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Abstract: This paper presents the entropic damage indicators for metallic material fatigue processes
obtained from three associated energy dissipation sources. Since its inception, reliability engineering
has employed statistical and probabilistic models to assess the reliability and integrity of components
and systems. To supplement the traditional techniques, an empirically-based approach, called physics
of failure (PoF), has recently become popular. The prerequisite for a PoF analysis is an understanding
of the mechanics of the failure process. Entropy, the measure of disorder and uncertainty, introduced
from the second law of thermodynamics, has emerged as a fundamental and promising metric to
characterize all mechanistic degradation phenomena and their interactions. Entropy has already been
used as a fundamental and scale-independent metric to predict damage and failure. In this paper, three
entropic-based metrics are examined and demonstrated for application to fatigue damage. We collected
experimental data on energy dissipations associated with fatigue damage, in the forms of mechanical,
thermal, and acoustic emission (AE) energies, and estimated and correlated the corresponding
entropy generations with the observed fatigue damages in metallic materials. Three entropic
theorems—thermodynamics, information, and statistical mechanics—support approaches used to
estimate the entropic-based fatigue damage. Classical thermodynamic entropy provided a reasonably
constant level of entropic endurance to fatigue failure. Jeffreys divergence in statistical mechanics
and AE information entropy also correlated well with fatigue damage. Finally, an extension of
the relationship between thermodynamic entropy and Jeffreys divergence from molecular-scale
to macro-scale applications in fatigue failure resulted in an empirically-based pseudo-Boltzmann
constant equivalent to the Boltzmann constant.

Keywords: physics of failure; prognosis and health management; entropy as damage; fatigue; entropy
generation; acoustic emission; information entropy; thermodynamic entropy; Jeffreys divergence

1. Introduction

Prognostics and health management (PHM) is a promising method in reliability engineering to
supplement traditional life assessments. The traditional damage measurements in fatigue, for example,
crack growth and load-carrying capacity reduction, are detectable only in the later stages of life and are
ineffective in characterizing damage during the earlier periods of life [1]. In contrast, PHM-based life
estimation and prognosis incorporates related monitored damage variables into deterministic physics
of failure (PoF) models [2–6]. In data-driven prognostics in PHM, observed damage precursors, such
as initiation of very small cracks, are collected during system operation and are used to estimate the
so-called remaining useful life (RUL) [5,7]. The approaches used to meet the requirements of early life
prediction include the uses of entropy. Examples of entropic theories of damage for life prediction
include the degradation-entropy generation (DEG) theorem [8] and the principle of maximum entropy
(PME) [9–13]. The maximum entropy (MaxEnt) distribution, according to the PME, is the best choice to
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capture the state of knowledge and information about damage (e.g., measured PHM data). However,
thermodynamic entropy, according to the DEG theorem, offers a direct representation of damage [8,14].
Both entropic representations offer powerful foundations for early life fatigue prediction.

Entropy, according to the DEG theorem, is based on irreversible thermodynamics and can be
used to depict the endurance to failure, such as cycles to crack initiation or fracture [14,15]. Pioneering
works in entropic approaches have verified successful applications to several failure mechanisms,
such as fatigue, corrosion, and wear. These entropies are derived from sources of irreversible energy
dissipation [14–17]. In the case of fatigue damage, irreversible energy dissipations include plastic
mechanical work, heat, and acoustic emission [18]. A popular entropic approach in fatigue is to
use plastic strain energy and surface temperature [19,20]. In this approach, the existence of a fixed
entropic endurance, irrespective of the underlying conditions that lead to fatigue damage and failure,
is experimentally verified. It has resulted in good agreement with the DEG theorem. Another approach
has used acoustic energy dissipation during fatigue in the form of generated acoustic emission (AE)
waveforms, where associated information entropy typically correlates well with the amount of the
fatigue damage [21].

Strain energy dissipation during the cyclic fatigue loading and unloading also appears to apply to
the relative entropy. Crooks et al. [22] have shown that the Kullback–Leibler divergence computed
from loading/unloading distributions is equivalent to the thermodynamic entropy when distributions
of loading/unloading processes are measurable. This concept was demonstrated by Collin et al. [23],
who measured thermal dissipation in the unfolding/folding process of a ribonucleic acid (RNA) strand.
Loading/unloading work distributions were also used by Douarche et al. [24] to measure a brass wire’s
cyclic torsional work and assess the Helmholtz free energy difference. In practical applications, relative
entropy in cyclic mechanical work can be computed without the need for temperature information,
which provides a potentially simpler entropic damage assessment than the classical thermodynamics.

This paper presents the entropic damage measurements from dogbone coupons that were fatigue
tested using three energy dissipations: Plastic mechanical work, thermal energy, and AE. In these
approaches, uses of the classical thermodynamics, information (Shannon), and relative entropy were
evaluated and discussed in the context of PHM applications. In the proposed approach, relative
entropy uses in fatigue damage is new; however, the paper also compares the relationship between
these three entropic measures and discusses their applicability to fatigue failures.

In the remainder of this paper, Section 2 provides reviews of the three entropic theorems and
discusses the relative entropy in the context of the fatigue damage process. Section 3 presents the
experimental setup, including specimen design, cyclic loading conditions, sensor attachments, and data
collection. Section 4 presents the results that support the DEG theorem demonstrated by each entropic
approach and discusses the applications and results. Finally, the conclusion section summarizes
the results.

2. Fatigue Damage Evaluation Using Three Entropy Measures

According to Lemaitre [1], measurements of fatigue damage include changes detected in crack
length, elastic modulus, micro-hardness, ultrasonic wave, and electric resistance. These measurements,
also called the markers of damage, are often only detectable when 10–20% of life remains, which is
too late for effective prognostic and corrective actions [7]. Therefore, during the early period of life,
the assessment of damage must rely on deterministic life models, which tend to be highly uncertain,
variable, and conservative [16].

Amiri and Modarres [16] have summarized and delineated fatigue damage scales into nano-,
micro-, meso-, and macro-scales. Thus, the damage measurement scale evolves from the very small
to larger scales, and it is only in the macro-scale that damage can be detected. As such, the lack of
detectable damage is highly scale-dependent. However, the damage measurement through the second
law of thermodynamics suggests a universal methodology that applies to all the scales discussed above.
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Entropic metrics of damage have been proposed and utilized in engineering applications.
Basaran [17,25] and Bryant [14] introduced thermodynamic concepts to assess damage in specific
failure modes. Based on irreversible thermodynamic processes, these studies considered the
degradation-induced dissipated energy or entropy as a reflection of the cumulative damage process.
Amiri and Modarres [16] reviewed entropy for various failure mechanisms, including fatigue, corrosion,
and wear, and discussed the corresponding irreversible thermodynamic forces and fluxes used to
calculate entropy generation. They reviewed in more detail the DEG theorem, including the concept of
entropic endurance introduced by Imanian and Modarres [26]. Experimental results have supported
this theorem for fatigue failures [15,19,20] by demonstrating that fatigue fracture occurs at a relatively
fixed entropic endurance level regardless of the underlying loading profiles. Figure 1 presents an
example confirming this entropic theorem.
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Figure 1. Cumulative entropy for various fatigue test loading conditions. The entropic data points
show that the thermodynamic entropy has an endurance level to failure, irrespective of the path to
failure. The cyclic bending loading was applied to each specimen with the amplitude of 25–50 mm.
Entropic endurance raw data were from Figure 6 of Naderi et al. [19].

From the irreversible thermodynamics, the dissipative entropy generation may be expressed in
the form of Equation (1) [15,16,26]:

σ =
∑

i

Xi Ji (1)

This equation is bilinear, where Xi is the thermodynamic force and Ji is the flux due to the
dissipation mechanism i. Depending on the sources of energy dissipation, Amiri and Modarres [16]
presented the entropy generation in its most general form, as shown in Equation (2) [15]:
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where σ is the entropy generation rate, Jq is the thermodynamic flux due to heat conduction, Jk is the
thermodynamic flux due to diffusion, µk is the chemical potential, τ is the mechanical stress, εp is the
plastic strain, ν j is the chemical reaction rate, A j is the chemical affinity, cm is the coupling constant, Jm

is the thermodynamic flux due to the external field, and ψ is the potential of the external field.
In this equation, the five terms on the right-side are sources of thermodynamic entropy generation

that include heat, diffusion, mechanical work, chemical reaction, and external field effect, respectively.
In the fatigue damaging process, heat and mechanical work terms are involved. Naderi et al. [19]
numerically calculated the dissipative entropy by using only the mechanical work term, assuming that
plastic deformation is the dominant term and the heat conduction effect is negligible, as presented in
Figure 1. This assumption was also empirically verified by Imanian et al. [15] and Ontiveros et al. [20],
In addition, the concept of entropic endurance was further confirmed by Imanian et al. [15], who
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measured the interacting thermodynamic forces in a coupled failure mechanism, corrosion-fatigue.
Summation of entropies from both mechanical work (fatigue) and chemical reactions (corrosion)
contributed to the total entropic endurance at the point of fatigue failure.

In addition to the heat and mechanical work, AE has been considered another source of irreversible
energy dissipation. Kahirdeh and Khonsari [18] regarded AE absolute energy as an AE waveform
feature and a damage indicator. However, the entropic approach was not investigated as a part of their
AE-based damage research. The recorded data from the AE sensor was digitized into the so-called
waveforms. The AE information (Shannon) entropy may be characterized by the associated probability
distribution in the form of a histogram representing each recorded waveform. Hughes [27] introduced
information entropy from digitized waveform data collected from ultrasonic tests. Likewise, for
specific features of the waveforms, such as the count rate, information entropy has been applied to AE
waveforms to assess the entropy of the waveform signals and empirically establish any correlation
between the increasing entropy and the ensuing progression of the fatigue damage observed. Digitized
data is processed to a corresponding discrete histogram (expressed in p(xi)), and the entropy is
computed using Equation (3):

S = −
∑

i

p(xi) log p(xi) (3)

Sauerbrunn et al. [21] used Equation (3) to calculate information entropy using collected AE
waveforms from many fatigue tests. In their research, the AE waveform was shown to be a more
appropriate damage indicator than the traditional AE features, such as count and energy.

In addition to the thermodynamic entropy and information (Shannon) entropy, the third approach
to entropic damage explored as a new damage metric in this paper relies on the statistical mechanics
definition of entropy, which provides relative entropy from energy dissipation modes during the
fatigue damage process. Forward and reverse work distribution functions applied during the cyclic
loading in fatigue can be related to the thermodynamic work and free energy. The so-called Crooks
fluctuation theorem expressed in Equation (4) is one such relationship [28]:

π f (+W)

πr(−W)
= exp

[W − ∆F
kBT

]
(4)

where π f (+W) and πr(−W) in the content of the fatigue damage process may be interpreted as the
forward and reverse work distributions over many load cycles, respectively, W is the net strain energy
dissipated, ∆F is the Helmholtz free energy difference, kB is the Boltzmann constant (1.381× 10−23 J/K),
and T is the temperature. Equation (4) has been applied to nano-scale systems, such as ribonucleic acid
(RNA) strands, by introducing forward/reverse work to measure the Helmholtz free energy difference
(∆F) as the RNA system’s inherent property [23]. This paper introduces an extension of this notion
into a macro-scale system (i.e., fatigue) and examines its consistency with a fatigue damage assessment
based on traditional thermodynamic entropy and information entropy.

By using the second law of thermodynamics and the Helmholtz free energy definition, Equation (4)
can be converted to calculate the total entropy, as shown in Equation (5):

∆Stot = kB ln
(
π f (+W)

πr(−W)

)
(5)

According to the fluctuation theorem, the unloaded/fully-loaded points should be determined in
thermodynamic equilibrium, whereas the loading/unloading in the fatigue process does not require
the equilibrium condition. In addition, the source of the fluctuation is only thermal energy dissipation.
However, these conditions may be invalid when applied to the macro-scale fatigue damage evaluation.
Both the thermodynamic conditions and the mathematical implementation of Equation (5) may have
limitations. Regardless of the unsettled extension of this theorem to the macro-scale, this research is
inspired by the forward/reverse work convention and seeks to empirically investigate the application
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of this notion to assess fatigue damage. Crooks and Sivak [22] discuss measures of the trajectory
ensemble. Consistent with Crooks and Sivak results, relative entropy and Jeffreys divergence (JD)
effectively capture the symmetric hysteresis properties of the fatigue phenomenon. Furthermore, in the
molecular-scale, JD is related to the classical thermodynamic entropy through the Boltzmann constant.

The relative (divergence) entropy in continuous distribution form is shown in Equation (6) [22]:

D(π f | πr) =

∫
π f (+W) ln

(
π f (+W)

πr(−W)

)
dW (6)

Relative entropy may be interpreted in the classical thermodynamics as the total entropy
difference [22]:

D(π f | πr) =
1

kBT

(
〈Wdiss〉 f

)
= 1

kBT

(
〈W〉 f − ∆F

)
= 1

kBT

(
〈W〉 f − ∆〈E〉 f + kBT∆Ssys

f

)
= − 1

kBT 〈Q〉 f + ∆Ssys
f = ∆Senv

f + ∆Ssys
f = ∆Stot

f

(7)

where, in the nano-scale, kB is the Boltzmann constant (1.381× 10−23 J/K), T is the temperature, 〈W〉 f is
the mean work in the process f (forward work), 〈Wdiss〉 f is the mean dissipative work, ∆〈E〉 f is the
mean internal energy difference, 〈Q〉 f is the mean heat dissipation, ∆Ssys

f is the entropy change within

the system, ∆Senv
f is the entropy dissipated to the environment, and ∆Stot

f is the total entropy during
the process f. The relative entropy in the process f is interpreted as the product of the thermodynamic
dissipative work

(
〈W〉 f − ∆F

)
and the constant

(
1

kBT

)
. Consistent with its definition, the Helmholtz

free energy difference, ∆F, expands to the sum of internal energy (∆〈E〉 f ) and the product of system
entropy difference (∆Ssys

f ) and the constant (−kBT). Considering the first law of thermodynamics, the
mean work and mean internal energy difference become the product of the mean heat dissipation
(〈Q〉 f ) and the constant

(
−

1
kBT

)
, which is expressed in terms of the entropy difference dissipated to

the environment. Therefore, the relative entropy in the process f is expressed by the total entropy

difference
(
∆Stot

f

)
. The relative entropy of the reverse process is:

D(πr | π f ) =
1

kBT (〈Wdiss〉r) =
1

kBT (〈W〉r + ∆F) = 1
kBT

(
〈W〉r − ∆〈E〉r + kBT∆Ssys

r

)
= − 1

kBT 〈Q〉r + ∆Ssys
r = ∆Senv

r + ∆Ssys
r = ∆Stot

r
(8)

For the reverse process r, it should be noted that, unlike the forward process, the Helmholtz free
energy difference, ∆F, should be expressed with the positive sign.

Summing Equations (7) and (8) is defined as the JD and represents the dissipative thermodynamic
entropy as related to the hysteresis associated with the cyclic loadings in fatigue [22]:

Je f f reys
(
π f ;πr

)
= D

(
π f | πr

)
+ D

(
πr | π f

)
= ∆Senv

f + ∆Ssys
f + ∆Senv

r + ∆Ssys
r

= ∆Senv
f + ∆Senv

r = ∆Senv.
(9)

In Equation (9), the terms ∆Ssys
f and ∆Ssys

r are canceled out, and the only term remaining is the
dissipative entropy. Therefore, JD, from the statistical mechanics, corresponds to the thermodynamic
entropy as described in the classical thermodynamics. Additionally, JD is only computed by strain
energy distributions in fatigue.

3. Experimental Setup and Fatigue Damage Entropy Analyses

3.1. Specimen Preparation: Design, Evaluation, Manufacturing, and Surface Processing

In a series of uniaxial tensile fatigue experiments, stainless steel (SS) 304L was selected as the
testing material. SS304L is a widely used structural material, especially in highly acidic environments.
The properties of this alloy are shown in Table 1. The dogbone-shape specimen was selected and
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designed for fatigue testing under the American Society for Testing and Materials (ASTM) 406
guidelines [29]. To induce the crack formation at the center of the specimen, a V-shaped notch with
KT = 4.04 was designed. The stress concentration factor was calculated using a Peterson’s plot,
provided on the efatigue.com website [30]. The V-shape notch, which has a higher concentration-effect
than a round-shaped notch, was selected in order not to have the crack around the loading hole.
The V-shape notch was designed to minimize the AE noise by reducing the contact area from the noise
source. After the design was selected, uniaxial stress distribution was investigated using the finite
element method (FEM) with the ANSYS Workbench version R16.2 [31]. The maximum stress was
detected at the notch center as expected, and no abnormal stress was found throughout the specimen
geometry. Figure 2 shows the shape and dimensions of the specimen.

Table 1. Mechanical properties and chemical composition of specimen material (stainless steel (SS)
304L (SS304L)).

Mechanical Properties

σU [MPa] σY [MPa] Elongation [%] Hardness [RB *]
613.8 325.65 54.06 85.00

Chemical Composition [w%]

C Cr Cu Mn Mo N Ni P S Si
0.0243 18.06 0.3655 1.772 0.2940 0.0713 8.081 0.0300 0.0010 0.1930

* RB: Rockwell hardness measured on the B scale.

The specimens were manufactured using electrical discharge machining (EDM). A total of 50
specimens were prepared for the series of tests, i.e., five loading conditions and 10 test repetitions.
After cutting out the specimens, the specimen surface around the crack growth area was processed to
clarify the surface image. First, the surface was sanded with increasingly larger grit numbers (grit #
400→ 800→ 2000), then the surface was polished with a polishing pad using one µm alumina solution.
Finally, the etching process was employed using a Carpenters etchant.
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Figure 2. The geometry of the dogbone specimen. The specimen has a hole for loading with a 16 mm
diameter pin and stress concentrated by a V-shape notch. Theoretical stress concentration factors (KT)
are 4.04 for the notch and 3.44 for the hole (pin in tension condition), respectively. The length unit is
in millimeters.

3.2. Cyclic Loading Process

In this uniaxial loading test, a servo-hydraulic testing system was used. An Instron 8800 system
was retrofitted on an MTS 311.11 frame. Each specimen was held and loaded by upper and lower
wedge grips, and the actuator was connected to the lower wedge grip to apply cyclic tensile loading.
The loading conditions were in the range of 16–24 kN maximum loads, 0.1 stress (or loading) ratio,
and 5 Hz frequency. After every 1000 cycles, the cyclic loading was paused and clear microscope
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images were taken. Each test stopped at the pre-set limit of the actuator position (+1.5 mm). Table 2
summarizes the loading conditions.

Table 2. Five test conditions (test group) of uniaxial cyclic loadings. The test groups were categorized
based on their maximum loads. Each group consists of 10 specimens tested successfully.

Max. Load [kN] Test Specimen IDs

Stress ratio 0.1 16 8VA43–8VA 52
Frequency 5 Hz 18 8VA33–8VA 42

# of cycle per block 1000 20 8VA23–8VA 32
Loading duration 200 s 22 8VA13–8VA 22

24 8VA03–8VA 12

3.3. Measurement Setup

3.3.1. Stress and Strain

Load and extension data were collected by the Instron 8800 system [32,33]. A LEBOW 3116-103
load cell monitored loading applied in the specimen, and an Epsilon extensometer model 3542 measured
the extension. The gauge length was 25 mm, and several rubber bands attached the extensometer to
the specimen, centering it over the specimen’s notch. The Instron 8800 system tabulated the load and
extension data with 200 Hz frequency. The raw data of the load and extension were converted to stress
and strain using the specimen geometry information (e.g., the cross-sectional area).

3.3.2. Acoustic Emission

Two Physical Acoustics Micro-30 s resonant sensors were symmetrically attached to the specimen
surface 23 mm from the specimen center. The symmetric sensor placement made it possible to apply
the delta T filtering technique [34] to filter out the AE signals generated, other than the area of interest.
The electric signal from the piezoelectric AE sensors was amplified by the preamplifier in 40 dB gain
mode. Overall control and recording of the AE signal were operated by AEWin SW [34].

3.3.3. Surface Temperature

A thermocouple (Omega 5TC-TT-K-40-36) [35] was attached to the surface of the specimen (close
to the notch tip). The thermocouple was connected to a National Instrument 9211A module and
controlled by NI Labview software [36]. The surface temperature was recorded every half second.

3.3.4. Crack Length Measurement

During the fatigue tests, an optical microscope system (Edmond 2.5–10X microscope body
combined with OptixCam Pinnacle Series CCD digital camera) took images of the crack growth area.
Images were taken every 5 s, controlled by OCView SW [37]. Every 1000 cycles, crack initiation and
propagation were investigated. The crack length was monitored to collect data on the observable
damage, and the material fatigue life was defined as specific crack lengths, e.g., 250 µm.

3.4. Data Analysis: Calculating Entropies

After the tests, entropies were calculated using the collected data. Acoustic emission waveform
data were sorted after filtering, and the valid waveforms were converted to information entropy
according to the equations discussed in Section 2. From the load and extension data, plastic strain
energy was computed for each cycle. Classical thermodynamic entropy was calculated by combining
surface temperature with the corresponding plastic strain energy. Jeffreys divergence was computed
by relying on forward/reverse work distributions, of which the data were collected within the same
test groups and the same proportions of life.
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4. Results and Discussion

In this section, classical thermodynamic entropy is verified with its entropic endurance, then JD
from the forward/reverse work distribution is computed, evaluated, and compared to the classical
thermodynamic entropy results. Information (Shannon) entropy of the detected AE waveform is also
computed, and its correlation with the classical thermodynamic entropy results is discussed.

4.1. Classical Thermodynamic Entropy (CTE)

4.1.1. Entropy Calculation Process

As described in Equation (2), thermodynamic entropy generation is computed by the bilinear
equation of force and flux for each energy dissipation mode. In the fatigue damage process, mechanical
work is the dominating term, as experimentally proved from previous studies [14,20,26]. Plastic strain
energy is computed numerically using discrete stress-strain data. Figure 3 illustrates the process of
plastic strain energy calculation for each cyclic loading. Summation of the forward and reverse work
(strain energy) makes up the plastic strain energy. This forward/reverse work convention is further
used in the JD calculation.
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Figure 3. Strain energy calculation procedure. For each cyclic loading, the stress-strain path is divided
into forward/reverse work processes, and strain energy is separately computed. The summation of two
works is the plastic strain energy or hysteresis.

Temperature, measured by the thermocouple, was recorded every half second during each test.
As an example, Figure 4 shows the temperature measurement of the test 8VA03. After acquiring both
strain energy and temperature, classical thermodynamic entropy was calculated based on the third
term of Equation (3) for each cycle.
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Figure 4. Temperature monitoring during the overall test (8VA03). The ninth damaging loading process
is magnified to highlight the temperature rise during the loading process.

4.1.2. Results and Evaluation of Classical Thermodynamic Entropy

Figure 5a presents the cumulative classical thermodynamic entropy for a series of 10 tests with
22 kN maximum loading (i.e., tests 8VA13–22). For each cumulative entropy plot, the initial trend is
nearly linear, then the slope rapidly increases. Using the calculated life data determined by the crack
length, the cumulative entropy for each life was identified, as shown in Figure 5b.

Figure 6 presents the cumulative entropy at each defined life by the crack length, with respect
to the fatigue loading conditions. Stress amplitude, according to the Smith–Watson–Topper (SWT)
equation, was used as the representative fatigue loading condition [38,39]. The effect of the stress
amplitude (slope in the regression line) diminishes as the crack length of the defining failure decreases.
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Figure 5. (a) Cumulative classical thermodynamic entropy for 10 tests with 22 kN maximum load.
(b) The cumulative entropy measured by crack growth. After every 1000 cycles, the cyclic loading
process was stopped to perform some measurements. This effect is seen as a slight discontinuity in the
plotted curves.
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distribution is more biased toward the plastic zone [38]. Nevertheless, endurances determined from 

the crack length criteria are also valid in the similar measurement setup applications. A similar 
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Figure 6. Classical thermodynamic entropy endurance for each defined life under crack growth. The life
is determined at (a) crack initiation, (b) 250 µm crack, (c) 500 µm crack, (d) 1000 µm crack, (e) transition
(from region II to III of linear elastic fracture mechanics), and (f) fracture, respectively.

The result indicates that entropic endurance has a small positive statistical correlation with the
stress amplitude. The extensometer with 25 mm gauge length measured the strain (global strain),
and the stress field is assumed to be proportional within the gauging area. This assumption is closer
to reality before crack initiation. As the crack grows, the plastic zone area increases, and the stress
distribution is more biased toward the plastic zone [38]. Nevertheless, endurances determined from
the crack length criteria are also valid in the similar measurement setup applications. A similar
entropic endurance behavior was also reported by Ontiveros et al. [20,40,41], who found that the
cumulative strain energy or thermodynamic entropy at the crack initiation mildly increases with the
stress amplitude.

4.2. Jeffreys Divergence: The Entropy of Strain Energy Distributions

4.2.1. Analysis and Results: Distribution of Forward/Reverse Work and JD Calculation

The first step to calculate JD using strain energy is to develop the forward and reverse work
distributions. Forward/reverse work data within the same loading condition test group of fatigue
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tests, and strain energies with the same life ratio, were gathered. In this process, the life (cycles)
was determined as a function of crack length, as described in Section 3.3.4. Ten strain energy data
(i.e., from each test group of the same loading condition and the same life ratio) were fitted to the
3-parameter MaxEnt distribution [12,13]. Figure 7 shows an example of the estimated forward/reverse
work mean and standard deviation with respect to the life ratio, and Figure 8 presents an example of
forward/reverse work distributions at a given life ratio based on the estimated MaxEnt distribution
parameters [12].

Entropy 2019, 21, x 11 of 21 

 

from each test group of the same loading condition and the same life ratio) were fitted to the 3-

parameter MaxEnt distribution [12,13]. Figure 7 shows an example of the estimated forward/reverse 

work mean and standard deviation with respect to the life ratio, and Figure 8 presents an example of 

forward/reverse work distributions at a given life ratio based on the estimated MaxEnt distribution 

parameters [12]. 

  
(a) (b) 

Figure 7. Mean and standard deviation of the collected forward/reverse work data. The data were 

collected from ten 22 kN maximum loading tests, and the failure (100% life ratio) was determined for 

an initial fatigue crack length of 1000 μm. (a) Shows mean (μ) and (b) shows the standard deviation 

(σ). As noted, standard deviations (SD) of work for forward/reverse normal distributions have a 

significant overlap. 

 

Figure 8. Forward/reverse work distributions of 22 kN maximum loading test group at 25% of life. 

The distributions were fitted in the maximum entropy (MaxEnt) distribution model. 

After the parametric estimation for each strain energy data set, relative entropies (both 

�(�� | ��) and �(�� | ��)) were computed using Equation (6). The cumulative JD was calculated and 

plotted, as shown in Figure 9, which presents the cumulative JD for the test group of 16 kN maximum 

load. Similar to the classical thermodynamic entropy, JD is initially linear, then the slope increases as 

the crack grows. 

Figure 7. Mean and standard deviation of the collected forward/reverse work data. The data were
collected from ten 22 kN maximum loading tests, and the failure (100% life ratio) was determined for
an initial fatigue crack length of 1000 µm. (a) Shows mean (µ) and (b) shows the standard deviation
(σ). As noted, standard deviations (SD) of work for forward/reverse normal distributions have a
significant overlap.
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Figure 8. Forward/reverse work distributions of 22 kN maximum loading test group at 25% of life. The
distributions were fitted in the maximum entropy (MaxEnt) distribution model.

After the parametric estimation for each strain energy data set, relative entropies (both D(π f | πr)

and D(πr | π f )) were computed using Equation (6). The cumulative JD was calculated and plotted,
as shown in Figure 9, which presents the cumulative JD for the test group of 16 kN maximum load.
Similar to the classical thermodynamic entropy, JD is initially linear, then the slope increases as the
crack grows.
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In the evaluation of possible fatigue damage measurements, the damage is normalized 
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where �� is the measured damage at time 0 or the pristine state of the specimen, �� is the damage 

at the failure (e.g., fracture), and �� is the damage at a given instance (loading cycle). Depending on 

which crack length is used to determine the failure, �� was differently determined, meaning that, 

for example in the case of crack initiation, �� corresponds to the measured damage at that point. 

The initial application of this damage measure was inspired by the Palmgren–Miner rule [42,43], in 

Figure 9. Cumulative relative entropy (Example: For the test group with 16 kN maximum load).
Each plot represents the case of normalized life at various crack lengths: (a) Crack initiation, (b) 250 µm,
(c) 500 µm, (d) 1000 µm, (e) transition, and (f) fracture.

4.2.2. Evaluation: Correlation to the Classical Thermodynamic Entropy

In the evaluation of possible fatigue damage measurements, the damage is normalized according
to Equation (10) [15,21]:

D =
Mi −M0

M f −M0
(10)

where M0 is the measured damage at time 0 or the pristine state of the specimen, M f is the damage at
the failure (e.g., fracture), and Mi is the damage at a given instance (loading cycle). Depending on
which crack length is used to determine the failure, M f was differently determined, meaning that,
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for example in the case of crack initiation, M f corresponds to the measured damage at that point.
The initial application of this damage measure was inspired by the Palmgren–Miner rule [42,43], in
which the fatigue damage is measured in the proportion of the number of cycles. Not only the number
of cycles, but also several measures, such as crack length, load-carrying capacity, and elastic modulus
degradation have been utilized as measures of damage in the normalized damage [1]. Normalized
entropic damage was first introduced by Imanian and Modarres [15] and used by Sauerbrunn et al. [21].

Figure 10 shows one of the five test groups (10 tests of 16 kN maximum loading) where normalized
cumulative JD is linearly correlated to the normalized reference damage (classical thermodynamic
entropy). The correlation between the JD and the classical thermodynamic entropy is consistent except
at the point of fracture. All the loading groups present this inconsistency at the fracture failure. In case
of large crack lengths, it is shown that the JD underestimates fatigue damage compared to the classical
thermodynamic entropy. The cause of this inconsistency needs to be further investigated.
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Figure 10. Evaluation of Jeffreys divergence (JD) by correlating to the reference damage (classical
thermodynamic entropy (CTE)) as an example of the 16 kN maximum loading test group.
Each correlation plot is drawn by the defined point of failure at (a) crack initiation, (b) 250 µm
crack, (c) 500 µm, (d) 1000 µm, (e) transition, and (f) fracture.
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Jeffreys divergence and thermodynamic entropy in molecular-scale are related through the
Boltzmann constant (kB). However, in the context of the macro-scale application in fatigue using
Equations (5), (7), and (8), classical thermodynamic entropy (CTE) is empirically shown to be related to
JD by the means of the pseudo-Boltzmann constant, kpB, where, in Equation (11), kB changes to kpB.

CTE = kpB· JD (11)

The pseudo-Boltzmann constant kpB, which no longer has the same interpretation and unit as the
Boltzmann constant in our macro-scale application, was computed from the slope of the fitted line
relating the cumulative JD to the mean classical thermodynamic entropy, as shown in Figure 11, with
the slope summarized in Figure 12.
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Figure 11. Linear correlation (with the 0 intercept) between mean CTE and JD (for the ten tests of the
16 kN maximum loading group). Using this correlation, the slope is estimated to correspond to kpB.
Failure is defined at (a) crack initiation, (b) 250 µm crack, (c) 500 µm, (d) 1000 µm, (e) transition, and
(f) fracture.
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Figure 12. The slope (namely the kpB) for each crack-length based failure. The bar of each data point
shows one standard deviation above and below the mean shown. Failure is defined as (1) crack
initiation, (2) 250 µm crack, (3) 500 µm crack, (4) 1000 µm crack, (5) transition, and (6) fracture.

The application of the fluctuation theorem to the macro-scale energy dissipation in the fatigue
test has scale limitations. The comparison of the macro-scale applications in the fatigue tests to the
reported RNA test is detailed in Table 3. In our experiments, the fluctuation source was extended from
the molecular-scale to the macro-scale by changing the measurement mode from thermal to plastic
strain energy in the macro-scale application. In this extension, the fluctuation was assumed to be
caused by multi-scale dimensional variability. In our experimental investigations, the fluctuation was
presented by the formation of forward/reverse strain energy distributions. Furthermore, the converting
factor (namely, the pseudo-Boltzmann constant) shows statistical consistency that further supports
our assumption that JD can be empirically applied as an alternative damage measurement. Further
empirical surveys need to consider other conditions, such as material, geometry, damage mode, and
stress conditions. The pseudo-Boltzmann constant, kpB, can be generalized empirically.

Table 3. Comparison of Crooks fluctuation theorem application to RNA and metal fatigue test.

RNA [23] Metal Fatigue Test

Purpose Finding Helmholtz free energy Assessing the amount of damage

Source of
fluctuation

Thermal energy
Fluctuation in atomic distance

Plastic strain energy
Multi-scale defects (e.g., point defect,
dislocation, volumetric defect, inclusions,
grain structure variability)

Test control
Controlled in displacement
Thermal equilibrium at both
end of displacement points

Controlled tensile load
Thermal equilibrium not controlled

Test repetition

Hundreds of times.
A specimen was repeated with
unfolding/folding process
without regarding the damage

10 fatigue tests repeated with a fixed loading
condition, and strain energy data grouped in
the corresponding damage

Correlating constant
(JD to CTE)

Boltzmann constant
(1.381× 10−23 J/K)

Pseudo-Boltzmann constant estimated from
tests 1.115− 1.560× 10−5 J/m3K (range of the
mean values)

4.3. AE Information Entropy

AE sensors, attached on the specimen surface, collected acoustic energy dissipation in the form of
elastic AE signals (waveform) represented by digitized voltage data. Each waveform file is transformed
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into its equivalent discrete probability distribution, represented by a histogram, and used to quantify
the information entropy, as expressed by Equation (3).

4.3.1. Analysis of Information Entropy (IE)

To calculate information (Shannon) entropy from AE waveform data, we followed the approach
reported by Sauerbrunn et al. [21] and Kahirdeh et al. [44], where information entropy is calculated
from the discrete histogram of waveforms. Figure 13 presents the procedure for AE information
entropy calculation. Variations in the bin size parameter of the histograms of the AE waveforms
showed that the maximum entropy would be achieved by the selected bin size.
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4.3.2. Evaluation of AE Entropy and Correlation with Fatigue Damage 

Figure 13. The procedure of AE information entropy calculation. By using the digitized waveform
signal data, information entropy is calculated from the generated histogram.

Figure 14 presents an example of the individual and cumulative information entropies. On the
cumulative entropy plot, the crack-length points were marked. It is observed that the cumulative
entropy trend becomes far steeper around the point of crack initiation. This change in trend is useful
information for PHM applications.
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the collected waveforms. (b) Cumulative entropy through the life cycle.



Entropy 2019, 21, 804 17 of 21

4.3.2. Evaluation of AE Entropy and Correlation with Fatigue Damage

The AE count, absolute energy, and information entropy are compared to the classical
thermodynamic entropy, as shown in Figure 15, where the failure is defined at the crack initiation.
The overall at-a-glance observation shows that the AE information entropy is the closest to the
CTE damage. The mean deviation (mean absolute distance from CTE damage to an AE feature)
was computed for each test. The sign test was used to assess AE entropy performance using the
mean deviation.

The sign test is a nonparametric statistical test that measure consistent differences between
pairs of observations and calculates the tests statistic from the difference in the median of the two
populations [45]. In this sign test, the left tail mode was utilized, and the entailed hypotheses are
shown in Equation (12) (the sign test expressed in signtest(a,b)):

H0 : a− b ≥ 0; H1 : a− b < 0 (12)

When the p-value from this statistic is less than a significance level (10% in this test), the null
hypothesis is rejected, and the result concludes that the median of a is less than that of b.
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Figure 15. Correlation of AE features to the measured damage (classical thermodynamic entropy).
The correlated features are (a) count, (b) absolute energy, and (c) information entropy. These correlation
plots were drawn from the 24 kN maximum loading group and AE sensor channel 1 (the sensor more
adjacent to the loading actuator).

Table 4 presents the sign test results for all the cases (failure defined by the crack length and AE
sensor channel). From the results, one can conclude that the information entropy is better than the
count and absolute energy, except for the case of fracture failure, and this result is also consistent with
Sauerbrunn et al.’s [21] conclusions.
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Table 4. Sign test results represented in p-value. The sign test rejects the null hypothesis (the former is
not less than the latter) when the p-value is less than the significance level. In the 10% significance level,
the cases of not rejecting the null hypothesis are underlined.

Failure
Defined at

a:IE
b: Absolute Energy

a:IE
b: Count

ch1 ch2 ch1 ch2

Initiation 1.0× 10−1 3.3× 10−2 1.0× 10−1 6.6× 10−2

250 µm 7.7× 10−3 7.7× 10−3 6.0× 10−2 6.0× 10−2

500 µm 1.3× 10−3 1.3× 10−3 1.6× 10−2 7.7× 10−3

1000 µm 4.5× 10−5 1.5× 10−4 3.3× 10−2 6.0× 10−2

Transition 1.2× 10−5 1.5× 10−4 3.3× 10−2 6.0× 10−2

Fracture 4.4× 10−1 2.4× 10−1 6.0× 10−2 1.6× 10−1

4.4. Summary and Comparison

In Sections 4.1–4.3, three entropic approaches were reported for applications to fatigue damage
assessment. Classical thermodynamic entropy was assessed in terms of the DEG theorem by presenting
the existence of an entropic endurance indicating fatigue failure. The assessments of Jeffreys divergence
and AE information entropy were followed using the CTE as the reference damage. From the
assessment results, JD and AE information entropy exhibit reasonable correlations to the fatigue
damage. Furthermore, JD quantitatively correlates with CTE through the pseudo-Boltzmann constant
(kpB). Correlation analyses show that JD has a better correlation to the reference damage than the AE
information entropy. The analyzed entropic approaches are compared and summarized in Table 5.
It is noted that the simulation of the entropic prediction model, for example, through a finite element
approach, is more applicable to CTE and JD than the AE information entropy. For example, similar to
Mozafari et al. [46], fatigue damage simulation modeling using mechanical plastic deformation can be
equally applicable to CTE and JD.

Table 5. Comparison of entropic approaches and efficacy as the measure of fatigue damage.

Classical Thermodynamic
Entropy (CTE) Jeffreys Divergence (JD) AE Information

Entropy (IE)

Analysis of
source data

Plastic strain energy
Surface temperature Plastic strain energy AE waveform

Calculation
method

Bilinear irreversible
thermodynamic entropy
Equation (2)

Fluctuation theorem and
relative entropy
Equations (7)–(9)

Information theory
Equation (3)

Evaluation Consistent entropic endurance
Used as the reference damage

Correlation to normalized
measured damage
Pseudo-Boltzmann constant (kpB)

Correlation to
normalized
measured damage

Effect
Endurance verified
Linear relation to stress
amplitude

Endurance verified
Consistent kpB

Better than AE count
and absolute energy.
Useful for early life
in pre-crack initiation

5. Conclusions

In this paper, three entropic approaches for application to the metallic material fatigue damage
process were explored and experimentally demonstrated. Three energy dissipations resulting from
mechanistic degradation phenomena—plastic mechanical strain energy, heat (temperature), and
acoustic emission—were monitored in multiple uniaxial cyclic fatigue tests. In these entropic
approaches, the measured dissipations were quantified in terms of the classical thermodynamic
entropy, Jeffreys divergence representing thermodynamic entropy, and information (Shannon) entropy
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of AE waveforms. Particularly, the application of Jeffreys divergence concept was extended to the
macro-scale and applied to the fatigue damage assessment. Classical thermodynamic entropy showed
a consistent entropic endurance to fatigue damage. Further, Jeffreys divergence and AE information
entropy were adequately correlated to the fatigue damage. The contribution from this research
was in limited extensions and applications of the three entropic methods, which resulted in the
following findings:

• In classical thermodynamics, the entropic endurance showed a slight correlation with the cyclic
stress amplitude. This entropy was shown to be an appropriate index of damage.

• Application of Jeffreys divergence in macro-scale was empirically explored and computed
from the forward/reverse work distributions, which showed an excellent correlation to the
normalized damage. The quantitative conversion factor (namely the pseudo-Boltzmann constant,
kpB) also showed consistency between the classical thermodynamic entropic damage and Jeffreys
divergence-based entropic damage.

• Fatigue damage assessment using information (Shannon) entropy of the acoustic emission
waveform data, compared well with the classical thermodynamic entropy. Similarly, using
statistical tests, it was shown that the AE-based informational entropy of damage was more
consistent than the two conventional AE features (i.e., count and absolute energy) used in the
fatigue damage assessment.
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