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Abstract: This paper proposes a geometric estimator of dependency between a pair of multivariate
random variables. The proposed estimator of dependency is based on a randomly permuted geometric
graph (the minimal spanning tree) over the two multivariate samples. This estimator converges
to a quantity that we call the geometric mutual information (GMI), which is equivalent to the
Henze–Penrose divergence. between the joint distribution of the multivariate samples and the
product of the marginals. The GMI has many of the same properties as standard MI but can be
estimated from empirical data without density estimation; making it scalable to large datasets. The
proposed empirical estimator of GMI is simple to implement, involving the construction of an
minimal spanning tree (MST) spanning over both the original data and a randomly permuted version
of this data. We establish asymptotic convergence of the estimator and convergence rates of the bias
and variance for smooth multivariate density functions belonging to a Hölder class. We demonstrate
the advantages of our proposed geometric dependency estimator in a series of experiments.

Keywords: Henze–Penrose mutual information; Friedman–Rafsky test statistic; geometric mutual
information; convergence rates; bias and variance tradeoff; optimization; minimal spanning trees

1. Introduction

Estimation of multivariate dependency has many applications in fields such as information
theory, clustering, structure learning, data processing, feature selection, time series prediction,
and reinforcement learning, see [1–10], respectively. It is difficult to accurately estimate the
mutual information in high-dimensional settings, specially where the data is multivariate with an
absolutely continuous density with respect to Lebesgue measure—the setting considered in this paper.
An important and regular measure of dependency is the Shannon mutual information (MI), which has
seen extensive use across many application domains. However, the estimation of mutual information
can often be challenging. In this paper, we focus on a measure of MI that we call the Geometric MI
(GMI). This MI measure is defined as the asymptotic large sample limit of a randomized minimal
spanning tree (MST) statistic spanning the multivariate sample realizations. The GMI is related to
a divergence measure called the Henze–Penrose divergence [11,12], and related to the multivariate
runs test [13]. In [14,15], it was shown that this divergence measure can be used to specify a tighter
bound for the Bayes error rate for testing if a random sample comes from one of two distributions the
bound in [14,15] is tighter than previous divergence-type bounds such as the Bhattacharrya bound [16].
Furthermore, the authors of [17] proposed a non-parametric bound on multi-class classification Bayes
error rate using a global MST graph.

Let X and Y be random variables with unknown joint density fXY and marginal densities fX and
fY, respectively, and consider two hypotheses: H0, X and Y are independent and H1, X and Y are
dependent,

H0 : fXY = fX fY, versus H1 : fXY 6= fX fY.

Entropy 2019, 21, 787; doi:10.3390/e21080787 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e21080787
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/8/787?type=check_update&version=2


Entropy 2019, 21, 787 2 of 27

The GMI is defined as the Henze–Penrose divergence between fXY and fX fY which can be used
as a dependency measure. In this paper, we prove that for large sample size n the randomized MST
statistic spanning the original multivariate sample realizations and a randomly shuffled data set
converges almost surely to the GMI measure. A direct implication of [14,15] is that the GMI provides
a tighter bound on the Bayes misclassification rate for the optimal test of independence. In this
paper, we propose an estimator based on a random permutation modification of the Friedman–Rafsky
multivariate test statistic and show that under certain conditions the GMI estimator achieves the
parametric mean square error (MSE) rate when the joint density is bounded and smooth. Importantly
unlike other measures of MI, our proposed GMI estimator does not require explicit estimation of the
joint and marginal densities.

Computational complexity is an important challenge in machine learning and data science.
Most plug-in-based estimators, such as the kernel density estimator (KDE) or the K-nearest-neighbor
(KNN) estimator with known convergence rate, require runtime complexity of O(n2), which is not
suitable for large scale applications. Noshad et al. proposed a graph theoretic direct estimation
method based on nearest-neighbor ratios (NNR) [18]. The NNR estimator is based on k-NN graph
and computationally more tractable than other competing estimators with complexity O(kn log n).
The construction of the minimal spanning tree lies at the heart of the GMI estimator proposed in
this paper. Since the GMI estimator is based on the Euclidean MST the dual-tree algorithm by
March et al. [19] can be applied. This algorithm is based on the construction of Borůvka [20] and
implements the Euclidean MST in approximately O(nlogn) time. In this paper, we experimentally show
that for large sample size the proposed GMI estimator has faster runtime than the KDE plug-in method.

1.1. Related Work

Estimation of mutual information has a rich history. The most common estimators of MI
are based on plug-in density estimation, e.g., using the histogram, kernel density or kNN density
estimators [21,22]. Motivated by ensemble methods applied to divergence estimation [23,24], in [22]
an ensemble method for combining multiple KDE bandwidths was proposed for estimating MI.
Under certain smoothness conditions this ensemble MI estimator was shown to achieve parametric
convergence rates.

Another class of estimators of multivariate dependency bypasses the difficult density estimation
task. This class includes the statistically consistent estimators of Rényi-α and KL mutual information
which are motivated by the asymptotic limit of the length of the KNN graph, [25,26] when joint density
is smooth. The estimator of [27] builds on KNN methods for Rényi entropy estimation. The authors
of [26], showed that when MI is large the KNN and KDE approaches are ill-suited for estimating MI
since the joint density may be insufficiently smooth when there are strong dependencies. To overcome
this issue an assumption on the smoothness of the density is required, see [28,29], and [23,24]. For all
these methods, the optimal parametric rate of MSE convergence is achieved when the densities are
either d, (d + 1)/2 or d/2 times differentiable [30]. In this paper, we assume that joint and marginal
densities are smooth in the sense that they belong to Hölder continuous classes of densities Σd(η, K),
where the smoothness parameter η ∈ (0, 1] and the Lipschitz constant K > 0.

A MI measure based on the Pearson chi-square divergence was considered in [31] that is
computational efficient and numerically stable. The authors of [27,32] used nearest-neighbor graph
and minimal spanning tree approaches, respectively, to estimate Rényi mutual information. In [22],
a non-parametric mutual information estimator was proposed using a weighted ensemble method
with O(1/n) parametric convergence rate. This estimator was based on plug-in density estimation,
which is challenging in high dimension.

Our proposed dependency estimator differs from previous methods in the following ways. First,
it estimates a different measure of mutual information, the GMI. Second, instead of using the KNN
graph the estimator of GMI uses a randomized minimal spanning tree that spans the multivariate
realizations. The proposed GMI estimator is motivated by the multivariate runs test of Friedman and
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Rafsky (FR) [33] which is a multivariate generalization of the univariate Smirnov maximum deviation
test [34] and the Wald-Wolfowitz [35] runs test in one dimension. We also emphasize that the proposed
GMI estimator does not require boundary correction, in contrast to other graph-based estimators, such
as, the NNR estimator [18], scalable MI estimator [36], or cross match statistic [37].

1.2. Contribution

The contribution of this paper has three components

(1) We propose a novel non-parametric multivariate dependency measure, referred to as geometric
mutual information (GMI), which is based on graph-based divergence estimation. The geometric
mutual information is constructed using a minimal spanning tree and is a function of the
Friedman–Rafsky multivariate test statistic.

(2) We establish properties of the proposed dependency measure analogous to those of Shannon
mutual information, such as, convexity, concavity, chain rule, and a type of data-processing
inequality.

(3) We derive a bound on the MSE rate for the proposed geometric estimator. An advantage of the
estimator is that it achieves the optimal MSE rate without the need for boundary correction,
which is required for most plug-in estimators.

1.3. Organization

The rest of the paper is organized as follows. In Section 2, we define the geometric mutual
information and establish some of its mathematical properties. In Sections 2.2 and 2.3, we introduce a
statistically consistent GMI estimator and derive a bound on its mean square error convergence rate.
In Section 3 we verify the theory through experiments.

Throughout the paper, we denote statistical expectation by E and the variance by abbreviation
Var. Bold face type indicates random vectors. All densities are assumed to be absolutely continuous
with respect to non-atomic Lebesgue measure.

2. The Geometric Mutual Information (GMI)

In this section, we first review the definition of the Henze–Penrose (HP) divergence measure
defined by Berisha and Hero in [13,14]. The Henze–Penrose divergence between densities f and g
with domain Rd for parameter p ∈ (0, 1) is defined as follows (see [13–15]):

Dp( f , g) =
1

4pq

[∫ (
p f (x)− qg(x)

)2

p f (x) + qg(x)
dx− (p− q)2

]
, (1)

where q = 1− p. This functional is an f -divergence [38], equivalently, as an Ali-Silvey distance [39],
i.e., it satisfies the properties of non-negativity, monotonicity, and joint convexity [15]. The measure (1)
takes values in [0, 1] and Dp( f , g) = 0 if and only if f = g almost surely.

The mutual information measure is defined as follows. Let fX , fY, and fXY be the marginal and
joint distributions, respectively, of random vectors X ∈ Rdx , Y ∈ Rdy where dx and dy are positive
integers. Then by using (1), a Henze–Penrose generalization of the mutual information between X and
Y, is defined by

Ip(X; Y) = Dp( fXY, fX fY)

=
1

4pq

[∫∫ (
p fXY(x, y)− q fX(y) fY(y)

)2

p fXY(x, y) + q fX(x) fY(y)
dx dy− (p− q)2

]
.

(2)

We will show below that Ip(X; Y) has a geometric interpretation in terms of the large sample limit
of a minimal spanning tree spanning n sample realizations of the merged labeled samples X∪ Y. Thus,
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we call Ip(X; Y) the GMI between X and Y. The GMI satisfies similar properties to other definitions
of mutual information, such as Shannon and Rényi mutual information. Recalling (3) in [14], an
alternative form of Ip is given by

Ip(X; Y) = 1− Ap(X; Y) =
up(X; Y)

4pq
− (p− q)2

4pq
, (3)

where

Ap(X; Y) =
∫∫ fXY(x, y) fX(x) fY(y)

p fXY(x, y) + q fX(x) fY(y)
dx dy = EXY

[(
p

fXY(X, Y)
fX(X) fY(Y)

+ q
)−1

]
, and

up(X; Y) =
∫∫

(p fXY(x, y)− q fX(x) fY(y))
2

p fXY(x, y) + q fX(x) fY(y)
dx dy = 1− 4pq Ap(X; Y).

(4)

The function Ap(X; Y) was defined in [13] and is called the geometric affinity between X and Y.
The next subsection of the paper is dedicated to the basic inequalities and properties of the proposed
GMI measure (2).

2.1. Properties of the Geometric Mutual Information

In this subsection we establish basic inequalities and properties of the GMI, Ip, given in (2).
The following theorem shows that Ip(X; Y) is a concave function in fX and a convex function in fY|X .
The proof is given in Appendix A.1.

Theorem 1. Denote by Ĩp( fXY) the GMI Ip(X; Y) when X ∈ Rdx and Y ∈ Rdy have joint density fXY.
Then the GMI satisfies

(i) Concavity in fX: Let fY|X be conditional density of Y given X and let gX and hX be densities on Rdx .
Then for λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1

Ĩp
(
λ1 fY|X gX + λ2 fY|XhX

)
≥ λ1 Ĩp( fY|X gX) + λ2 Ĩp( fY|XhX). (5)

The inequality is strict unless either λ1 or λ2 are zero or hX = gX .
(ii) Convexity in fY|X : Let gY|X and hY|X be conditional densities of Y given X and let fX be marginal density.

Then for λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1

Ĩp
(
λ1gY|X fX + λ2hY|X fX

)
≤ λ1 Ĩp(gY|X fX) + λ2 Ĩp(hY|X fX). (6)

The inequality is strict unless either λ1 or λ2 are zero or hY|X = gY|X .

The GMI, Ip(X; Y), satisfies properties analogous to the standard chain rule and the
data-processing inequality [40]. For random variables X ∈ Rdx , Y ∈ Rdy , and Z ∈ Rdz with conditional
density fXY|Z we define the conditional GMI

Ip(X; Y|Z) = EZ

[
Ĩp( fXY|Z)

]
, where

Ĩp( fXY|Z) = 1−
∫∫ fXY|Z(x, y|z) fX|Z(x|z) fY|Z(y|z)

p fXY|Z(x, y|z) + q fX|Z(x|z) fY|Z(y|z)
dx dy.

(7)

The next theorem establishes a relation between the joint and conditional GMI.
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Theorem 2. For given d-dimensional random vector X with components X1, X2, . . . , Xd and random variable Y,

Ip(X; Y) ≥ Ip(X1; Y)−
d−1

∑
i=1

(
1− Ip(Xi; Y|Xi−1)

)
, (8)

where Xi := X1, X2, . . . , Xi and the conditional GMI Ip(Xi; Y|Xi−1) is defined in (7).

For d = 2 Theorem 2 reduces to

Ip(X1, X2; Y) ≥ Ip(X1; Y)−
(
1− Ip(X2; Y|X1)

)
, (9)

Please note that when
d−1

∑
i=1

(
1− Ip(Xi; Y|Xi−1)

)
≥ 1, the inequality (8) is trivial since 0 ≤

Ip(X1; Y) ≤ 1. The proof of Theorem 2 is given in Appendix A.2. Theorem 2 is next applied to
the case where X and Y form a Markov chain. The proof of the following “leany” data-processing
inequality (Proposition 1) is provided in Appendices section, Appendix A.3.

Proposition 1. Suppose random vectors X, Y, Z form a Markov chain denoted, X→ Y→ Z, in the sense that
fXYZ = fX|Y fY|Z fZ. Then for p ∈ (0, 1)

Ip(Y; X) ≥ Ip(Z; X)−
(

p EXY
[
δX,Y

]
+ (1− p)

)−1
, (10)

where

δX,Y =
∫ fX|Y(X|Y) fZ|Y(z|Y)

fX|Z(X|z)
dz.

Furthermore, if both X→ Y→ Z and X→ Z→ Y together hold true, we have Ip(Y; X) = Ip(Z; X).
The inequality in (10) becomes interpretable as the standard data-processing inequality Ip(Y; X) ≥

Ip(Z; X), when

EZ

[
f (Z|Y)
f (Z|X)

]
= ∞,

since

EXY
[
δX,Y

]
= EXY

(
f (X|Y)
f (X)

EZ

[
f (Z|Y)
f (Z|X)

])
.

2.2. The Friedman–Rafsky Estimator

Let a random sample {xi, yi}n
i=1 from fXY(x, y) be available. Here we show that the GMI Ip(X; Y)

can be directly estimated without estimating the densities. The estimator is inspired by the MST
construction of [33] that provides a consistent estimate of the Henze–Penrose divergence [14,15]. We
denote by zi the i-th joint sample xi, yi and by Zn the sample set {zi}n

i=1. Divide the sample set Zn into
two subsets Z ′n′ and Z ′′n′′ with the proportion α = n′/n and β = n′′/n, where α + β = 1.

Denote by Z̃n′′ the set{
(xik , yjk ), k = 1, . . . , n′′, selected at random from Z ′′n′′

}
:

x1

x2

...
xn′′




y1

y2

...
yn′′


This means that for each zik = (xik, yik) ∈ Z ′′n′′ given the first element xik the second element yik is

replaced by a randomly selected y ∈ {yjk}n′′
j=1. This results in a random shuffling of the binary relation
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relating yik in yjk. The estimator of Ip(X; Y) is derived based on the Friedman–Rafsky (FR) multivariate
runs test statistic [33] on the concatenated data set , Z ′n′ ∪ Z̃n′′ . The FR test statistic is defined as the
number of edges in the MST spanning the merged data set that connect a point in Z ′n′ to a point in Z̃n′′ .
This test statistic is denoted by Rn′ ,n′′ := Rn′ ,n′′(Z ′n′ , Z̃n′′). Please note that since the MST is unique
with probability one (under the assumption that all density functions are Lebesgue continuous) then
all inter point distances between nodes are distinct. This estimator converges to Ip(X; Y) almost surely
as n→ ∞. The procedure is summarized in Algorithm 1.

Algorithm 1: MST-based estimator of GMI

Input: Data set Zn :=
{
(xi, yi)

n
i=1
}

1: Find α̃ using arguments in Section 2.4
2: n′ ← α̃n, n′′ ← (1− α̃)n
3: Divide Zn into two subsets Z ′n′ and Z ′′n′′
4: Z̃n′′ ←

{
(xik, yjk)

n′′
k=1: shuffle first and second elements of pairs in Z ′′n′′

}
5: Ẑ ← Z ′n′ ∪ Z̃

′′
n′′

6: Construct MST on Ẑ
7: Rn′ ,n′′ ← # edges connecting a node in Z ′n′ to a node of Z̃n′′

8: Îp ← 1−Rn′ ,n′′
n′ + n′′

2n′n′′
Output: Îp, where p = α̃

Theorem 3 shows that the output in Algorithm 1 estimates the GMI with parameter p = α.
The proof is provided in Appendix A.4.

Theorem 3. For given proportionality parameter α ∈ (0, 1), choose n′, n′′ such that n′ + n′′ = n and, as
n→ ∞, we have n′/n→ α and n′′/n→ β = 1− α. Then

1−Rn′ ,n′′(Z ′n′ , Z̃n′′)
n

2n′ n′′
→ Iα(X; Y), a.s. (11)

Please note that the asymptotic limit in (11) depends on the proportionality parameter α. Later
in Section 2.4, we discuss the choice of an optimal parameter α̃. In Figure 1, we illustrate the MST
constructed over merged independent (ρ = 0) and highly dependent (ρ = 0.9) data sets drawn
from two-dimensional normal distributions with correlation coefficients ρ. Notice that the edges of
the MST connecting samples with different colors, corresponding to independent and dependent
samples, respectively, are indicated in green. The total number of green edges is the FR test statistic
Rn′ ,n′′(Z ′n′ , Z̃n′′).

-3 -2 -1 0 1 2 3

X

-3

-2

-1

0

1

2

3

Y

Figure 1. The MST and FR statistic of spanning the merged set of normal points when X and Y are
independent (denoted in blue points) and when X and Y are highly dependent (denoted in red points).
The FR test statistic is the number of edges in the MST that connect samples from different color nodes
(denoted in green) and it is used to estimate the GMI Ip.
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2.3. Convergence Rates

In this subsection we characterize the MSE convergence rates of the GMI estimator of Section 2.2
in the form of upper bounds on the bias and the variance. This MSE bound is given in terms of the
sample size n, the dimension d, and the proportionality parameter α. Deriving convergence rates for
mutual information estimators has been of interest in information theory and machine learning [22,27].
The rates are typically derived in terms of a smoothness condition on the densities, such as the Hölder
condition [41]. Here we assume fX, fY and fXY have support sets SX, SY, and SXY := SX × SY,
respectively, and are smooth in the sense that they belong to Hölder continuous classes of densities
Σs

d(η, K), 0 < η ≤ 1 [42,43]:

Definition 1. (Hölder class): Let X ⊂ Rd be a compact space. The Hölder class of functions Σd(η, K), with
Hölder parameters η and K, consists of functions g that satisfy{

g :
∥∥g(z)− pbηcx (z)

∥∥
d ≤ K

∥∥x− z
∥∥η

d , x, z ∈ X
}

, (12)

where pk
x(z) is the Taylor polynomial (multinomial) of g of order k expanded about the point x and bηc is defined

as the greatest integer strictly less than η.

To explore the optimal choice of parameter α we require bounds on the bias and variance bounds,
provided in Appendix A.5. To obtain such bounds, we will make several assumptions on the absolutely
continuous densities fX , fY, fXY and support sets SX , SY, SXY:

(A.1) Each of the densities belong to Σd(η, K) with smoothness parameters η and Lipschitz
constant K.

(A.2) The volumes of the support sets are finite, i.e., 0 < V(SX) < ∞, 0 < V(SY) < ∞.
(A.3) All densities are bounded i.e., there exist two sets of constants CL

X , CL
Y, CL

XY and CU
X , CU

Y , CU
XY

such that 0 < CL
X ≤ fX ≤ CU

X < ∞, 0 < CL
Y ≤ fY ≤ CU

Y < ∞ and 0 < CL
XY ≤ fXY ≤ CU

XY < ∞.

The following theorem on the bias follows under assumptions (A.1) and (A.3):

Theorem 4. For given α ∈ (0, 1), β = 1 − α, d ≥ 2, and 0 < η ≤ 1 the bias of the Rn′ ,n′′ :=
Rn′ ,n′′(Z ′n′ , Z̃n′′) satisfies∣∣∣∣E

[
Rn′ ,n′′

]
n

− 2αβ
∫∫ fXY(x, y) fX(x) fY(y)

α fXY(x, y) + β fX(x) fY(y)
dxdy

∣∣∣∣
≤ O

(
max

{
n−η2

/
(d(1+η)), (βn)−η/(1+η), cdn−1

})
,

(13)

where cd is the largest possible degree of any vertex of MST on Z ′n′ ∪ Z̃n′′ . The explicit form of (13) is provided
in Appendix A.5.

Please note that according to Theorem 13 in [44], the constant cd is lower bounded by
Ω
(√

d2n(1−H(γ))
)

, γ = 2−d and H(γ) is the binary entropy i.e.,

H(γ) = −γ log γ− (1− γ) log(1− γ).

A proof of Theorem 4 is given in Appendix A.5. The next theorem gives an upper bound on the
variance of the FR estimator Rn′ ,n′′ . The proof of the variance result requires a different approach than
the bias bound (the Efron–Stein inequality [45]). It is similar to arguments in ([46], Appendix A.3), and
is omitted. In Theorem 5 we assume that the densities fX , fY, and fXY are absolutely continuous and
bounded (A.3).
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Theorem 5. Given α ∈ (0, 1), the variance of the estimator Rn′ ,n′′ := Rn′ ,n′′(Z ′n′ , Z̃n′′) is bounded by

Var
(
Rn′ ,n′′

n

)
≤ (1− α) cd

n
, α = n′/n, (14)

where cd is a constant depending only on the dimension d.

2.4. Minimax Parameter α

Recall assumptions (A.1), (A.2), and (A.3) in Section 2.3. The constant α can be chosen to minimize
the maximum the MSE converges rate where the maximum is taken over the space of Hölder smooth
joint densities fXY.

Throughout this subsection we use the following notations:

• εXY := fXY
/

fX fY,

• CL
ε := CL

XY
/

CU
X CU

Y and CU
ε := CU

XY
/

CL
XCL

Y,

• Cn := CL
XY n/2,

• αL
0 :=

2
Cn

and αU
0 := min

{
1
4

,
1 + 1/Cn

4 + 2CU
ε

, 1− nη/d−1
}

, where η is the smoothness parameter,

• ln :=
⌊
nη/(d2(1+η))

⌋
.

Now define G̃α,β
εXY ,n(x, y) by

(εXY(x, y) + 1/(βCn))(1 + εXY(xy) + 1/(βCn))

(α + βεXY(x, y))2 , β = 1− α. (15)

Consider the following optimization problem:

min
α

max
εXY

∆̃(α, εXY) + cd(1− α) n−1

subject to CL
ε ≤ εXY ≤ CU

ε ,

αL
0 ≤ α ≤ αU

0 ,

(16)

where
∆̃(α, εXY) := D(n, ln, d, η) + D̃(n, ln, d)CU

XY

∫∫
SXY

G̃α,β
εXY ,n(x, y) dxdy, (17)

and

D(n, ln, d, η) = c2ld
nn−1 + cd2dn−1 + c′ld

nn−η/d + cld
nn−1/d + 2c1ld−1

n n1/d−1 + c3l−dη
n , (18)

D̃(n, ln, d) = 2 + n−12c′′
M

∑
i=1

ln ld
na−1

i + n−3/22c′1
M

∑
i=1

ln ld/2
n
√

bia2
i

+n−1
M

∑
i=1

2n−3/2l−d/2
n

√
bi

a2
i

(
naild

n + n2a2
i
)1/2(nbild

n + n2b2
i
)1/2.

(19)

Please note that in (18), c, c′, c1, c2 are constants, and cd only depends on the dimension d. Also,
in (19), ai and bi are constants. Let ε∗XY be the optimal εXY i.e., ε∗XY be the solution of the optimization
problem (16). Set

Ξ(α) :=
d

dα

(
∆̃(α, ε∗XY) + cd(1− α) n−1

)
, (20)
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such that ∆̃(α, ε∗XY) is (17) when εXY = ε∗XY. For α ∈ [αL
0 , αU

0 ], the optimal choice of εXY in terms of
maximizing the MSE is ε∗XY = CU

ε and the saddle point for the parameter α, denoted by α̃, is given
as follows:

• α̃ = αU
0 , if Ξ(αU

0 ) < 0.
• α̃ = αL

0 , if Ξ(αL
0 ) > 0.

• α̃ = Ξ−1(0), if αL
0 ≤ Ξ−1(0) ≤ αU

0 .

Further details are given in Appendix A.6.

3. Simulation Study

In this section, numerical simulations are presented that illustrate the theory in Section 2.
We perform multiple experiments to demonstrate the utility of the proposed GMI estimator of the
HP-divergence in terms of the dimension d and the sample size n. Our proposed MST-based estimator
of the GMI is compared to density plug-in estimators of the GMI, in particular the standard KDE
density plug-in estimator of [22], where the convergence rates of Theorems 4 and 5 are validated.
We use multivariate normal simulated data in the experiments. In this section, we also discuss
the choice of the proportionality parameter α and compare runtime of the proposed GMI estimator
approach with KDE method.

Here we perform four sets of experiments to illustrate the proposed GMI estimator. For the first
set of experiments the MSE of the GMI estimator in Algorithm 1 is shown in Figure 2-left. The samples
were drawn from d-dimensional normal distribution, with various sample sizes and dimensions
d = 6, 10, 12. We selected the proportionality parameter α = 0.3 and computed the MSE in terms of
the sample size n. We show the log–log plot of MSE when n varies in [100, 1500]. Please note that the
empirically optimal proportion α depends on n, so to avoid the computational complexity we fixed α for
this experiment. The experimental result shown in Figure 2-left validates the theoretical MSE growth
rates derived from (13) and (14), i.e., decreasing sub-linearly in n and increasing exponentially in d.
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Figure 2. (left) Log–log plot of theoretical and experimental MSE of the proposed MST-based GMI
estimator as a function of sample size n for d = 6, 10, 12 and fixed smoothness parameter η. (right) The
GMI estimator was implemented using two approaches, Algorithm 1 and KDE method where the
KDE-GMI used KDE density estimators in the formula (2). In this experiment, samples are generated
from the two-dimensional normal distribution with zero mean and covariance matrix (21) for various
value of ρ ∈ [0.1, 0.9].

In Figure 2-right, we compare the proposed MST-based GMI estimator with the KDE-GMI
estimator [22]. For the KDE approach, we estimated the joint and marginal densities and then plugged
them into the proposed expression (2). The bandwidth h used for the KDE plug-in estimator was
set as h = n−1/(d+1). The choice of h minimizes the bound on the MSE of the plug-in estimator. We
generated data from the two-dimensional normal distribution with zero mean and covariance matrix
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(
1 ρ

ρ 1

)
. (21)

The coefficient ρ is varied in range [0.1, 0.9]. The true GMI was computed by the Monte Carlo
approximation to the integral (2). Please note that as ρ increases, the MST-GMI outperforms the
KDE-GMI approach. In this set of experiments α = 0.6.

Figure 3 again compares the MST-GMI estimator with the KDE-GMI estimator. samples are drawn
from the multivariate standard normal distribution with dimensions d = 4 and d = 12. In both cases
the proportionality parameter α = 0.5. The left plots in Figure 3 show the MSE (100 trials) of the GMI
estimator implemented with an KDE estimator (with bandwidth as in Figure 2 i.e., h = n−1/(d+1)) for
dimensions d = 4, 12 and various sample sizes. For all dimensions and sample sizes the MST-GMI
estimator also outperforms the plug-in KDE-GMI estimator based on the estimated log–log MSE slope
given in Figure 3 (left plots). The right plots in Figure 3 compares the MST-GMI with the KDE-GMI.
In this experiment, the error bars denote standard deviations with 100 trials. We observe that for
higher dimension d = 12 and larger sample size n, the KDE-GMI approaches the true GMI at a slower
rate than the MST-GMI estimator. This reflects the power of the proposed graph-based approach to
estimating GMI.
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Figure 3. MSE log–log plots as a function of sample size n (left) for the proposed MST-GMI estimator
(“Estimated GMI”) and the standard KDE-GMI plug-in estimator of GMI. The right column of plots
correspond to the GMI estimated for dimension d = 4 (top) and d = 12 (bottom). In both cases the
proportionality parameter α is 0.5. The MST-GMI estimator in both plots for sample size n in [700, 1600]
outperforms the KDE-GMI estimator, especially for larger dimensions.

The comparison between MSEs for various dimension d is shown in Figure 4 (left). This
experiment highlights the impact of higher dimension on the GMI estimators. As expected, for
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larger sample size n, MSE decreases while for higher dimension it increases. In this setting, we
have generated samples from standard normal distribution with size n ∈ [102, 4× 103] and α = 0.5.
From Figure 4 (left) we observe that for larger sample size, MSE curves are ordered based on their
corresponding dimensions. Results in Section 2.4 strongly depend on the lower bounds CL

X , CL
Y, CL

XY
and upper bounds CU

X , CU
Y , CU

XY and provide optimal parameter α in the range [αL
0 , αU

0 ], therefore in
the experiment section we only analyze one case where the lower bounds CL

X, CL
Y, CL

XY and upper
bounds CU

X , CU
Y , CU

XY are known and the optimal α becomes αL
0 . Figure 4 (right) illustrates the

MSE vs proportion parameter α when n = 500, 104 samples are generated from truncated normal
distribution with ρ = 0.7, 0.5. First, following Section 2.4, we compute the bound [αL

0 , αU
0 ] and then

derive the optimal α in this range. Therefore, each experiment with different sample size and ρ provides
different range [αL

0 , αU
0 ]. We observe that the MSE does not appeared a monotonic function in α and its

behavior strongly depends on sample size n, d, and density functions’ bounds. Additional study of the
dependency is described in Appendix A.6. In this set of experiments Ξ(αL

0 ) > 0, therefore following
the results in Section 2.4, we have α̃ = αL

0 . In this experiment the optimal value of α is always the lower
bound αL

0 and indicated in the Figure 4 (right).
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Figure 4. MSE log–log plots as a function of sample size n for the proposed FR estimator. We compare
the MSE of our proposed FR estimator for various dimensions d = 15, 20, 50 (left). As d increases, the
blue curve takes larger values than green and orange curves i.e., MSE increases as d grows. However,
this is more evidential for large sample size n. The second experiment (right) focuses on optimal
proportion α for n = 500, 104 and ρ = 0.7, 0.5. α̃ is the optimal α for α ∈ [αL

0 , αU
0 ].

The parameter α is studied further for three scenarios where the lower bounds CL
X , CL

Y, CL
XY and

upper bounds CU
X , CU

Y , CU
XY are assumed unknown, therefore results in Section 2.4 are not applicable.

In this set of experiments, we varied α in the range (0, 1) to divide our original sample. We generated
sample from an isotropic multivariate standard normal distribution (ρ = 0) in all three scenarios
(all features are independent). Therefore, the true GMI is zero and in all scenarios the GMI column,
corresponding to the MST-GMI, is compared with zero. In each scenario we fixed dimension d and
sample size n and varied α = 0.2, 0.5, 0.8. The dimension and sample size in Scenarios 1,2, and 3 are
d = 6, 8, 10 and n = 1000, 1500, 2000, respectively. In Table 1 the last column (α) stars the parameter
α ∈ {0.2, 0.5, 0.8} with the minimum MSE and GMI (Iα) in each scenario. Table 1 shows that in these
sets of experiments when α = 0.5, the GMI estimator has less MSE (i.e., is more accurate) than when
α = 0.2 or α = 0.8. This experimentally demonstrates that if we split our training data, the proposed
Algorithm 1 performs better with α = 0.5.
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Table 1. Comparison between different scenarios of various dimensions and sample sizes in terms of
parameter α. We applied the MST-GMI estimator to estimate the GMI (Iα) with α = 0.2, 0.5, 0.8. We
varied dimension d = 6, 8, 10 and sample size n = 1000, 1500, 2000 in each scenario. We observe that
for α = {0.2, 0.5, 0.8}, the MST-GMI estimator provides lowest MSE when α = 0.5 indicated by star (*).

Overview Table for Different d, n, and α

Experiments Dimension (d) Sample Size (n) GMI (Iα) MSE (×10−4) Parameter (α)

Scenario 1–1 6 1000 0.0229 12 0.2
Scenario 1–2 6 1000 0.0143 4.7944 0.5 *
Scenario 1–3 6 1000 0.0176 6.3867 0.8
Scenario 2–1 8 1500 0.0246 11 0.2
Scenario 2–2 8 1500 0.0074 1.6053 0.5 *
Scenario 2–3 8 1500 0.0137 5.3863 0.8
Scenario 3–1 10 2000 0.0074 2.3604 0.2
Scenario 3–2 10 2000 0.0029 0.54180 0.5 *
Scenario 3–3 10 2000 0.0262 11 0.8

Finally, Figure 5 shows the runtime as a function of sample size n. We vary sample size in the
range [103, 104]. Observe that for smaller number of samples the KDE-GMI method is slightly faster
but as n becomes large we see significant relative speedup of the proposed MST-GMI method.
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Figure 5. Runtime of KDE approach and proposed MST-based estimator of GMI vs sample size. The
proposed GMI estimator achieves significant speedup, while for small sample size, the KDE method
becomes overly fast. Please note that in this experiment the sample is generated from the Gaussian
distribution in dimension d = 2.

4. Conclusions

In this paper, we have proposed a new measure of mutual information, called Geometric MI (GMI),
which is related to the Henze–Penrose divergence. The GMI can be viewed as dependency measure
that is the limit of the Friedman–Rafsky test statistic, which depends on the MST over all data points.
We established some properties of the GMI in terms of convexity/concavity, chain rule, and a type of
data-processing inequality. A direct estimator of the GMI, called the MST-GMI, was introduced that
uses random permutations of observed relationships between variables in the multivariate samples.
An explicit form for the MSE convergence rate bound was derived that depends on a free parameter
called the proportionality parameter. An asymptotically optimal form for this free parameter was
given that minimizes the MSE convergence rate. Simulation studies were performed that illustrate and
verify the theory.
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Appendix A.

We organize the appendices as follows: Theorem 1 which establishes convexity/concavity is
proved in Appendix A.1. Appendixs A.2 and A.3 establish the inequality (9) and (10) for given
p ∈ (0, 1), respectively. In Appendix A.4, we first prove that the set Z̃n′′ which is randomly generated
from original dependent data, contains asymptotically independent samples. Later by using the
generated independent sample Z̃n′′ we show that for given α the FR estimator of the GMI given in
Algorithm 1 tends to Iα. Appendix A.5 dedicates proof of Theorem 4. The proportionality parameter
(α) optimization strategy is presented in Appendix A.6.

Appendix A.1. Theorem 1

Proof. The proof is similar to the result for standard (Shannon) mutual information. However, we
require the following lemma, proven in analogous manner to the log-sum inequality:

Lemma A1. For non-negative real numbers α1, . . . , αn and β1, . . . , βn, given p ∈ (0, 1), q = 1− p,

n

∑
i=1

αi

(
p
(

βi
αi

)
+ q
)−1

≥
n

∑
i=1

αi

p


n
∑

i=1
βi

n
∑

i=1
αi

+ q


−1

.

Notice this follows by using the convex function u(y) = y2/(p + q y) for any p ∈ (0, 1), q = 1− p,
and the Jensen inequality.

Define the shorthand
∫
x

,
∫
y

, and
∫
xy

for
∫

dx,
∫

dy and
∫∫

dxdy, respectively. To prove part (i) of

Theorem 1, we represent the LHS of (5) as:

Ĩp
(
λ1 fY|X gX + λ2 fY|XhX

)
= 1−

∫
xy

(
λ1 fY|X gX + λ2 fY|XhX

)
×

p
λ1 fY|X gX + λ2 fY|XhX( ∫

x λ1 fY|X gX + λ2 fY|XhX

)( ∫
y λ1 fY|X gX + λ2 fY|XhX

) + q


−1

= 1−
∫

xy

(
λ1 fY|X gX + λ2 fY|XhX

) p
fY|X( ∫

x λ1 fY|X gX + λ2 fY|XhX

) + q


−1

.
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Furthermore, the RHS of (5) can be rewritten as

λ1 Ĩp( fY|X gX) + λ2 Ĩp( fY|XhX)

= 1−
∫
xy

λ1 fY|X gX

p
fY|X gX( ∫

x
fY|X gX

)( ∫
y

fY|X gX
) + q


−1

+ λ2 fY|XhX

p
fY|XhX( ∫

x
fY|XhX

)( ∫
y

fY|XhX
) + q


−1


= 1−
∫
xy

λ1 fY|X gX

p
fY|X∫

x
fY|X gX

+ q


−1

+ λ2 fY|XhX

p
fY|X∫

x
fY|XhX

+ q


−1
 .

Thus, to prove LHS ≥ RHS, we use the inequality below:

(
λ1 fY|X gX + λ2 fY|XhX

) p
fY|X∫

x
λ1 fY|X gX + λ2 fY|XhX

+ q


−1

≤
(

λ1 fY|X gX

) p
π∫

x
fY|X gX

+ q


−1

+
(

λ2 fY|XhX

) p
π∫

x
fY|XhX

+ q


−1

.

In Lemma A1, let

α1 =

λ1

(∫
x

fY|X gX

)(
λ1 fY|X gX + λ2 fY|XhX

)
∫
x

λ1 fY|X gX + λ2 fY|XhX
,

α2 =

λ2

(∫
x

fY|XhX

)(
λ1 fY|X gX + λ2 fY|XhX

)
∫
x

λ1 fY|X gX + λ2 fY|XhX
,

and for i = 1, 2,

βi =
λi fY|X

(
λ1 fY|X gX + λ2 fY|XhX

)
∫
x

λ1 fY|X gX + λ2 fY|XhX
.

Then the claimed assertion (i) is obtained. Part (ii) follows by convexity of Dp and the
following expression:

Ĩp
(
λ1gY|X fX + λ2hY|X fX

)
= Dp

(
λ1 fX gY|X + λ2 fXhY|X ,

( ∫
x

λ1 fX gY|X + λ2 fXhY|X

)( ∫
y

λ1φπ1 + λ2φπ2

))
= Dp

(
λ1 fX gY|X + λ2 fXhY|X , fX

( ∫
x

λ1 fX gY|X + λ2 fXhY|X

)
= Dp

(
λ1 fX gY|X + λ2 fXhY|X , λ1

( ∫
x

fX gY|X

)( ∫
y

fX gY|X

)
+ λ2

( ∫
x

fXhY|X

)( ∫
y

fXhY|X

))
.

Therefore, the claim in (6) is proved.
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Appendix A.2. Theorem 2

Proof. We start with (9). Given p ∈ (0, 1) and q = 1− p, we can easily check that for positive t > q,
s > q, such that t, s 6= 1:

(t + s) [(ts) + q(1− t− s)]− p(ts) ≥ 0.

This implies

p
( t− q

p

)( s− q
p

)
+ q ≥ t s

t + s
.

By substituting

fX1Y(x1, y)
fX1(x1) fY(y)

=
t− q

p
,

fX2Y|X1
(x2, y|x1)

fX2|X1
(x2|x1) fY|X1

(y|x1)
=

s− q
p

,

we get (
p

fX1X2Y(x1, x2, y)
fX1X2(x1, x2) fY(y)

+ q
)−1

≤
(

p
fX1Y(x1, y)

fX1(x1) fY(y)
+ q
)−1

+

(
p

fX2Y|X1
(x2, y|x1)

fX2|X1
(x2|x1) fY|X1

(y|x1)
+ q

)−1

.

(A1)

Consequently

Ip(X1, X2; Y) ≥ Ip(X1; Y)−E f

(p
fX2Y|X1

(x2, y|x1)

fX2|X1
(x2|x1) fY|X1

(y|x1)
+ q

)−1
 . (A2)

Here f is the joint PDF of random vector (X1, X2, Y). From the conditional GMI definition in (7)
the expectation term in (A2) is equivalent to 1− Ip(X2; Y|X1). This completes the proof.

Appendix A.3. Proposition 1

Proof. Recall the Theorem 2, part (i). First from X → Y → Z we have fXYZ = fXY fZ|Y and then by
applying the Jensen inequality,

Ip(X; Y) = Ip(X; Y, Z) and

Ip(X; Y, Z) ≥ Ip(Z; X)−E
[(

p π(X, Y, Z) + q
)−1

]

≥ Ip(Z; X)−
(

p E
[
π(X, Y, Z)

]
+ q
)−1

,

(A3)

where

π(x, y, z) =
fYX|Z(y, x|z)

fY|Z(y|z) fX|Z(x|z)
.

Now by Markovian property we can immediately simplify the RHS in (A3) to the RHS in (10).
Furthermore, we can easily show that if X → Z → Y, we have fXYZ = fZX fY|Z and therefore

Ip(Z; X) = Ip(X; Y, Z). This together with (A3) proves that under both conditions X → Y → Z and
X→ Z→ Y, the equality Ip(X; Y) = Ip(Z; X) holds true.

Appendix A.4. Theorem 3

Proof. We first derive two required Lemmas A2 and A3 below:



Entropy 2019, 21, 787 16 of 27

Lemma A2. Consider random vector Z = (X, Y) with joint probability density function (pdf) fXY. Let
Zn = {z1, . . . , zn} = {(xi, yi)}n

i=1 be a set of samples with pdf fXY. Let Z′n′ and Z′′n′′ be two distinct subsets of
Zn such that n′ + n′′ = n and sample proportion is α = n′/n and β = 1− α. Next, let Z̃n′′ = {z̃1, . . . , z̃n′′}
be a set of pairs such that z̃k = (xik , yjk ), k = 1, . . . , n′′ are selected at random from Z′n′′ . Denote Z̃ = (X̃, Ỹ)
as the random vector corresponding to samples in Z̃n′′ . Then as n → ∞ such that n′′ also grows in a linked
manner that β 6= 0 then the distribution of Z̃ convergences to fX × fY i.e., random vectors X̃ and Ỹ become
mutually independent.

Proof. Consider two subsets A, B ⊂ Rn, then we have

P(X̃ ∈ A, Ỹ ∈ B) = E
[
IA(X̃). IB(Ỹ)

]
= E

[
∑
i,j

IA(Xi). IB(Yj). P
(
(X̃, Ỹ) = (Xi, Yj)

∣∣Zn
)]

.

Here IA stands for the indicator function. Please note that

P
(
(X̃, Ỹ) = (Xi, Yj)

∣∣Zn

)
=

1
n′′2

,

and Xi and Yj, i 6= j are independent, therefore

P(X̃ ∈ A, Ỹ ∈ B) = 1
n′′2

∑
i 6=j

P(Xi ∈ A)P(Yj ∈ B) + 1
n′′2

n

∑
i=1

P(Xi ∈ A, Yi ∈ B)

= P(Xi ∈ A)P(Yj ∈ B) + 1
n′′

{
P(Xi ∈ A, Yi ∈ B)− P(Xi ∈ A)P(Yi ∈ B)

}
,

this implies that∣∣∣P(X̃ ∈ A, Ỹ ∈ B)− P(X̃ ∈ A)P(Ỹ ∈ B)
∣∣∣ ≤ 1

n′′

∫∫ ∣∣∣ fXY(x, y)− fX(x) fY(y)
∣∣∣ dx dy. (A4)

On the other hand, we know that n′′ = β n, so we get∣∣∣P(X̃ ∈ A, Ỹ ∈ B)− P(X̃ ∈ A)P(Ỹ ∈ B)
∣∣∣ ≤ 1

β n

∫∫ ∣∣∣ fXY(x, y)− fX(x) fY(y)
∣∣∣ dx dy. (A5)

From (A5), we observe that when β takes larger values the bound becomes tighter. So, if n→ ∞
such that n′′ also becomes large enough in a linked manner so that β = constant then the RHS in (A5)
tends to zero. This implies that X̃ and Ỹ become independent when n→ ∞.

An immediate result of Lemma A2 is the following:

Lemma A3. For given random vector Zn = (Xn, Yn) from joint density function fXY and with marginal
density functions fX and fY let Z̃n′′ =

{
z̃1, . . . , z̃n′′

}
be realization of random vector Z̃ as in Lemma A2 with

parameter β = n′′/n. Then for given points of Z̃n′′ at z̃ = (x̃, ỹ), we have∣∣∣ fZ̃(x̃, ỹ)− fX(x̃) fY(ỹ)
∣∣∣ = O

(
1

βn

)
. (A6)

Now, we want to provide a proof of assertion (11). Consider two subsets Z′n′ and Z̃n′′ as described
in Section 2.2 . Assume that the components of sample Z̃n′′ follow density function f̃X̃Ỹ. Therefore by
owing to Lemmas A2 and A3, when n→ ∞ then f̃X̃Ỹ → fX fY. Let Mn′ and Nn′′ be Poisson variables
with mean n′ and n′′ independent of one another and {Z′i} and {Z̃j}. Assume two Poisson processes
Z′n′ =

{
Z′1, . . . , Z′Mn′

}
and Z̃n′′ =

{
Z̃1, . . . , Z̃Nn′′

}
, and denote the FR statistic R′n′ ,n′′ on these processes.

Following the arguments in [13,46] we shall prove the following:
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E
[
R′n′ ,n′′

]
n′ + n′′

→ 2αβ
∫∫ fX,Y(x, y) fX(x) fY(y)

α fXY(x, y) + β fX(x) fY(y)
dx dy.

This follows due to
∣∣R′n′ ,n′′ −Rn′ ,n′′

∣∣ ≤ Kd

(
|Mn′ − n′| + |Nn′′ − n′′|

)
, where Kd is a constant

defined in Lemma 1, [13] and n′ + n′′ = n. Thus, (n′ + n′′)−1 E
∣∣R′n′ ,n′′ −Rn′ ,n′′

∣∣ → 0 as n → ∞. Let

Wn′ ,n′′
1 , Wn′ ,n′′

2 , . . . be independent variables with common density

φn′ ,n′′(x, y) =
(

n′ fXY(x, y) + n′′ f̃X̃Ỹ(x, y)
)/

(n′ + n′′),

for (x, y) ∈ Rd ×Rd. Let Ln′ ,n′′ be an independent Poisson variable with mean n′ + n′′. Let F′n′ ,n′′ ={
Wn′ ,n′′

1 , . . . , Wn′ ,n′′
Ln′ ,n′′

}
a non-homogeneous Poisson process of rate n′ fXY + n′′ f̃X̃Ỹ. Assign mark 1 to

a point in F′n′ ,n′′ with probability

n′ fXY(x, y)
/(

n′ fXY(x, y) + n′′ f̃X̃Ỹ(x, y)
)

,

and mark 2 otherwise. By the marking theorem [13,47], the FR test statistic R̃n′ ,n′′ has the same
distribution as R′n′ ,n′′ . Given points of F′n′ ,n′′ at z′ = (x′, y′) and z′′ = (x′′, y′′), the probability that they
have different marks is given by (A7).

gn′ ,n′′(z
′, z′′) =

n′ fXY(x′, y′) n′′ f̃X̃,Ỹ(x
′′, y′′) + n′′ f̃X̃,Ỹ(x

′, y′) n′ fXY(x′′, y′′)(
n′ fXY(x′, y′) + n′′ f̃X̃,Ỹ(x

′, y′)
) (

n′ fXY(x′′, y′′) + n′′ f̃X̃,Ỹ(x
′′, y′′)

) , (A7)

define

g(z′, z′′) =
αβ ( fXY(x′, y′) fX(x′′) fY(y′′) + fX(x′) fY(y′) fXY(x′′, y′′))(

α fXY(x′′, y′′) + β fX(x′′) fY(y′′)
)(

α fXY(x′, y′) + β fX(x′) fY(y′)
) , (A8)

then
E
[
R̃′n′ ,n′′ |F

′
n′ ,n′′

]
= ∑ ∑

i<j≤Ln′ ,n′′

gn(Wn′ ,n′′
i , Wn′ ,n′′

j )IF′
n′ ,n′′

(Wn′ ,n′′
i , Wn′ ,n′′

j ). (A9)

Now recall (A8). We observe that gn′ ,n′′(z′, z′′)→ g(z′, z′′). Going back to (A9), we can write

E
[
R̃′n′ ,n′′

]
= ∑ ∑

i<j≤Ln′ ,n′′

gn′ ,n′′(W
n′ ,n′′
i , Wn′ ,n′′

j )IF′
n′ ,n′′

(Wn′ ,n′′
i , Wn′ ,n′′

j ) + o(n′ + n′′). (A10)

For fixed n′, n′′ consider the collection:

Fn′ ,n′′ =
{

Wn′ ,n′′
1 , . . . , Wn′+n′′

n′ ,n′′

}
.

By the fact that E
[

Mn′ + Nn′′ − (n′ + n′′)
]
= o(n′ + n′′), we have

E
[
R̃′n′ ,n′′

]
= ∑ ∑

i<j≤n′+n′′
gn′ ,n′′(W

n′ ,n′′
i , Wn′ ,n′′

j )IFn′ ,n′′
(Wn′

i , Wn′′
j ) + o(n′ + n′′). (A11)

Introduce
φ(x, y) = α fXY(x, y) + β fX(x) fY(y).

Then φn′ ,n′′(x, y) → φ(x, y) uniformly as n′/n → α and n′′/n → β. Thus, using Proposition 1
in [13], we get
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E
[
R̃′n′ ,n′′

]
n

→
∫

g(z, z)φ(z)dz =
∫∫ 2αβ fXY(x, y) fX(x) fY(y)

α fXY(x, y) + β fX(x) fY(y)
dx dy. (A12)

Appendix A.5. Theorem 4

Proof. We begin by providing a family of bias rate bounds for the FR test statistic Rn′ ,n′′ in terms of a
parameter l. Assume fXY, fX, and fY are in Σd(η, K). Then by plugging the optimal l, we prove the
bias rate bound given in (13).

Theorem A1. Let Rn′ ,n′′ := R(Zn′ ,Zn′′) be the FR test statistic. Then a bound on the bias rate of the Rn′ ,n′′

estimator for 0 < η ≤ 1, d ≥ 2 is given by∣∣∣∣E
[
Rn′ ,n′′

]
n

− 2αβ
∫∫ fXY(x, y) fX(x) fY(y)

α fXY(x, y) + β fX(x) fY(y)
dx
∣∣∣∣

≤ O
(

ld(n)−η/d
)
+ O

(
l−dη

)
+ O

(
ldβ−1n−1

)
+ O

(
cdn−1) ,

(A13)

where 0 < η ≤ 1 is the Hölder smoothness parameter and cd is the largest possible degree of any vertex of MST.
Set

αi = αnaild
(

1− ail−d
)
+ (αn)2a2

i ,

βi = βnbild
(

1− bil−d
)
+ (βn)2b2

i .

and

Aβ,α
f ,n(x, y) =

2 fXY(x, y)
(

fX(x) fY(y) + δ f
/
(βn)

) (
fXY(x, y)

√
α +

(
fX(x) fY(y) + δ f

/
(βn))

√
β
)

a2
i l−d

(
α fXY(x, y) + β

(
fX(x) fY(y) + δ f

/
(βn)

))2 , (A14)

where
δ f =

∫∫ ∣∣∣ fXY(x, y)− fX(x) fY(y)
∣∣∣ dxdy, (A15)

A more explicit form for the bound on the RHS is given below:

∆(α, fXY, fX fY) := c2ld(n)−1 + cd2d(n)−1 + O
(

ld(n)−η/d
)
+ O

(
ld(n)−1/2

)
+O

(
cd(n)−1/2

)
+ 2c1ld−1(n)(1/d)−1 + δ f ((βn)−1)

∫∫ 2αβ fXY(x, y)
α fXY(x, y) + β fX(x) fY(y)

dxdy

+(n)−1
M

∑
i=1

2
∫∫

fXY(x, y)
(

fX(x) fY(y) + δ f
/
(βn)

)(
αiβi

(
αnail−d f 2

XY(x, y)

+βnbil−d( fX(x) fY(y) + δ f
/
(βn)

)2
))1/2/(

αnai fXY(x, y) + βnbi fX(x) fY(y)
)2 dxdy

+(n)−1
M

∑
i=1

O(l)
∫∫

ld(ai)
−1

2 fXY(x, y)
(

fX(x) fY(y) + δ f
/
(βn)

)
α fXY(x, y) + β fX(x) fY(y)

dxdy + O
(
l−dη

)

+(n)−3/2
M

∑
i=1

O(l)
∫∫

l−d/2
√

bi A
β,α
f ,n(x, y) dxdy.

(A16)
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Proof. Consider two Poisson variables Mn′ and Nn′′ with mean n′ and n′′ respectively and independent
of one another and {Z′i} and {Z̃j}. Let Z′n′ and Z̃n′′ be the Poisson processes {Z′1, . . . , Z′Mn′

} and

{Z̃1, . . . , Z̃Nn′′
}. Likewise Appendix A.4, set R′n′ ,n′′ = R(Z′n′ , Z̃n′′). Applying Lemma 1, and (12) in [13],

we can write ∣∣∣R′n′ ,n′′ −Rn′ ,n′′
∣∣∣ ≤ cd

(
|Mn′ − n′|+ |Nn′′ − n′′|). (A17)

Here cd denotes the largest possible degree of any vertex of the MST in Rd. Following the
arguments in [46], we have E

[∣∣Mn′ − n′
∣∣] = O

(
n′1/2) and E

[∣∣Nn′′ − n′′
∣∣] = O

(
n′′1/2). Hence

E
[
Rn′ ,n′′

]
n′ + n′′

=
E
[
R′n′ ,n′′

]
n′ + n′′

+ O
(

cd(n′ + n′′)−1/2
)

. (A18)

Next let n′i and n′′i be independent binomial random variables with marginal densities B(n′, ail−d)

and B(n′′, bil−d) such that ai, bi are non-negative constants ai ≤ bi and
ld

∑
i=1

ail−d =
ld

∑
i=1

bil−d = 1.

Therefore, using the subadditivity property in Lemma 2.2, [46], we can write

E
[
R′n′ ,n′′

]
≤

M

∑
i=1

E
[
E
[
R′n′i ,n

′′
i
|n′i, n′′i

]]
+ 2 c1 ld−1(n′ + n′′)1/d, (A19)

where M = ld, and η > 0 is the Hölder smoothness parameter. Furthermore, for given n′i, n′′i , let

W
n′i ,n

′′
i

1 , W
n′i ,n

′′
i

2 , . . . be independent variables with common densities for (x, y) ∈ Rd ×Rd:

gn′i ,n
′′
i
(x, y) =

(
n′i fXY(x, y) + n′′i f̃X̃Ỹ(x, y)

) /
(n′i + n′′i ).

Denote Ln′i ,n
′′
i

be an independent Poisson variable with mean n′i + n′′i and F′n′i ,n
′′
i

={
W

n′i ,n
′′
i

1 , . . . , W
n′i ,n

′′
i

Ln′i .n′′i

}
a non-homogeneous Poisson of rate n′i fXY + n′′i f̃X̃Ỹ. Let Fn′i ,n

′′
i

be the non-Poisson

point process
{

W
n′i ,n

′′
i

1 , . . . W
n′i ,n

′′
i

n′i+n′′i

}
. Assign a mark from the set {1, 2} to each point of F′n′i ,n′′i

. Let Z̃′n′i
be the sets of points marked 1 with each probability n′i fXY(x, y)

/(
n′i fXY(x, y) + n′′i f̃X̃Ỹ(x, y)

)
and let

Z̃′′n′′i
be the set points with mark 2. Please note that owing to the marking theorem [47], Z̃′n′i

and Z̃′′n′′i
are

independent Poisson processes with the same distribution as Z′n′i
and Z̃n′′i

, respectively. Considering

R̃′n′i ,n
′′
i

as FR test statistic on nodes in Z̃′n′i
∪ Z̃′′n′′i

, we have

E
[
R′n′i ,n

′′
i
|n′i, n′′i

]
= E

[
R̃′n′i ,n

′′
i
|n′i, n′′i

]
.

By the fact that E
[
|Mn′ + Nn′′ − n′ − n′′|

]
= O((n′ + n′′)1/2), we have

E
[
R̃′n′i ,n

′′
i
|n′i, n′′i

]
= E

[
E
[
R̃′n′i ,n

′′
i
|F′n′i ,n′′i

]]

= E

 ∑ ∑
s<j<n′i+n′′i

Pn′i ,n
′′
i
(W

n′i ,n
′′
i

s , W
n′i ,n

′′
i

j ) 1
{
(W

n′i ,n
′′
i

s , W
n′i ,n

′′
i

j ) ∈ Fn′i ,n
′′
i

}+ O
(
(n′i + n′′i )

1/2)
)

.

Here z′ = (x′, y′), z′′ = (x′′, y′′), and Pn′i ,n
′′
i
(z′, z′′) is given in below:
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Pn′i ,n
′′
i
(z′, z′′) := Pr

{
mark z′ 6= mark z′′, (z′, z′′) ∈ Fn′i ,n

′′
i

}

=
n′i fXY(x′, y′)n′′i f̃X̃Ỹ(x

′′, y′′) + n′i f̃X̃Ỹ(x
′, y′)n′′i fX,Y(x′′, y′′)(

n′′i fXY(x′, y′) + n′′i f̃X̃Ỹ(x
′, y′)

) (
n′1 fXY(x′′, y′′) + n′′i f̃X̃Ỹ(x

′′, y′′)
) .

Next set

αi = n′aild (1− ail−d) + n′2a2
i , βi = n′′bild (1− bil−d) + n′′2b2

i .

By owing to the Lemma B.6 in [46] and applying analogous arguments, we can rewrite the
expression in (A20):

E
[
R′n′ ,n′′

]
≤

M

∑
i=1

aibil−d
∫∫ 2 n′n′′ fXY(x, y) fX̃Ỹ(x, y)

n′ai fX,Y(x, y) + n′′bi fX̃Ỹ(x, y)
dx dy + 2c1 ld−1(n′ + n′′)1/d

+
M

∑
i=1

2
∫∫ fXY(x, y) fX̃Ỹ(x, y)

(
αiβi

(
n′ail−d f 2

XY(x, y) + n′′bil−d f 2
X̃Ỹ

(x, y)
))1/2

(
n′ai fXY(x, y) + n′′bi fX̃Ỹ(x, y)

)2 dxdy

+
M

∑
i=1

En′i ,n
′′
i

[
(n′i + n′′i ) ςη(l, n′i, n′′i )

]
+ O

(
ld(n′ + n′′)1−η/d

)
+ O

(
ld(n′ + n′′)1/2

)
,

(A20)

where

ςη(l, n′i, n′′i ) =
(

O
( l

n′i + n′′i

)
− 2 ld

n′i + n′′i

) ∫
gn′i ,n

′′
i
(z′)Pn′i ,n

′′
i
(z′, z′) dz′ + O(l−dη).

Going back to Lemma A3, we know that

fX̃Ỹ(x, y) = fX(x) fY(y) + O
(

1
βn

)
.

Therefore, the first term on the RHS of (A20) is less and equal to

M

∑
i=1

aibil−d
∫∫ 2 n′n′′ fXY(x, y) fX(x) fY(y)

n′ai fX,Y(x, y) + n′′bi fX(x) fY(y)
dx dy

+

(
δ f

βn

) M

∑
i=1

aibil−d
∫∫ 2 n′n′′ fXY(x, y)

n′ai fXY(x, y) + n′′bi fX(x) fY(y)
dx dy,

and the second term is less and equal to

M

∑
i=1

2
∫∫

fXY(x, y)
(

fX(x) fY(y) + δ f
/
(βn)

)(
αiβi

(
n′ail−d f 2

XY(x, y) + n′′bil−d( fX(x) fY(y)

+δ f
/
(βn)

)2
))1/2/ (

n′ai fXY(x, y) + n′′bi fX(x) fY(y)
)2 dxdy,

where
δ f =

∫∫ ∣∣∣ fXY(x, y)− fX(x) fY(y)
∣∣∣ dxdy.

Recall the definition of the dual MST and FR statistic denoted by R∗n′ ,n′′ following [46]:
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Definition A1. (Dual MST, MST∗ and dual FR statistic R∗m,n) Let Fi be the set of corner points associated
with a particular subsection Qi, 1 ≤ i ≤ ld of [0, 1]d. Define the dual MST∗(Xm ∪Yn ∩Qi) as the boundary
MST graph in partition Qi [48], which contains Xm and Yn points falling inside partition cell Qi and those
corner points in Fi which minimize total MST length. Please note that it is allowed to connect the MSTs in
Qi and Qj through points strictly contained in Qi and Qj and therefore corner points. Thus, the dual MST
can connect the points in Qi ∪Qj by direct edges to pair to another point in Qi ∪Qj or by passing through the
corner the corner points which are all connected in order to minimize the total weights. To clarify, assume that
there are two points in Qi ∪ Qj, then the dual MST consists of the two edges connecting these points to the
corner if they are closer to a corner point otherwise the dual MST connects them to each other.

Furthermore, R∗m,n(Xm,Yn ∩Qi) is defined as the number of edges in the MST∗ graph connecting
nodes from different samples and number of edges connecting to the corner points. Please note that
the edges connected to the corner nodes (regardless of the type of points) are always counted in the
dual FR test statistic R∗m,n.

Similarly, consider the Poisson processes samples and the FR test statistic over these samples,
denoted by R′∗n′ ,n′′ . By superadditivity of the dual R∗n′ ,n′′ [46], we have

E
[
R′∗n′ ,n′′

]
≥

M

∑
i=1

ai l−d
∫∫ 2n′n′′ fXY(x, y)

(
fX(x) fY(y)− δ f /(βn)

)
n′ fXY(x, y) + n′′

(
fX(x) fY(y)− δ f /(βn)

) dxdy

−
M

∑
i=1

En′i ,n
′′
i

[
(n′i + n′′i ) ςη(l, n′i, n′′i )

]
−O

(
ld(n′ + n′′)1−η/d

)
−O

(
ld(n′ + n′′)1/2

)
− c2 ld.

(A21)

The first term of RHS in (A21) is greater or equal to

∫∫ 2n′n′′ fXY(x, y) fX(x) fY(y)
n′ fXY(x, y) + n′′ fX(x) fY(y)

dxdy−
δ f

βn

∫∫ 2n′n′′ fXY(x, y)
n′ fXY(x, y) + n′′ fX(x) fY(y)

dxdy.

Furthermore,
E
[
R′n′ ,n′′

]
n

+
cd2d

n
≥

E
[
R′∗n′ ,n′′

]
n

,

where cd is the largest possible degree of any vertex of the MST in Rd, as before. Consequently, we have

∣∣∣∣E
[
R′n′ ,n′′

]
n

−
∫∫ 2αβ fXY(x, y) fX(x) fY(y)

α fXY(x, y) + β fX(x) fY(y)
dxdy

∣∣∣∣ ≤ B(α, fXY, fX fY), (A22)

where B is defined in (A16) and Aβ,α
f ,n(x, y) has been introduced in (A14). The last line in (A22) follows

from the fact that

M

∑
i=1

En′i ,n
′′
i

[
(n′i + n′′i ) ςη(l, n′i, n′′i )

]
≤

M

∑
i=1

O(l)
∫∫

l−d/2
√

bi A
β,n′/n
f ,n (x, y)dxdy

+
M

∑
i=1

O(l)
∫∫

ld(ai)
−1

2 fXY(x, y)
(

fX(x) fY(y) + O(δ f
/
(βn))

)
n′ fXY(x, y) + n′′ fX(x) fY(y)

dxdy.

Here Aβ,n′/n
f ,n (x, y) is given as (A14) by substituting n′/n in α such that β = 1− α. Hence, the

proof of Theorem A1 is completed.
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Going back to the proof of (13), without loss of generality assume that (n)l−d > 1, for d ≥ 2 and
0 < η ≤ 1. We select l as a function of n and β to be the sequence increasing in n which minimizes the
maximum of these rates:

l(n, β) = arg min
l

max
{

ld(n)−η/d, l−ηd, ldβ−1n−1, cd2dn−1
}

. (A23)

The solution l = l(n, β) is obtained when ld(n)−η/d = l−ηd, or equivalently l = b(n)η/(d2(η+1))c
or when ldβ−1n−1 = l−ηd, which implies l = b(β n)1/(d(1+η))c. Substitute this l in the bound (A13) to
obtain the RHS expression in (13) for d ≥ 2.

Appendix A.6.

Our main goal in Section 2.4 was to find proportion α such that the parametric MSE rate depending
on the joint density fXY and marginal densities fX, fY is minimized. Recalling the explicit bias
bound in (A16), it can be seen that this function will be a complicated function of fXY, fX fY and α.
By rearrangement of terms in (A13), we first find an upper bound for ∆ in (A16), denoted by ∆, as
follows:

∆(α, fXY, fX fY) = D(n, ln, d, η) + D̃(n, ln, d)EXY

[
Gα,β

f ,n(X, Y)
]
, (A24)

where ln :=
⌊
nη/(d2(1+η))

⌋
. From Appendix A.5 we know that optimal l is given by (A23). One can

check that for α ≤ 1− n(η/d)−1, the optimal l =
⌊
nη/(d2(1+η))

⌋
provides a tighter bound. In (A24),

the constants D and D are

D(n, ln, d, η) = c2ld
nn−1 + cd2dn−1 + c′ld

nn−η/d + cld
nn−1/d + 2c1ld−1

n n1/d−1 + c3l−dη
n , (A25)

D̃(n, ln, d) = 2 + n−12c′′
M

∑
i=1

ln ld
na−1

i + n−3/22c′1
M

∑
i=1

ln ld/2
n
√

bia2
i

+n−1
M

∑
i=1

2n−3/2l−d/2
n

√
bi

a2
i

(
naild

n + n2a2
i
)1/2(nbild

n + n2b2
i
)1/2.

(A26)

And the function Gα,β
f ,n(x, y) is given as the following:

Gα,β
f ,n(x, y) =

(
fX(x) fY(y) + δ f

/
(nβ)

) (√
α fXY(x, y)

+
√

β
(

fX(x) fY(y) + δ f
/
(βn)

)/
(α fXY(x, y) + β fX(x) fY(y))

2 ,

(A27)

where δ f is given in (A15). Next After all still the expression (A27) is complicated to optimize therefore

we use the fact that 0 ≤ α, β ≤ 1 to bound the function Gα,β
f ,n(x, y). Define the set Γ

Γ :=
{

εXY :
∣∣εXY(t)− εXY(t′)

∣∣ ≤ K‖t− t′‖η
d

}
,

where
K = CU

ε K
{

CL
XY + CL

X + CL
YCL

XCU
X

}
.

Here K is the smoothness constant in the Hölder class. Notice that set Γ is a convex set. We bound
∆ by

∆̃(α, εXY) = D(n, ln, d, η) + D̃(n, ln, d) CU
XY

∫∫
SXY

G̃α,β
εXY ,n(x, y) dxdy. (A28)
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Set Cn = CL
XY n/2,

G̃α,β
n (εXY) =

(
ε−1

XY(x, y) + (βCn)−1)(1 + ε−1
XY(xy) + (βCn)−1

)
(

α + βε−1
XY(x, y)

)2 . (A29)

This simplifies to

G̃α,β
n (εXY) =

(
1 + (βCn)−1εXY

)(
1 + εXY + (βCn)−1εXY

)
(

αεXY + β
)2 . (A30)

Under the condition
2

Cn
≤ α ≤ min

{
1
2
+

1
2Cn

,
1
3
+

2
3Cn

}
, (A31)

G̃α,β
n (εXY) is an increasing function in ε. Furthermore, for α ≤ 1

4
and

CL
ε ≤ εXY ≤ min

{
CU

ε , θU(α)
}

, where θU(α) =
1− 4α + 1/Cn

2α
, (A32)

the function G̃α,β
n (εXY) is strictly concave. Next, to find an optimal α we consider the following

optimization problem:
min

α
max
εXY∈Γ

∆̃(α, εXY) + cd(1− α)n−1

subject to CL
ε ≤ εXY ≤ CU

ε ,
(A33)

here εXY = fXY
/

fX fY, CU
ε = CU

XY
/

CL
XCL

Y and CL
ε = CL

XY
/

CU
X CU

Y , such that CL
ε ≤ 1. We know that

under conditions (A31) and (A32), the function G̃α,β
n is strictly concave and increasing in εXY. We first

solve the optimization problem:

max
εXY∈Γ

∫∫
SXY

G̃α,β
n
(
εXY(x, y)

)
dxdy

subject to θL
ε (α)V(SXY) ≤

∫∫
SXY

εXY(x, y)dxdy

≤ θU
ε (α)V(SXY),

(A34)

where
θL

ε (α) := CL
ε , θU

ε (α) := min{CU
ε , θU(α)}. (A35)

The Lagrangian for this problem is

L(εXY, λ1, λ2) =
∫∫

SXY

G̃α,β
n
(
εXY(x, y)

)
dxdy− λ1

(∫∫
SXY

εXY(x, y) dxdy− θU
ε (α)V(SXY)

)

−λ2

(
θL

ε (α)V(SXY)−
∫∫

SXY

εXY(x, y) dxdy
)

.

In this case, the optimum ε∗XY is bounded, θL
ε (α) ≤ ε∗XY ≤ θU

ε (α), and the Lagrangian multiplier
λ∗1 , λ∗2 ≥ 0 is such that

min
λ1,λ2≥0

max
εXY∈Γ

L(εXY, λ1, λ2) = L(ε∗XY, λ∗1 , λ∗2).
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Set G′n(εXY) =
d

dεXY
G̃α,β

n (εXY). In view of the concavity of G̃α,β
εXY ,n and Lemma 1, page 227 in [49],

maximizing L(εXY, λ∗1 , λ∗2) over εXY is equivalent to∫∫
SXY

{
G′n
(
ε∗XY(x, y)

)
− (λ∗1 − λ∗2)

}
εXY(x, y) dxdy ≤ 0, (A36)

for all θL
ε (α) ≤ ε∗XY ≤ θU

ε (α), and∫∫
SXY

{
G′n
(
ε∗XY(x, y)

)
− (λ∗1 − λ∗2)

}
ε∗XY(x, y) dxdy = 0. (A37)

Denote G′−1
n the inverse function of G′n. Since G′n is strictly decreasing in ε∗XY (this is because

G̃α,β
n (εXY) is strictly concave, so that G′−1

n is continuous and strictly decreasing in ε∗XY). From (A36) and
(A37), we see immediately that on any interval θL

ε (α) ≤ ε∗XY ≤ θU
ε (α), we have ε∗XY = G′−1

n (λ∗1 − λ∗2).
We can write then

G′n
(
θU

ε (α)
)
≤ λ∗1 − λ∗2 ≤ G′n

(
θL

ε (α)
)
,

and λ∗1 , λ∗2 ≥ 0. Next, we find the solution of

min
λ1,λ2≥0

Gα,β
n (λ1, λ2), where

Gα,β
n (λ1, λ2) = V(SXY)

{
G̃α,β

n
(
G′−1

n (λ1 − λ2)
)
− (λ1 − λ2)G′

−1
n (λ1 − λ2) + λ1θU

ε (α)− λ2θL
ε (α)

}
.

The function Gα,β
n (λ1, λ2) is increasing in λ1 and λ2, and therefore it takes its minimum at

(λ∗1 , λ∗2) = (G′n
(
θU

ε (α)
)
, 0). This implies that ε∗XY = θU

ε (α). Returning to our primary minimization
over α:

min
α

∆̃(α, ε∗XY) + cd(1− α)n−1

subject to αL
0 ≤ α ≤ αU

0 ,
(A38)

where αL
0 =

2
Cn

and αU
0 = min

{1
4

, 1− nη/d−1
}

. We know that
1
4
≤ 1

3
+

2
3Cn

and
1
4
≤ 1

2
+

1
2Cn

,

therefore the condition below
2

Cn
≤ α ≤ min

{1
4

, 1− nη/d−1
}

,

implies the constraint αL
0 ≤ α ≤ αU

0 . Since the objective function (A38) is a complicated function in
α, it is not feasible to determine whether it is a convex function in α. For this reason, let us solve the
optimization problem in (A38) in a special case when CU

ε ≤ θU(α). This implies ε∗XY = CU
ε . Under

assumption CU
ε the objective function in (A38) is convex in α. Also, the case CU

ε ≤ θU(α) is equivalent

to α ≤ 1 + 1/Cn

4 + 2CU
ε

. Therefore, in the optimization problem we have constraint

2
Cn
≤ α ≤ min

{1
4

,
1 + 1/Cn

4 + 2CU
ε

, 1− nη/d−1
}

.

We know that ∆̃(α, ε∗XY) + cd(1− α)n−1 is convex over α ∈ [αL
0 , αU

0 ]. Therefore, the problem
becomes ordinary convex optimization problem. Let α̃, λ̃1 and λ̃2 be any points that satisfy the KKT
conditions for this problem:
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αL
0 − α̃ ≤ 0, α̃− αU

0 ≤ 0, λ̃1, λ̃2 ≥ 0,

λ̃1(α
L
0 − α̃) = 0, λ̃2(α̃− αU

0 ) = 0,

d
dα

(
∆̃(α̃, ε∗XY) + cd(1− α̃) n−1

)
− λ̃1 + λ̃2 = 0.

(A39)

Recall Ξ(α) from (20):

Ξ(α) =
d

dα

(
∆̃(α, ε∗XY) + cd(1− α)n−1

)
,

where ∆̃ is given in (A28). So, the last condition in (A39) becomes Ξ(α̃) = λ̃1 − λ̃2. We then have

αL
0 ≤ Ξ−1(λ̃1 − λ̃2) ≤ αU

0 ,

where Ξ−1 is inverse function of Ξ. Since αL
0 6= αU

0 , at least one of λ̃1 or λ̃2 should be zero:

• λ̃1 = 0, λ̃2 6= 0. Then α̃ = αU
0 and implies λ̃2 = −Ξ(αU

0 ). Since λ̃2 > 0, so this leads to Ξ(αU
0 ) < 0.

• λ̃2 = 0, λ̃1 6= 0. Then α̃ = αL
0 and implies λ̃1 = Ξ(αL

0 ). We know that λ̃1 > 0, hence Ξ(αL
0 ) > 0.

• λ̃1 = 0, λ̃2 = 0. Then α̃ = Ξ−1(0) and so αL
0 ≤ Ξ−1(0) ≤ αU

0 .

Consequently, by following the behavior of Ξ(α) with respect to αL
0 and αU

0 , we can often find the
optimal α̃, λ̃1 and λ̃2. For instance, if Ξ(α) is positive for all α ∈ [αL

0 , αU
0 ] then we conclude that α̃ = αL

0 .
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