2 (p. 265 in [24]), we have

R(pZK1) = {(RA, R1) : RA ≥ log 2− h(θ), R1 ≥ h(ρA ∗ θ) for some θ ∈ [0, 1]}, (A2)

R(pZK2) = {(RA, R2) : RA ≥ log 2− h(θ), R2 ≥ h(ρ ∗ ρA ∗ θ) for some θ ∈ [0, 1]}. (A3)

We next computeR(pZK1K2). Note that

H(K1K2|U) = H(K1|U) + H(K2|K1U)
(a)
= H(K1|U) + H(K2|K1)

= H(K1|U) + H(N) = H(K1|U) + h(ρ). (A4)

Step (a) follows from U ↔ K1 ↔ K2. From (A4) and Example 10.2 (p. 265 in [24]), we have

R(pZK1K2) = {(RA, R1, R2) : RA ≥ log 2− h(θ),

R1 + R2 ≥h(ρ) + h(ρA ∗ θ) for some θ ∈ [0, 1]}. (A5)

From (A1)–(A3) and (A5), we have the form of the regionR(in)
Sys,ex1(pX1X2 , pZK1K2) given by (13).

Appendix B. Computation of R(in)
Sys,ex2(pX1X2 , pZK1K2)

In this appendix, we compute the regionR(in)
Sys,ex2(pX1X2 , pZK1K2). Since H(Xi) = h(si), i = 1, 2, we have

R(in)
Sys (pX1X2 , pZK1K2) = {R1 > h(s1)} ∩ {R2 > h(s2)}

⋂
i=1,2,3

Rc
i (pZKi ). (A6)

We computeR(pZK1),R(pZK2), andR(pZK1K2) explicitly. Then, we obtain the form of the region

R(in)
Sys,ex1(pX1X2 , pZK1K2) given by (14). We first computeR(pZKi ), i = 1, 2. We can easily verify that for

each i = 1, 2, Ki is independent from Z. Then, for each i = 1, 2, we have

R(pZKi ) = {(RA, Ri) : RA ≥ log 2− h(θ), Ri ≥ log 2 for some θ ∈ [0, 1]}. (A7)

We next computeR(pZK1K2). To this end, we prove the following lemma.
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Lemma A1. For Example 2, we have

H(K1K2|U) = H(K2) + H(K1 ⊕ K2|U) = log 2 + H(K1 ⊕ K2|U).

Proof. Note that

H(K1K2|U) = H(K1 + K2|U) + H(K2|K1 ⊕ K2, U)

= H(K1 ⊕ K2|U) + H(K2)− I(K2; K1 ⊕ K2, U). (A8)

On the upper bound of I(K2; K1 ⊕ K2, U), we have the following chain of inequalities:

I(K2; K1 ⊕ K2, U) ≤ I(K2; K1 ⊕ K2, U, Z) = I(K2; K1 ⊕ K2, Z) + I(K2; U|K1 ⊕ K2, Z)

≤ I(K2; K1 ⊕ K2, Z) + I(K1 ⊕ K2, K2; U|Z) (a)
= I(K2; N, NA) + I(K1, K2; U|Z) (b)

= 0. (A9)

Step (a) follows from K2 = K1 ⊕ N and Z = K1 ⊕ K2 ⊕ NA. Step (b) follows from U ↔ Z ↔
(K1, K2). From (A8) and (A9), we have Lemma A1.

Let N̂A be a binary random variable with pN̂A
(1) = ρA. We assume that N̂A is independent from

Z. Using N̂A, X1 ⊕ X2 can be written as

X1 ⊕ X2 = Z⊕ N̂A. (A10)

From Lemma A1, (A10), and Example 10.2 (p. 265 in [24]), we have

R(pZK1K2) = {(RA, R1, R2) : RA ≥ log 2− h(θ),

R1 + R2 ≥ log 2 + h(ρA ∗ θ) for some θ ∈ [0, 1]}. (A11)

From (A6), (A7), and (A11), we have the form of the regionR(in)
Sys,ex2(pX1X2 , pZK1K2) given by (14).

Appendix C. Proof of Lemma 4

We have the following chain of inequalities:

I(C̃m1
1 C̃m2

2 , M(n)
A ; Xn

1 Xn
2 )

(a)
= I(C̃m2

1 C̃m2
2 ; Xn

1 Xn
2 |M

(n)
A )

≤ log(|Xm1
1 ||X

m2
2 |)− H(C̃m1

1 C̃m2
2 |X

n
1 Xn

2 , M(n)
A )

(b)
= log(|Xm1

1 ||X
m2
2 |)− H(K̃m1

1 K̃m2
2 |X

n
1 Xn

2 , M(n)
A )

(c)
= log(|Xm1

1 ||X
m2
2 |)− H(K̃m1

1 K̃m2
2 |M

(n)
A )

= D
(

p
K

m1
1 Km2

2 |M
(n)
A

∣∣∣∣∣∣∣∣ pV
m1
1 Vm2

2

∣∣∣∣ p
M(n)
A

)
.

Step (a) follows from (Xn
1 , Xn

2 ) ⊥ M(n)
A . Step (b) follows from that for i = 1, 2, C̃mi

i = K̃mi
i ⊕ X̃mi

i

and X̃mi
i = φ

(n)
i (Xn

i ). Step (c) follows from (K̃m1
1 , K̃m2

2 , M(n)
A ) ⊥ (Xn

1 , Xn
2 ).

Appendix D. Proof of Lemma 7

In this appendix, we prove Lemma 7. This lemma immediately follows from the following lemma:

Lemma A2. For i = 1, 2 and for any n, mi satisfying (mi/n) log |Xi| ≤ Ri, we have



Entropy 2019, 21, 781 25 of 30

E
[

D
(

p
K̃m1 K̃m2 |M(n)

A

∣∣∣∣∣∣∣∣ pVm1 Vm2

∣∣∣∣ p
M(n)
A

)]
≤ ∑

(a,kn
1 ,kn

2 )

∈M(n)
A ×X n

1 ×X n
2

p
M(n)
A Kn (a, kn

1 , kn
2)× log

[
1 + (|Xm1

1 | − 1)p
Kn

1 |M
(n)
A
(kn

1 |a) + (|Xm2
2 | − 1)p

Kn
2 |M

(n)
A
(kn

2 |a)

+(|Xm1
1 | − 1)(|Xm2

2 | − 1)p
Kn

1 Kn
2 |M

(n)
A
(kn

1 , kn
2 |a)

]
. (A12)

In fact, from |Xmi
i | ≤ enRi and (A12) in Lemma A2, we have the bound (20) in Lemma 7. In this

appendix we prove Lemma A2. In the following arguments, we use the following simplified notations:

kn
i , Kn

i ∈ X n
i =⇒ ki, Ki ∈ Ki

k̃mi
i , K̃mi

i ∈ X
mi
i =⇒ li, Li ∈ Li

ϕ
(n)
i : X n

i → X
mi
i =⇒ ϕi : Ki → Li

ϕ
(n)
i (kn

i ) = kn
i Ai + bmi

i =⇒ ϕi(ki) = ki Ai + bi

Vmi
i ∈ X

mi
i =⇒ Vi ∈ Li

M(n)
A ∈ M

(n)
A =⇒ M ∈ M.

We define

χl′ ,l =

{
1, if l′ = l,
0, if l′ 6= l.

Then, the conditional distribution of the random pair (L1, L2) for given M = a ∈ M is

pL1L2|M(l|a) = ∑
k∈K

pK1K2|M(k1, k2|a)χϕ1(k1),l1 χϕ2(k2),l2

for (l1, l2) ∈ L1 ×L2.

Set

Υ(ϕ1(k1),l1),(ϕ2(k2),l2) := χϕ1(k1),l1 χϕ2(k2),l2 × log

|L1||L2|

 ∑
(k′1,k′2)
∈K1×K2

pK1K2|M(k′1, k′2|a)χϕ1(k′1),l1
χϕ2(k′2),l2


.

Then, the conditional divergence between pL1L2|M and pV1V2 for given M is given by

D
(

pL1L2|M

∣∣∣∣∣∣ pV1V2

∣∣∣ pM

)
= ∑

(a,k1,k2)
∈M×K1×K2

∑
(l1,l2)
∈L1×L2

pMK1K2(a, k1, k2)Υ(ϕ1(k1),l1),(ϕ2(k2),l2). (A13)

The quantity Υ(ϕ1(k1),l1),(ϕ2(k2),l2) has the following form:

Υ(ϕ1(k1),l1),(ϕ2(k2),l2) = χϕ1(k1),l1 χϕ2(k2),l2 × log

|L1||L2|

pK1K2|M(k1, k2|a)χϕ1(k1),l1 χϕ2(k2),l2

+ ∑
k′2∈{k2}c

pK1K2|M(k1, k′2|a)χϕ1(k1),l1 χϕ2(k′2),l2

+ ∑
k′1∈{k1}c

pK1K2|M(k′1, k2|a)χϕ1(k′1),l1
χϕ2(k2),l2
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+ ∑
(k′1,k′2)

∈{k1}c×{k2}c

pK1K2|M(k′1, k′2|a)χϕ1(k′1),l1
χϕ2(k′2),l2


. (A14)

The above form is useful for computing E[Υ(ϕ1(k1),l1) ,(ϕ2(k2),l2)].

Proof of Lemma A2. Taking expectation of both side of (A14) with respect to the random choice
of the entry of the matrix Ai and the vector bi representing the affine encoder ϕ, we have

E
[

D
(

pL1L2|M

∣∣∣∣∣∣ pV1V2

∣∣∣ pM

)]
= ∑

(a,k1,k2)
∈M×K1×K2

∑
(l1,l2)
∈L1×L2

pMK1K2(a, k1, k2)E
[
Υ(ϕ1(k1),l1),(ϕ2(k2),l2)

]
. (A15)

To compute the expectation E
[
Υ(ϕ1(k1),l1),(ϕ2(k2),l2)

]
, we introduce an expectation operator useful

for the computation. Let Eϕ1(k1)=lk1
,ϕ2(k2)=lk2

[·] be an expectation operator based on the conditional

probability measures Pr
(
·|ϕ1(k1) = lk1 , ϕ2(k2) = lk2

)
. Using this expectation operator, the quantity

E
[
Υ(ϕ1(k1),l1),(ϕ2(k2),l2)

]
can be written as

E
[
Υ(ϕ1(k1),l1),(ϕ2(k2),l2)

]
= ∑

(lk1 ,lk2 )
∈L1×L2

Pr
(

ϕ1(k1) = lk1
, ϕ2(k2) = lk2

)
× Eϕ1(k1)=lk1 ,ϕ2(k2)=lk2

[
Υ(lk1 ,l1),(lk2 ,l2)

]
. (A16)

Note that

Υ(lk1
,l1),(lk2

,l2) =

{
1, if ϕ1(k1) = l1, ϕ2(k2) = l2,
0, otherwise.

(A17)

From (A16) and (A17), we have

E
[
Υ(ϕ1(k1),l1),(ϕ2(k2),l2)

]
= Pr (ϕ1(k1) = l1, ϕ2(k2) = l2)× Eϕ1(k1)=l1,ϕ2(k2)=l2

[
Υ(l1,l1),(l2,l2)

]
=

1
|L1||L2|

Eϕ1(k1)=l1,ϕ2(k2)=l2

[
Υ(l1,l1),(l2,l2)

]
. (A18)

Using (A14), the expectation Eϕ1(k1)=l1,ϕ2(k2)=l2

[
Υ(l1,l1),(l2, l2)

]
can be written as

Eϕ1(k1)=l1,ϕ2(k2)=l2

[
Υ(l1,l1),(l2,l2)

]
= Eϕ1(k1)=l1,ϕ2(k2)=l2

 log

|L1||L2|

pK1K2|M(k1, k2|a)

+ ∑
k′2∈{k2}c

pK1K2|M(k1, k′2|a)χϕ2(k′2),l2

+ ∑
k′1∈{k1}c

pK1K2|M(k′1, k2|a)χϕ1(k′1),l1

+ ∑
(k′1,k′2)

∈{k1}c×{k2}c

pK1K2|M(k′1, k′2|a)χϕ1(k′1),l1
χϕ2(k′2),l2



. (A19)

Applying Jensen’s inequality to the right member of (A19), we obtain the following upper bound
of Eϕ1(k1)=l1,ϕ2( k2)=l2

[
Υ(l1,l1),(l2,l2)

]
Eϕ1(k1)=l1,ϕ2(k2)=l2

[
Υ(l1,l1),(l2,l2)

]
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≤ log

|L1||L2|

pK1K2|M(k1, k2|a) + ∑
k′2∈{k2}c

pK1K2|M(k1, k′2|a)E2 + ∑
k′1∈{k1}c

pK1K2|M(k′1, k2|a)E1

+ ∑
(k′1,k′2)

∈{k1}c×{k2}c

pK1K2|M(k′1, k′2|a)E12


, (A20)

where we set

E1 := Eϕ1(k1)=l1,ϕ2(k2)=l2

[
χϕ1(k′1),l1

]
,

E2 := Eϕ1(k1)=l1,ϕ2(k2)=l2

[
χϕ2(k′2),l2

]
,

E12 := Eϕ1(k1)=l1,ϕ2(k2)=l2

[
χϕ1(k′1),l1

χϕ2(k′2),l2

]
.

Computing E1, we have

E1 = Pr
(

ϕ1(k′1) = l1|ϕ1(k1) = l1, ϕ2(k2) = l2
) (a)
= Pr

(
ϕ1(k′1) = l1|ϕ1(k1) = l1

) (b)
=

1
|L1|

. (A21)

Step (a) follows from that the random constructions of ϕ1 and ϕ2 are independent. Step (b) follows
from Lemma 5 parts (b) and (c). In a similar manner we compute E2 to obtain

E2 =
1
|L2|

. (A22)

We further compute E12 to obtain

E12 = Pr
(

ϕ1(k′1) = l1, ϕ2(k′2) = l2 |ϕ1(k1) = l1, ϕ2(k2) = l2)
(a)
= Pr

(
ϕ1(k′1) = l1|ϕ1(k1) = l1

)
× Pr

(
ϕ2(k′2) = l2|ϕ2(k2) = l2

) (b)
=

1
|L1||L2|

. (A23)

Step (a) follows from that the random constructuions of ϕ1 and ϕ2 are independent.
Step (b) follows from Lemma 5 parts (b) and (c), From (A20)–(A23), we have

Eϕ1(k1)=l1 ,ϕ2(k2)=l2

[
Υ(l1 ,l1),(l2 ,l2)

]

≤ log

|L1||L2|

pK1K2 |M(k1, k2|a) + ∑
k′2∈{k2}c

pK1K2 |M(k1, k′2|a)
1
|L2|

+ ∑
k′1∈{k1}c

pK1K2 |M(k′1, k2|a)
1
|L1|

+ ∑
(k′1 ,k′2)

∈{k1}c×{k2}c

pK1K2 |M(k′1, k′2|a)
1

|L1||L2|




= log
{

1 + (|L1| − 1)pK1 |M(k1|a) + (|L2| − 1)pK2 |M(k2|a) + (|L1| − 1)(|L2| − 1)pK1K2 |M(k1, k2|a)
}

. (A24)

From (A15), (A18), and (A24), we have the bound (A12) in Lemma A2.
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Appendix E. Proof of Lemma 8

We have the following chain of inequalities:

E

∆n(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

)

Θ(R1, R2, ϕ
(n)
A |pn

ZK1K2
)

+ ∑
i=1,2

∑
pXi
∈Pn(Xi)

ΞXi
(φ

(n)
i , ψ

(n)
i )

e(n + 1)|Xi |ΠXi
(Ri)


=

E
[
∆n(ϕ

(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

)
]

Θ(R1, R2, ϕ
(n)
A |pn

ZK1K2
)

+ ∑
i=1,2

∑
pXi
∈Pn(Xi)

E
[
ΞXi

(φ
(n)
i , ψ

(n)
i )

]
e(n + 1)|Xi |ΠXi

(Ri)

(a)
≤ 1 + ∑

i=1,2
∑

pXi
∈Pn(Xi)

1
(b)
≤ 1 + ∑

i=1,2
(n + 1)|Xi |.

Step (a) follows from Lemma 6 and Corollary 2. Step (b) follows from Lemma 1 part (a).
Hence, there exists at least one deterministic code {(ϕ

(n)
i , ψ

(n)
i )}i=1,2 such that

∆n(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

)

Θ(R1, R2, ϕ
(n)
A |pn

ZK1K2
)

+ ∑
i=1,2

∑
pXi
∈Pn(Xi)

ΞXi
(φ

(n)
i , ψ

(n)
i )

e(n + 1)|Xi |ΠXi
(Ri)

≤ 1 + ∑
i=1,2

(n + 1)|Xi |,

from which we have that, for i = 1, 2 and for any pXi
∈ Pn(Xi),

ΞXi
(φ

(n)
i , ψ

(n)
i )

e(n + 1)|Xi |ΠXi
(Ri)

≤ 1 + ∑
j=1,2

(n + 1)|Xj |.

Furthermore, we have that, for any ϕ
(n)
A ∈ F

(n)
A (RA),

∆n(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
A |p

n
X1X2

, pn
ZK1K2

)

Θ(R1, R2, ϕ
(n)
A |pn

ZK1K2
)

≤ 1 + ∑
j=1,2

(n + 1)|Xj |,

completing the proof.
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