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Abstract: Thermally induced non-equilibrium gas flows have been simulated in the present study
by coupling kinetic and extended thermodynamic methods. Three different types of thermally
induced gas flows, including temperature-discontinuity- and temperature-gradient-induced flows and
radiometric flow, have been explored in the transition regime. The temperature-discontinuity-induced
flow case has shown that as the Knudsen number increases, the regularised 26 (R26) moment equation
system will gradually loss its accuracy and validation. A coupling macro- and microscopic approach
is employed to overcome these problems. The R26 moment equations are used at the macroscopic
level for the bulk flow region, while the kinetic equation associated with the discrete velocity method
(DVM) is applied to describe the gas close to the wall at the microscopic level, which yields a hybrid
DVM/R26 approach. The numerical results have shown that the hybrid DVM/R26 method can be
faithfully used for the thermally induced non-equilibrium flows. The proposed scheme not only
improves the accuracy of the results in comparison with the R26 equations, but also extends their
capability with a wider range of Knudsen numbers. In addition, the hybrid scheme is able to reduce
the computational memory and time cost compared to the DVM.

Keywords: discrete velocity method; moment method; thermally induced flow; non-equilibrium
flow; transition regime

1. Introduction

The advent of micro-electro-mechanical systems (MEMS) and the associated fabrication
technologies has inspired a renewed impetus in understanding thermally driven flows [1–4]. Typical
examples include thermal transpiration [5,6], radiometric flow [7,8] and Knudsen pumps [5,9]. Since
radiometers could also work as Knudsen pumps, transporting gas without any moving parts, they can
not only be developed as radiometric actuators for spacecraft attitude control system [10], but also
be used for micro-scale gas chromatography and gas separation applications [11,12]. Due to their
important applications in industry, many experimental and numerical investigations of thermally
induced flow have been carried out [13–15].

Numerically, the behaviour of thermally induced non-equilibrium gas flows can be described
and modelled from either a microscopic or macroscopic point of view. The Boltzmann equation is the
fundamental model for non-equilibrium flows at the microscopic level, which uses a molecular velocity
distribution function (VDF) to describe the system state. From a historical perspective, two major
categories of approaches have been developed to solve the Boltzmann equation. One is a stochastic
approach, such as the direct simulation Monte Carlo (DSMC) method developed by Bird [16], and the
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other is a deterministic approach. For the latter, one well-known example is the discrete velocity method
(DVM) [17], which uses a finite set of discrete velocity points to approximate the continuous molecular
velocity space. Due to the multi-dimensional nature of the VDF and the complicated structure of the
non-linear collision term, it remains formidable to apply the Boltzmann equation to many practical
applications. Hence, extensive work has been devoted to deriving alternative macroscopic modelling
strategies for non-equilibrium or rarefied gas flows.

The classical macroscopic equations for gas flows are given by the Navier–Stokes–Fourier
(NSF) equations. In association with appropriate velocity-slip and temperature jump wall boundary
conditions, they are able to predict certain main features of a flow for simple weakly rarefied problems
that are not far away from the equilibrium state, i.e., in the slip regime, but extra care must be taken
when thermal effects are present [18]. However, substantial effort is required when the flow departs
from the equilibrium state and enters the transition regime. Chapman and Enskog proposed a technique
via a formal asymptotic expansion of the molecular VDF in powers of the Knudsen number [19,20].
By truncating the Chapman–Enskog (CE) expansion into different orders, the approach leads to
the Euler, NSF, Burnett and super-Burnett equations at the zeroth-, first-, second- and third-order
approximation [21], respectively. However, Grad [22] argued that no matter how high the expansion
order is, the resulting system will only describe flows that are very close to the continuum solution.

In 1949, Grad [23] developed an alternative approach to derive macroscopic equations via the
moment method. In addition to the conservation laws, the governing equations for the stress and
heat flux were obtained from the Boltzmann equation. The resulting set of 13 moment equations,
closed by expanding the VDF in Hermite polynomials, were denoted as the well-known G13 moment
equations [23]. Struchtrup and Torrilhon [24] regularised the G13 equations using a CE-like expansion,
and Gu and Emerson [25] and Struchtrup and Torrilhon [26] obtained the wall boundary conditions
(WBCs) for the regularised 13 moment equations (R13) based on Maxwell’s kinetic WBC [27].
The R13 equations are able to capture non-equilibrium phenomena at a Knudsen number below
0.25. Furthermore, Gu and Emerson [28] extended the method of moments to derive the regularised
26 (R26) moment equations, which demonstrated their potential as an engineering design tool for
non-equilibrium flows in the early transition regime [29,30]. The moment method essentially bridges
the gap between conventional hydrodynamic models and kinetic models in the early transition regime,
where the NSF and the DVM become either inaccurate or inefficient. In the present study, we couple
the R26 moments (at the macroscopic level) with the DVM solver (at the microscopic level) to describe
thermally induced non-equilibrium flows.

The remaining part of this paper is organised as follows. We first make an overview of the R26
moment equation system, as described in Section 2. The modelled Boltzmann equation is introduced
briefly in Section 3. The hybrid scheme is briefly described in Section 4. Entropy and H-theorem
will be given in Section 5. Numerical simulations of several types of typical thermally induced
non-equilibrium flows (2D thermal cavity flow induced by temperature discontinuity, radiometer flow
around a thin plate and cavity flow induced by temperature gradients) are presented and discussed in
Section 6 in comparison with the DVM data. A brief summary is finally given in Section 7.

2. Extended Thermodynamic Governing Equations

With the traditional thermodynamic variables of velocity, ui, temperature, T and density, ρ,
the conservation laws for mass, momentum and energy can be expressed as [31]:

∂ρ
∂t +

∂ρui
∂xi

= 0,
∂ρui
∂t +

∂ρuiu j
∂x j

+
∂σi j
∂x j

= −
∂p
∂xi

,
∂ρT
∂t +

∂ρuiT
∂xi

+ 2
3R

∂qi
∂xi

= − 2
3R

(
p∂ui
∂xi

+ σi j
∂u j
∂xi

)
,

(1)
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in which, t and xi = (x, y, z) are the temporal and spatial coordinates, respectively, and any subscript
i, j, k represents the usual summation convention. The pressure p is related to the temperature T by
the ideal gas law p = ρRT, where R is the gas constant. However, the stress tensor, σi j, and the heat
flux vector, qi, in the set of Equation (1) are unknown. The classic way to close this set of equations
is through a CE expansion of the molecular distribution function in terms of Knudsen, Kn, around
the Maxwellian [21] to obtain the constitutive relationships for σi j and qi. In the method of moments,
Grad [23] derived their governing equations from the Boltzmann equation as:

∂σi j
∂t +

∂ukσi j
∂xk

+
∂mi jk
∂xk

= −Aσ
p
µσi j − 2p ∂u<i

∂x j>
−

4
5
∂q<i
∂x j>
− 2σk<i

∂u j>
∂xk

,
∂qi
∂t +

∂u jqi
∂x j

+ 1
2
∂Ri j
∂x j

= −Aq
p
µqi −

5
2 pR ∂T

∂xi
−

7σikR
2

∂T
∂xk
−RT ∂σik

∂xk
+

σi j
ρ

(
∂p
∂x j

+
∂σ jk
∂xk

)
−

2
5

(
7
2 qk

∂ui
∂xk

+ qk
∂uk
∂xi

+ qi
∂uk
∂xk

)
−

1
6
∂∆
∂xi
−mi jk

∂u j
∂xk

,

(2)

in which, µ is the dynamic viscosity of the gas. The collision constants, Aσ and Aq, are determined by the
molecular collision model. The high moments, mi jk, Ri j and ∆, represent the difference between the true
value of the higher moments and their corresponding approximation with the truncated distribution
function, fG, at the third order in Hermite polynomials. In Grad’s original method [23], such deviations
were omitted, so that mi jk = Ri j = ∆ = 0 and the set of Equations (1) and (2) are well known as Grad’s
13 moment equations (G13). Struchtrup and Torrilhon [24] and Struchtrup [31] regularised the G13
moment equations by applying a CE-like expansion and an order-of-magnitude approach and obtained
the algebraic constitutive expressions of mi jk, Ri j and ∆ in terms of the derivatives of lower order
moments. The regularised G13 moment equations are denoted as the R13 moment equations. Although
the R13 moment equations improve the performance of the G13 moment equations significantly, they
cannot provide sufficient accurate description of the Knudsen layer [30,32]. To remedy the deficiency
of the R13 equations, the governing equations of the high-order moment quantities mi jk, Ri j, ∆ that
can be derived from the Boltzmann equation are employed in the present study. They are [28,29]:

∂mi jk
∂t +

∂ulmi jk
∂xl

+
∂φi jkl
∂xl

= −Am
p
µmi jk − 3RT

∂σ<i j
∂xk>
−

3
7
∂R<i j
∂xk>

+Mi jk,
∂Ri j
∂t +

∂ukRi j
∂xk

+
∂ψi jk
∂xk

= −AR1
p
µRi j −

28
5 RT ∂q<i

∂x j>
− 2RT

∂mi jk
∂xk
−

2
5
∂Ω<i
∂x j>

+<i j,
∂∆
∂t + ∂∆ui

∂xi
+ ∂Ωi

∂xi
= −A∆1

p
µ∆ − 8RT ∂qk

∂xk
+ ℵ,

(3)

where the non-linear source termsMi jk, <i j, ℵ are listed in Appendix A. Similarly, the higher-order
moments, φi jkl, ψi jk and Ωi in the set of Equation (3) represent the difference between the true value of
the higher moments and their corresponding approximation with the truncated distribution function,
fG, at the fourth order in Hermite polynomials. A CE-like expansion was employed to obtain the
following constitutive relationships [28]:

φi jkl = −
4µ

Aφ1ρ

∂m<i jk
∂xl>

−
4µ

Aφ1p

[
3
7 R<i j

∂uk
∂xl>

+ 3RTσ<i j
∂uk
∂xl>

+ m<i jk
∂RT
∂xl>
−

m<i jk
ρ

(
∂σl>m
∂xm

+
∂p
∂xl>

)]
−

Aφ2
Aφ1

σ<i jσkl>
ρ ,

ψi jk = −
27µ

7Aψ1ρ
∂R<i j
∂xk>
−

27µ
7Aψ1ρ

(
28
5 q<i

∂u j
∂xk>
−R<i j

∂ lnρ
∂xk>

+
R<i j+7RTσ<i j

RT
∂RT
∂xk>

)
−

Aψ2q<iσ jk>+Aψ3σ<lim jkl>
Aψ1ρ

,

Ωi = − 7
3

µ
AΩ1ρ

∂∆
∂xi
−

4µ
AΩ1ρ

∂Rik
∂xk

+
28µ

AΩ1p

[
2

3ρqi

(
∂qm
∂xm

+ σml
∂um
∂xl

)
−

(
4
5 qk

∂u<i
∂xk>

+ σik
∂RT
∂xk

)]
−

AΩ2qkσik+AΩ3mi jkσ jk
AΩ1ρ

.

(4)

The closed set of Equations (4) is known as the R26 moment equations.
The values of the collision constants, Aσ, Aq, Am, AR1, AR2, A∆1, A∆2, Aφ1, Aφ2, Aψ1, Aψ2, Aψ3, AΩ1,

AΩ2 and AΩ3 depend on the molecular collision model adopted and represent the relaxation time-scale
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for each moment. They are given in Table 1 for the case of the Shakhov model [33] as employed in the
present study. The Prandtl number, Pr, is set to be 2/3 for monoatomic gases.

Table 1. Collision constants in the moment equations for Shakhov model.

Aσ Aq Am AR1,AR2 A∆1,A∆2 Aφ1,Aφ2 Aψ1,Aψ2,Aψ3 AΩ1,AΩ2,AΩ3

1 Pr 1 1, 0 1, 0 1, 0 1, 0, 0 1, 0, 0

To apply the extended thermodynamic equations to flows in confined geometries, appropriate
wall boundary conditions are required to determine a unique solution. Macroscopic wall boundary
conditions for confined flows were obtained based on Maxwell’s kinetic wall boundary condition and
a fifth-order approximation of the VDF in Hermite polynomials and they are listed in [28]. However,
as a truncated VDF is used in the derivation of the set of boundary conditions at a wall where the
state of non-equilibrium is strong, the accuracy near the wall is reduced. As a result, it hampers the
capability of the moment method. To increase the accuracy of the solution while maintaining a low
computational cost, a hybrid algorithm [34], which couples the thermodynamic equations with the
kinetic equation in the wall boundary layer, is adopted in the present study.

3. Kinetic Equation and the Shakhov Model

From the microscopic view of point, the behaviour of a gas can be described by the kinetic
equation:

∂ f
∂t

+ Ci
∂ f
∂xi

= −
1
τ
[ f − f eq], (5)

where f = f (t, xi, Ci) is the VDF of gas molecules and Ci is the molecular velocity. The mean relaxation
time, τ, is evaluated from

τ =
µ

p
(6)

The Shakhov model [33] is adopted so that the equilibrium VDF, f eq, is given by

f eq = f S =
ρ

(2πRT)3/2
exp

− (Ci − ui)
2

2RT


1 + (1− Pr)

(Ci − ui)qi

5pRT


(
C j − u j

)2

RT
− 5


. (7)

Maxwell’s kinetic wall boundary condition [27] is used in association with the kinetic Equation (5).
It states that a fraction α of gas molecules undergoes diffusive reflection with a Maxwellian distribution
f w
M at the temperature of the wall Tw while the remaining fraction (1− α) will be reflected specularly.

In a frame in which the coordinates are attached to the wall, with ni the normal unit vector of the
wall pointing towards the gas such that all molecules with Cini < 0 are incident upon the wall and
molecules with Cini ≥ 0 are emitted by the wall, Maxwell wall boundary condition can be expressed by

f w =

α f w
M + (1− α) f (−Cini), Cini ≥ 0,

f (Cini), Cini < 0,
(8)

with

f w
M =

ρw(√
2πRTw

)3 exp

−
(
Ci − uw

i

)2

2RTw

, (9)

in which, uw
i is the wall velocity and ρw is the density of the thermalised molecules determined to

ensure that no molecules accumulate on the wall.
The modelled Boltzmann equation can be solved alone for the whole flow domain and the

solution can be served as the benchmark data. In the hybrid algorithm employed in the present study,
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the kinetic equation is only solved in the wall boundary layer to provide boundary information for the
macroscopic equations solved in the bulk flow domain.

4. Hybrid Algorithm of Coupling the Moment Equations and the Kinetic Equation (HYBR)

A hybrid algorithm [34] is used to balance the efficiency and the accuracy of a solution, which
couples the moment equations and the kinetic equation. Taking a thermally induced cavity flow as an
example, we can divide the computational domain into two sub-domains, as shown in Figure 1. In the
near-wall subdomain where the non-equilibrium effects are strong, the kinetic equation in association
with the Maxwell’s diffusive wall boundary condition is applied, so that accurate description of the flow
field can be achieved. The kinetic Equation (5) is solved by the discrete velocity method (DVM) [17,35].
The thickness of the kinetic layer is represented by l. The second-order upwind is used to discretise
the spatial derivative in equation. An iteration method is employed as detailed in [35]. As the gas is
away from the wall, the R26 moment equations are employed to improve the efficiency. The set of
the R26 moment Equations (1)–(3) is solved by a pressure-based numerical algorithm [36] for weakly
compressible and low-speed flows. It has been successfully applied in the study of pressure-driven
Poiseuille flow [28,37], thermal transpiration flow [5] and gas flows in porous media [38,39].Entropy 2019, 21, x FOR PEER REVIEW 6 of 19 
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Once the distribution function, f , is obtained from Equation (5), its moments with respect to the
molecular velocity, C, can be determined. For example, the density, ρ, and the momentum, ρui can be
obtained from

ρ =

∫
f dC and ρui =

∫
Ci f dC. (10)

For convenience, the intrinsic or peculiar velocity is introduced as

ci = Ci − ui, (11)

so that the moments with respect to ci can be conveniently calculated. A set of N moments are then
used to describe the state of the gas through

Mi1i2···iN =

∫
ci1ci2 · · · ciN f dC. (12)

Any moment can be expressed by its trace and traceless part [31]. For example, the pressure
tensor can be separated as follows:

pi j =

∫
cic j f dC = pδi j + p〈i j〉 = pδi j + σi j, (13)



Entropy 2019, 21, 816 6 of 19

where δi j is the Kronecker delta, p = pkk/3 is the pressure, and σi j = p〈i j〉 is the deviatoric stress tensor.
The angular brackets are used to denote the traceless part of a symmetric tensor. The temperature, T,
is given by thermal energy density as

1
2

∫
c2 f dC =

3
2
ρRT. (14)

The heat flux vector, qi, is defined as:

qi =
1
2

∫
c2ci f dC. (15)

Furthermore, the Grad’s moments, mi jk, Ri j, ∆, φi jkl, ψi jk and Ωi can be evaluated from their
definitions by [28]. 

mi jk = M〈i jk〉 −M〈i jk〉| fG =
∫

c<ic jck> f dC,
Ri j = M<i j>kk −M<i j>kk| fG =

∫
c<ic j>c2 f dC− 7RTσi j,

∆ = Mrrss −Mrrss | fG =
∫

c4 f dC− 15pRT,
φi jkl = M〈i jkl〉 −M〈i jkl〉| fG =

∫
c〈ic jckcl〉 f dC,

ψi jk = Mrr〈i jk〉 −Mrr〈i jk〉| fG =
∫

c〈ic jck〉c2 f dC− 9RTmi jk,
Ωi = Mrrssi −Mrrssi| fG =

∫
c4ci f dC− 28RTq.

(16)

These macroscopic quantities not only describe the boundary layer accurately but also provide
the boundary information for the R26 moment equations solved away from the wall.

On the other hand, the VDF can be approximated by different order of Hermite polynomials using
moments [40] as,

f = fM
∞∑

n=0

1
n!

a(n)A H(n)
A = f eq

(
a(0)H(0) + a(1)i H(1)

i +
1
2!

a(2)i j H(2)
i j +

1
3!

a(3)i jk H(3)
i jk + . . . . . .

)
, (17)

where H(n)
A is the Hermite function, and a(n)A is the corresponding coefficient [40]. The local Maxwellian

distribution function is given by

fM =
ρ(√

2πRT
)3 exp

[
−

c2

2RT

]
. (18)

With the moments available in the R26 moment system, the fifth-order expansion of VDF in
Hermite polynomials f (5) can be expressed by [28]:

f (5) = fM
[
1 +

σi jcic j
2pRT +

ciqi
pRT

(
c2

5RT − 1
)
+

mi jkcic jck

6p(RT)2 +
φi jklcic jckcl

24p(RT)3 +
Ri jcic j

4p(RT)2

(
c2

7RT − 1
)

+ ∆
8pRT

(
c4

15(RT)2 −
2c2

3RT + 1
)
+

ψi jkcic jck

12p(RT)3

(
c2

9RT − 1
)
+ ciΩi

40p(RT)2

(
c4

7(RT)2 −
2c2

RT + 5
)]

.
(19)

The reconstructed VDF at the coupling interface serves as the boundary condition for the kinetic
equation from the bulk flow. In this way, the kinetic equation and the moment equations supply
boundary information at the interface for each other and iterate between them until a converged
solution is reached.
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5. Entropy and H-Theorem

Two important features of the solutions to the Boltzmann equation are that the distribution
function, f , is non-negative and that the solution must satisfy the H-theorem [41]:

H = −

∫
f ln f dC. (20)

In the method of moment, the VDF is truncated into the fourth- or fifth- order accuracy; hence,
it may not satisfy the H-theorem. Struchtrup and Torrilhon have proved that the linearised R13
equations naturally fulfil the H-theorem [26]. In this section, we will explore the validity of the hybrid
DVM/R26 method based on its entropy. For equilibrium flow, the value of H can be calculated with the
equilibrium VDF so that,

Heq = −

∫
fM ln fMdC =

ρ

R
η+ ρeo, (21)

where η is the thermodynamic or equilibrium entropy given by [23]

η =
3
2

Rln
(

p
ρ5/3

)
(22)

and eo is an entropy constant equal to (3/2)(ln2π+ 1). Therefore, H can be regarded as the entropy for
non-equilibrium flows [23,41].

For a homogenous system, the generalised entropy H never decreases with time. In the R26
moment equations, with the VDF truncated at the fifth-order accuracy in Hermite polynomials,
Gu and Emerson [28] derived an approximated entropy equation for R26 equations where the flow is
not far from equilibrium. An alternative way to evaluate the entropy is by directly integrating the
reconstructed VDF. In the dimensionless form, H, it becomes,

H = −

∫
f
(5)

ln f
(5)

dC. (23)

in which, f
(5)

represents the dimensionless form of the reconstructed VDF f (5) as

f
(5)

=

(√
2RTre f

)3

ρre f
f (5) and C =

C√
2RTre f

, (24)

where ρre f and Tre f are the reference density and temperature, respectively.

6. Numerical Test Cases

In this section, we apply the foregoing hybrid DVM/R26 (HYBR) method to simulate several
kinds of thermally induced non-equilibrium flows. In all of the cases, both the DVM and the hybrid
DVM/R26 method share the same spatial meshes, and the gas medium is modelled as an argon gas.
All of the wall boundaries are treated as diffusive walls. The viscosity is obtained from Sutherland’s
law [42]:

µ = µ0

(
T
T0

)1.5 T0 + S
T + S

, (25)

where, the Sutherland’s constant S for argon is S = 144 K and the reference viscosity
µ0 = 21.25× 10−6Pa · s at the temperature T0 = 273 K.
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6.1. 2D Thermal Cavity Flow Induced by Temperature Discontinuity

The first case is the flow in a square cavity induced by temperature discontinuities at the cavity
boundaries. The geometric configuration is sketched in Figure 1 and the origin of the x, y coordinates
sits at the centre of the cavity. The characteristic flow length is defined as the side length of the square
cavity, which is L0 = 10−5 m. The temperature on the top wall is maintained at Th = 400 K, while on
other walls it is maintained at a lower temperature Tc = 200 K. The reference temperature is set to be
Tre f = 300 K and the reference pressure pre f is determined by the Knudsen number, Kn, defined by

Kn =
λ
L0

, (26)

in which, the reference mean free path λ can be calculated from the initial reference pressure pre f and
viscosity µre f at Tre f by

λ =
µre f

pre f

√
πRTre f

2
. (27)

We consider three Knudsen numbers in this case, i.e., Kn = 0.1, 0.5 and 1. For all of the cases,

the discrete velocity space is discretised in the range of
[
−6

√
2RTre f , 6

√
2RTre f

]3
with 64 × 64 × 24

non-uniform points. The physical space is meshed with 101× 101 non-uniform points. For the hybrid
DVM/R26 method, we apply 5 grid points near the wall boundary where the ratio of the thickness
of the kinetic layer l to the characteristic length L0 is l/L0 = 3.64%. The temperature contours and
the streamlines, as well as the system entropies at different Knudsen numbers are shown in Figure 2.
On the left side of each plot are the results from the DVM solution of the kinetic equation. The hybrid
DVM/R26 results are presented on the right side of each plot.

As indicated in Figure 2, the overall agreement between the DVM and the hybrid DVM/R26
results, especially in terms of the temperature field, T = T/Tre f , is good. When Kn = 0.1, the gas
molecules travel from the upper hot wall directly to the bottom wall, and there are two more vortices
near the left and right walls. As the Knudsen number increases, two vortices closer to the upper wall
shrink. The vortices near the side walls begin to dissolve the vortices on the bottom wall; as a result,
the side wall vortices grow larger, and the bottom wall vortices become smaller from Kn = 0.5 to 1.
Both the DVM and the hybrid DVM/R26 method can capture these vortices accurately. When Kn = 1,
the hybrid DVM/R26 method slightly overpredicts the size of the vortices near the bottom wall and
slightly underpredicts the size of the vortices near the side walls.

Figure 2b shows that the entropy contours calculated from the DVM and hybrid DVM/R26
methods agree well with each other. The entropy at the bottom wall is higher than that in the upper
wall. That is because the gas molecules travel away from the upper wall, and they accumulate near the
bottom wall region. When Kn = 0.5, the hybrid DVM/R26 method slightly overpredicts the entropies
near the side wall. As the Knudsen number further increases, i.e., Kn = 1, the vortices near the side
walls and bottom wall merge together, which drive more gas molecules from the upper and lower
walls to the centre of the cavity, causing the entropy there to be larger than that near the bottom wall.
Both the DVM and the hybrid DVM/R26 methods can reproduce the entropies accurately.

The normalised velocity profiles along the centre lines of the cavity are shown in Figure 3a–f.
From these figures, we can see that the hybrid DVM/R26 results agree well with the DVM results when
the Knudsen number is below 0.5. In contrast, the R26 moment equations in association with their
wall boundary conditions underpredict the absolute value of maximum velocity by about 9.5% and
28.5% at Kn = 0.1 and 0.5, respectively. The hybrid scheme improves the accuracy of the results in
comparison with the original R26 moment equations. When Kn = 1, it is very difficult for the R26
moment equations to find a converged solution, and the hybrid DVM/R26 method overpredicts the
velocity by about 9.5% at the centre of the cavity.
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Figure 2. Temperature field, T = T/Tre f streamlines and system entropy of the temperature-
discontinuity-induced flow case at different Knudsen numbers: (a,b) Kn = 0.1, (c,d) Kn = 0.5, (e,f) Kn = 1.
Left panel: temperature field and streamlines. Right panel: system entropy. In each sub-figure, left
and right half are results using the DVM and Hybrid DVM/R26 method, respectively.
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Figure 3. Velocity profiles of the temperature-discontinuity-induced flow case. (a,c,e) Normalised

velocity profiles uy = uy/
√

2RTre f along the vertical centre line of the cavity at Kn = 0.1, 0.5 and 1,

respectively. (b,d,f) Velocity profiles ux = ux/
√

2RTre f along the horizontal centre lines of the cavity

at Kn = 0.1, 0.5 and 1, respectively. The black line and ‘HYBR’ are results obtained from the hybrid
DVM/R26 method; the red dot and square and ‘DVM’ are results obtained from the DVM.

Since we only applied 5 grid points in the computational kinetic layer in the hybrid DVM/R26
method, the computational costs can be significantly reduced. For this case, all tests are done on
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a single processor. The computational cost, in terms of the computational memory and time cost,
has been given in Table 2. The convergence criterion for the steady-state is defined by

E(n + 1) =

∑∣∣∣un+1
− un

∣∣∣∑
un+1

< 10−6, (28)

where n and n + 1 stand for the n-th and (n + 1)-th iterations.

Table 2. Comparison of computational cost of the temperature-discontinuity-induced cavity case.

Computational
Memory (GB)

Computational Time (Minutes)

Kn = 0.1 Kn = 0.5 Kn = 1.0

DVM 11.80 452 204 128
Hybrid DVM/R26 3.53 55 78 96

It is clear to see that the hybrid DVM/R26 method has the ability to save tremendous memory
usage by about 70.1% in comparison with the DVM, and thus save the computational time cost,
especially at the low Knudsen numbers. As the Knudsen number increases, the convergence rate
of implicit DVM also increases rapidly. Therefore, our newly developed hybrid DVM/R26 method
is suitable for Kn ≤ 1, especially when the computational domain is much larger than the near-wall
region. When Kn > 1, the implicit DVM is fast enough to get the steady-state solutions.

6.2. Radiometric Flow

In this case, we investigate another thermally induced flow, i.e., radiometric flow, which is
generated by a small plate with differentially heated sides placed in a chamber. The force acting on
the small plate is called radiometric force known to be the driven mechanism of the radiometer [1].
The flow configuration as well as the hybrid arrangement is sketched in Figure 4. The hot small
plate with a dimension of 3.81× 0.95 cm2 sits at the geometric centre of the chamber (x = 0, y = 0).
The temperatures of the left and right surface of the plate are kept at Th = 419 K and Tc = 384 K,
respectively. The upper and lower sides of the plate are maintained at 400K. The size of the outer
chamber is 45 × 45 cm2, and the temperature is kept at Tw = 300 K. The reference length and the
reference temperature are defined as the height of the plate L0 = 3.81 cm and the temperature of
the outer chamber Tre f = 300 K, respectively. A non-uniform mesh with 63,800 cells is used and
it is refined near the surface of the plate. The discrete velocity space is discretised in the range of[
−6

√
2RTre f , 6

√
2RTre f

]3
with 64× 64× 24 non-uniform points. Three Knudsen numbers, i.e., Kn = 0.1,

0.5 and 1, are calculated. Five grid points are employed in the kinetic layer in the hybrid DVM/R26
method with l/L0 = 0.098.
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Figure 4. Geometry configuration and the hybrid arrangement of the radiometric flow in a
closed chamber.

The temperature fields T = T/Tre f and streamlines, as well as the entropy fields predicted by both
the DVM and hybrid DVM/R26 methods are presented in Figure 5. For the case of Kn = 0.1 and 0.5,
the overall agreements between the DVM and the hybrid DVM/R26 results are very good in terms of
both temperature and velocity fields. The hybrid method slightly underpredicts the size of the vortex
near the right side of the hot plate at Kn = 0.1. In terms of the system entropy, the hybrid DVM/R26
method is able to reproduce the accurate entropies with the truncated VDF f (5) at Kn = 0.1 and 0.5.
It slightly underpredicts the entropy by about 0.3%. When Kn = 1, the gas is well into the transition
regime and the VDF is far away from the equilibrium, the hybrid scheme slightly overpredicts the
entropy by about 0.3%. Shown in Figure 5a,c,e are four vortices generated near four corners of the
hot plate. The two vortices near the right side of the plate become larger and the other two vortices
become smaller as the Knudsen number increases.
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Figure 5. Temperature field, T = T/Tre f , streamlines and entropy field of the radiometric flow
case. In each sub-figure, upper and lower half are the results using the DVM and Hybrid DVM/R26
method, respectively.

Figure 6 presents the dimensionless normal pressure (normal stress) difference between the left
and right side of the plate along the vertical direction, defined in Equation (29), which is the main
contribution to the radiometric force as having been analysed [7],

∆P =

[
(p + σnn)

∣∣∣
le f t − (p + σnn)

∣∣∣
right

]
p0

, (29)

where the subscript nn stands for the normal component of the stress tensor relative to the wall.
At the lower Knudsen number, i.e., Kn = 0.1, the left/right pressure difference takes larger value

near the top and bottom of the plate and lower value near the centre of the plate. A good agreement
can be found between the DVM and the hybrid DVM/R26 method at Knudsen number below a value
of 0.5. When Kn = 1, the distribution of the normal pressure difference is nearly uniform along the plate
surface in the vertical direction, and the hybrid DVM/R26 method overpredicts the pressure difference
by about 10%. For this case, all tests are done on a single processor, and the computational memory
and time cost are listed in Table 3. The convergence criterion for the steady-state is defined by Equation
(28). We can see that the hybrid DVM/R26 method has the ability to save the computational memory
and time cost. It is because we only use 5 grid points in each kinetic layer in the hybrid DVM/R26
scheme, so that the Boltzmann model equation is solved only in a small region.
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Figure 6. Distribution of normal pressure (stress) difference between the hot and cold sides of the
plate along the vertical direction. Lines: results obtained from the hybrid DVM/R26 method. Symbols:
results obtained from the DVM.

Table 3. Comparison of computational cost of the radiometric flow case.

Computational
Memory (GB)

Computational Time (Minutes)

Kn = 0.1 Kn = 0.5 Kn = 1.0

DVM 42.50 983 503 324
Hybrid DVM/R26 10.01 168 243 289

6.3. 2D Thermal Cavity Flow Induced by the Temperature Gradients

The last case is the thermal cavity flow induced by temperature gradients at wall, which is also
a benchmark case to evaluate the accuracy of the numerical scheme. The computational domain
is 10−5

× 10−5m2 square partitioned by structured rectangular mesh as shown in Figure 7. The left
and right walls are maintained at constant temperature TC = 263 K. At the top and bottom walls,
we introduce a linearly increasing temperature (from TC = 263 K to TH = 283 K) in left half of domain,
and a linearly decreasing temperature (from TH to TC) in the right half. All the walls are treated as
diffusive boundaries. The reference mean free path λ is calculated from the initial uniform density. The
reference temperature Tre f and the characteristic length L0 are set to be 273K and 10−5 m, respectively.
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Three cases corresponding to Kn = 0.1, Kn = 0.5 and Kn = 1.0 are computed. For all of these
cases, the spatial space is discretised with 101× 101 uniform points, and the discrete velocity space

is discretised in the range of
[
−6

√
2RTre f , 6

√
2RTre f

]3
with 64× 64× 24 non-uniform points. For the

hybrid DVM/R26 method, 5 grid points are used in each kinetic layer near the wall boundary
with l/L0 = 3.64%. The entropy in the hybrid DVM/R26 method is calculated from Equation (23).
The comparison of the DVM and the hybrid DVM/R26 method on temperature-gradient-induced
thermal cavity flow are shown in Figure 8. In addition, the non-dimensional temperature profiles
T = T/Tre f along the vertical and horizontal centre lines are presented in Figure 9.
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Figure 8. Comparison of σxy = σxy/
(
2ρre f RTre f

)
and uy = uy/

√
2RTre f contours, streamlines and

system entropy H of the temperature-gradient-induced flow case at different Knudsen numbers: (a–c)
Kn = 0.1, (d–f) Kn = 0.5, and (g–i) Kn = 1. In each sub-figure, left and right half are results using the
DVM and Hybrid DVM/R26 method, respectively.
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For the cases of Kn = 0.1, 0.5 and 1.0, the hybrid DVM/R26 results are compared with DVM
solutions. The overall agreement between the two approaches, especially in terms of the temperature
field, is very good. As indicated in Figure 8a,d,g, four vortices are generated with two of them rotating
counter-clockwise at the lower left and upper right of the cavity, and another two vortices rotating
clockwise at the upper left and lower right of the cavity. As a consequence, the maximum and minimum
stresses appear at the centre of clockwise and counter-clockwise vortices, respectively. The absolute
values of velocities near the edge of the vortices are higher than that in the centre of the vortices.
Both the DVM and the hybrid DVM/R26 methods have the ability to capture these four vortices and
flow parameters accurately. It is found in Figure 9 that from the regions near solid walls to the cavity
centre, the gas temperature increases along horizontal lines, while it decreases along vertical lines.
The maximum temperature value decreases as the degree of rarefaction increases. It is because both
the collisions among gas molecules and the interactions between hot wall and gas molecules become
weak when the gas is far away from the equilibrium state.

In terms of the system entropy, it is very interesting to note that, unlike the other flow properties,
the distributions of entropies are totally different between the lower and higher Knudsen numbers.
We have tracked the iteration history of the system entropy to investigate its fundamental characteristics
in detail, as shown in Figure 10. As indicated in Figure 8c,f,i and Figure 10, for all of the cases,
the maximum value of entropy first appears near the centre of the upper and lower walls. Meanwhile,
the minimum value of entropy first occurs at the four corners. When the Knudsen number is above
0.5, the variations of the overall entropy distribution contours with respect to the iterations are
small. Therefore, the basic shapes of the steady-state entropy contours are similar to those of their
initial contours. However, when Kn = 0.1, the maximum values of entropies first appear near the
centre of upper and lower walls, and then they move to the centre of the cavity. In this period, the
energy transfers from the hot upper and lower walls to the centre, and produces the system entropy,
as indicated in Figure 10b. After the left and right cold walls absorb the energy, the values of entropy
near the side walls increase subsequently. With strong gas–wall interactions and intensive molecular
collisions, more energy can be transferred directly from the centre of the upper and lower hot walls to
the side walls, which lead to higher values of entropies near the side wall.
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For this case, both the DVM and the hybrid DVM/R26 method are simulated on a single processor.
The computational costs for this case are listed in Table 4. The convergence criterion for the steady-state
is defined by Equation (28). As expected, the hybrid DVM/R26 method is able to save the memory cost
by about 68.5%, and thus reduce the computational time subsequently.

Table 4. Comparison of computational cost of the temperature-discontinuity-induced cavity case.

Computational
Memory (GB)

Computational Time (Minutes)

Kn = 0.1 Kn = 0.5 Kn = 1.0

DVM 11.22 512 237 156
Hybrid DVM/R26 3.53 68 93 126

7. Conclusions

In the present study, the application of coupling macro- and microscopic approaches for simulating
thermally induced non-equilibrium flows has been explored. The R26 moment equation system is
employed at the macroscopic level, meanwhile the Boltzmann model equation associated with the
DVM are used to describe the gas dynamics at the microscopic level. Three types of thermally induced
flows have been investigated with different Knudsen numbers and the results have been validated
using DVM results. The simulation results show that the hybrid DVM/R26 approach can be faithfully
used for thermally induced non-equilibrium low-speed flows. Since we only solve the Boltzmann
model equation in the near-wall regions, tremendous computational memory and time can be saved
in comparison with the DVM. The entropy fields also show that the reconstructed VDF f (5) is able
to yield accurate results when the Knudsen number is less than unity. It is also interesting to find
that, unlike the other flow parameters, the distributions of system entropy present totally different
characteristics between the lower and higher Knudsen numbers in the temperature gradient cases.
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Appendix A Source Terms in the Moment Equation (3)
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