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Abstract: The prediction of electrical machines’ Remaining Useful Life (RUL) can facilitate making
electrical machine maintenance policies, which is important for improving their security and extending
their life span. This paper proposes an RUL prediction model with similarity fusion of multi-parameter
and multi-sample. Firstly, based on the time domain and frequency domain extraction of vibration
signals, the performance damage indicator system of a gearbox is established to select the optimal
damage indicators for RUL prediction. Low-pass filtering based on approximate entropy variance
(Aev) is introduced in this process because of its stability. Secondly, this paper constructs Dynamic
Time Warping Distance (DTWD) as a similarity measurement function, which belongs to the nonlinear
dynamic programming algorithm. It performed better than the traditional Euclidean distance. Thirdly,
based on DTWD, similarity fusion of multi-parameter and multi-sample methods is proposed here to
achieve RUL prediction. Next, the performance evaluation indicator Q is adopted to evaluate the RUL
prediction accuracy of different methods. Finally, the proposed method is verified by experiments,
and the Multivariable Support Vector Machine (MSVM) and Principal Component Analysis (PCA)
are introduced for comparative studies. The results show that the Mean Absolute Percentage Error
(MAPE) of the similarity fusion of multi-parameter and multi-sample methods proposed here is
below 14%, which is lower than MSVM’s and PCA’s. Additionally, the RUL prediction based on the
DTWD function in multi-sample similarity fusion exhibits the best accuracy.

Keywords: remaining useful life (RUL); similarity fusion; dynamic time warping; damage indicators
extraction; approximate entropy variance; vibration monitoring

1. Introduction

As a nonlinear dynamical system, a diesel generator’s safe and smooth running is essential to
the reliability of systems. The gearbox is a core part of a diesel generator, directly determining its
performance. Remaining Useful Life (RUL) prediction can detect faults early and estimate the downtime
of diesel generator components, further helping operators to arrange a reasonable maintenance schedule
and save operating costs.

Vibration signal analysis is one of the most widely used methods of condition monitoring.
Vibration monitoring generally involves arranging sensors at important locations, using the data
acquisition card to obtain signals, and finally using the computer to calculate and analyze the data.
This article aims at analyzing the degradation trend of machines and predicts their RUL with the
vibration signal collected from the sensors online or offline. In this way, the RUL of a diesel generator
is achieved during condition monitoring.
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One of condition-based maintenance (CBM)’s main missions is to predict a machine’s RUL [1].
RUL prediction counts more than fault diagnosis in the makings of maintenance decisions [2]. According
to the data and continuous degradation trend recorded by the condition detection system, RUL is
predicted. It will forecast a potential degradation when current faults have been cleared, providing
direct references for CBM. As Figure 1 shows, the functional degradation of a and b stands at an
even level at t;_1. S;, Sy represent the degree of performance degradation for machine 4 and b, and f;
means that the machine is incapable of working. Additionally, at ¢;, a’s health level is higher than
b’s, indicating that a is healthier. After t;, a’s function degrades faster than b’s and a’s RUL is shorter.
Any planned maintenance must be performed on a in advance [3].
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Figure 1. Performance of the system.

RUL is defined as the time span from the present moment to the end of the useful life [4], expressed
as ly = tgy — ty, where tg, is life termination, f; is the present moment, and /i is the remaining life at #.

The primary mission of RUL prediction is to monitor the useful time left before the system loses
its working capability according to condition detection information. Based on time series analysis,
the accuracy of prediction is the primary factor considered in the choice of prediction method.
The existing methods are based on physical models, statistical data, and artificial intelligence [5],
as described in the following:

(1) RUL prediction methods based on physical models reflect the life-cycle degradation process of
the system by establishing a mathematical model based on the failure mechanism [5]. As a typical
physical model, the Paris-Erdogan model (PE) is widely used for RUL prediction. Frank et al. [6]
used PE to predict the RUL of two types of pipelines, 80 and 100. Hu et al. [7] used Norton’s law to
describe the creep of a turbine and combined the Kalman filtering (KF) and particle filter (PF) to predict
RUL; however, the methods based on physical models need the deep understanding and sufficiently
accurate judgment of failure mechanism to ensure the accuracy of RUL estimation.

(2) RUL prediction methods based on statistical data fit the observational data into a random
coefficient model and a stochastic process model. This method is widely applied as many on-the-shelf
statistical models can be applied to fit the data, that is for instance random coefficient models,
autoregressive models, Gamma process models, inverse gaussian processes, Markov models,
and proportional hazards models. However, Autoregressive models rely heavily on high-quality
historical data and are not conducive to RUL prediction under complex operating conditions, Wiener
models and Gamma process models is limited by the assumption of Markov, which assume that the
future state is only related to the current state but not to the past state, so it is not applicable to some
practical situations.

(3) RUL prediction methods based on artificial intelligence concentrate on learning the degradation
pattern of the system from observations. Common Al techniques include the artificial neural network
(ANN), neural fuzzy (NF), support vector machine/relevance vector machine (SVM/RVM), K-nearest
neighbor (KNN) and Gaussian process regression (GPR). Hussain et al. [8] extracted the index of health
from the vibration signal, and established the RUL prediction model by the adaptive neural fuzzy
inference system and nonlinear autoregression. The NF excels in RUL prediction because it takes
advantage of expert knowledge and intelligent ANN, but needs high-quality data sources. There are
many different kinds of SVM that are used for machines” RUL prediction, like one-class SVM and
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multi-class SVM [9], and Squares-SVM [10]. However, SVM only provides point estimate and does not
provide a probability distribution over of points. In order to make up for this shortcoming, RVM was
proposed, which has the same functional form as SVM, but provides a full probability distribution
over all possible outcomes [11]. However, those methods focus more on data training rather than
analysing the mechanism of mechanical failure. The structure and parameters of ANN need to be set
artificially, which leads to low generalization ability; Kernel function selection for SVM/RVM with
different objects is a huge challenge. Calculation process of GPR is complex and takes a long time.

It can be seen from the above that the three RUL prediction ideas have their own limitations.
The methods of RUL prediction are variable, among which, similarity measure of the data-driven
prediction is advantageous at avoiding constructing complex functional degradation models. Therefore,
this paper will study RUL prediction based on statistical data from the perspective of similarity
measure. Research on similarity-based RUL prediction was first proposed in 2012 and has been proved
to be a very effective RUL prediction approach [12-16]. However, the methods have not been so
widespread until now. The basic idea is that products with similar degradation processes have a
similar service life [3]. The RUL of the test sample is determined by observing the similarity between
the performance degradation trajectory of the test sample and the reference samples of the known
life-cycle degradation process.

There is little literature about RUL prediction based on similarity but they verified the validity of
“similarity” idea. You et al. [12] conducted an experiment to predict the RUL of a welding spot under
vibrations. He thought if the asset under study is more similar to reference sample “A”, then “A”
should play a more important role in RUL estimation of the asset under study. Eker [13] testified the
function of similarity-based prediction through data collected from Virkler’s fatigue crack propagation,
a degradation data set of drilling, and a turnout system of slide chair degradation. Zhang [14] put
forward a method to predict the RUL of a mechanical system based on the similarity of a phase
space trajectory and found that the results approximated the actual RUL very closely. Xiong [15]
built a one-dimensional damage indicator on an aero engine’s multiple parameters by means of liner
regression. He obtained the RUL after matching test engine data to the model base. In the same way,
Moghaddass [16] adopted principal components analysis to integrate a turbine engine’s multiple
parameters and drew the first principal component to describe the system degradation process.

It can be concluded from the literature review that similarity-based RUL prediction methods so far
are almost always built on a single parameter. The latest research is only employed to integrate multiple
parameters into a one-dimensional parameter firstly, and then compare the similarity of performance
degradation curves with statistical methods or AI methods. There is no research about co-impact
both multiple samples and multiple parameters of those samples on RUL prediction. However,
performance degradation or malfunction may result from a multitude of reasons. Thus, multiple
parameters of different perspectives may provide a more comprehensive reflection of the running
process [17]. Especially for a complex system, what a single parameter can present is far less than
multiple parameters in describing the degradation of various forms.

Therefore, this paper proposes an RUL prediction method based on the similarity fusion of
multiple damage indicators and samples. In contrast to the more traditional methods, the method of
multi-parameter and multi-sample similarity fusion estimates RUL by referring to multiple parameters
and samples.

The process can be divided into five parts. At first, in Sections 2.1 and 2.2, the various time and
frequency domain features extracted from a vibration signal that will be applied as damage indicators
are introduced together with the entropy variance method for fuzzy filtering applied for low pass
filtering of the time-domain features. Further, the method used for parameter evaluation in order
to select the most significant performance damage indicators to be applied for RUL prediction is
discussed. Second, in Section 2.3, we introduce principles of RUL prediction based on similarity and
defines four core elements in the RUL prediction based on similarity: Time window D, similarity
measurement function 5(.), weight function w(.), and performance evaluation indicator Q. Third,
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in Section 2.4, we introduce the Dynamic Time Warping Distance (DTWD) as the similarity measure
function S(.) to discuss the similarity of data degradation trajectory patterns for the first time. Fourth,
in Sections 2.5-2.7, according to combinations of different performance damage indicators, the RUL
prediction model based on the similarity fusion of multi-parameter and multi-sample methods is
established. Finally, in Section 3, this paper studies a type of heavy high-speed diesel generator
produced by the China Shipbuilding Industry Corporation (CSIC), and validates the RUL prediction
method proposed here with experimental results. In the meanwhile, Proposed method here are
compared with the mature methods of Multivariable Support Vector Machine (MSVM) and Principal
Component Analysis (PCA) for comparison analysis in Sections 3.3 and 3.4.

2. Methodology

At first step, we will select the most significant performance damage indicators which will be the
input of RUL estimation from various time and frequency domain features. Then, we will define four
core elements in the RUL prediction based on similarity: Time window D, similarity measurement
function 5(.), weight function w(.), and performance evaluation indicator Q. Next, as the most important
core, similarity measurement function S(.) will be established with DTWD and we write the details
about DTWD in Section 2.3. At last, the RUL prediction model based on the similarity fusion of
multi-parameter and multi-sample methods will be established.

2.1. The Damage Indicators

The various time domain and frequency domain features extracted from the vibration signal will
be used as damage indicators in the following RUL prediction. Further, we discuss the method we apply
to to define for each individual gearbox under study a subset of most significant damage indicators
system, to be applied for RUL prediction for this particular gearbox. The time domain features of
the vibration signal effectively reflect the performance degradation of the gearbox [18]. As shown in
Table A1l of Appendix A, we have chosen to use 10-time domain features as damage indicators [19].
Further, the Fourier transform is applied to convert the vibration signal into its frequency spectrum
representation [20]. We have chosen to use 15 frequency domain features [21], as damage indicator,
see Table A2 in Appendix A.

Since the time-series of the various damage indicators are noisy and in order to correctly compare
them with the reference samples we need to smooth the series, i.e., low pass filtering. Fuzzy filtering is
a low pass filtering method based on fuzzy set theory, which can adjust the filter structure adaptively
based on the features of the signal [22]. A large number of studies have shown that this method is easy
to implement and has a good filtering effect, which is very suitable for engineering applications.

For time domain features, this paper proposed the low pass filtering based on approximate
entropy variance. The time-series of the various damage indicators are rather noisy, we apply low pass
filtering techniques to smooth them [23]. For the time domain damage indicators we have applied
low-pass filtering with approximate entropy variance (Aev), because approximate entropy [24] is
suitable for describing dynamic noise with a small amount of data and has a strong Robustness to
observation noise, and the dynamics system is easy to reconstruct. Approximate entropy variance
is a statistic measuring the complexity of time series and it can accurately measure the complexity
of signals. Especially in the case of small data quantity and noise interference, it also demonstrates
statistical stability. The variance could describe the stability in time series. Approximate entropy (Ae)
is defined as: For time series {n(i)}(i = 1,2, ... (N), x(i) denotes m consecutive values of u starting at
point i:

Ae(m,r) = lim [¢"(r) = " (r)] )

n—oo

where:
N-m+1|N-m+1

e"(r) = (N=m+1)"" Y | Y Hir—dulon(i), xu()]}/ (N =m+1) @)

=1 | j=1
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m[ (i), %m ()] = max|u(i + k) = u(j + k)| 3)
X (i) = [u(@),u(i+1),..., (u(i+m-1)]
H() is the Heaviside function, After Ae is calculated, Aev is defined as:
N ES—
Aev :Z (Ae-Ae)/N @)

i=1

Then low-pass filtering decomposes the damge indicator signal into the parts trend and noise:

X(ti)= X (ti) +Xr (t) (5)

With X(#) is the value of the performance damage indicator at time t;, Xr(f) is the trend term,
XRg(t) the noise term, and t, =1, 2, ... , N, with N the number of discrete observations made within the
measurement time interval. The weighting filter and fuzzy filtering membership function are defined
as u'(x,—x) = f(Ae,n—k) according to [24], the range of u’(xn—k) is a [0, 1], and f is set to normal
distribution function. So XT(tx) will be ramained while XR(tx) removed.

To smooth the frequency domain damage indicator over time, a simple moving average filtering
is applied. The moving average filtering can reduce random noise while reflect unit step function
response of signal [25]. First, the damage indicators are decomposed into two parts just as before in
Equation (5), then calculate the average value as the predicted value of the next sub-interval and move
forward in turn. X(t j) is the first part of damage indicator with moving average filtering which is
defined as the weighted average value of the adjacent N data points.

-1
X(tj):%Z X(t)j=n+1,n+2,LN+1 (6)

i=j—n

In Figure 2, as an example of the full signal together with its trend is shown for one of the
time/frequency domain indicators. The ideal output can be obtained by wave filtering.
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Figure 2. Curves comparison of Fg1g before and after wave filtering.

2.2. Defining a Subset of Most Significant Damage Indicators

To define an—asset dependent—subset of most significant damage indicators to be applied for
RUL prediction of the asset, so called significance indicators have been defined [26]. By aid of these
significance indicators each of the twenty-five damage indicators is evaluated and a score from 0 to 1 is
given to each damage indicator as a measure of how significant the parameter is for the RUL prediction
for the asset under study. We have defined three significance indicators, Correlation, Monotonicity
and Robustness to act as RUL significance indicators, and which will be defined and explained in
the following.
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The correlation » measures the correlation of a damage indicator with time (that is over the whole
time span the vibration measurements have been performed), i.e., it states the normalized slope of the
trend of the damage indicator over time, i.e., r = (0X/ot)b, with X is the damage indicator, 0X the
standard deviation of X, ot the standard deviation of the the variable t time, and b the slope of the
regression line ‘found by linear regression when viewing X as a function of ¢.

The Monotonicity indicator reflects the unidirectional trend of time domain features and frequency
domain features. The larger the value of Monotonicity, the greater the slope of the parameters, and the
more intuitive and obvious the trend of performance degradation. If a parameter rises and falls
recurrently in the degradation process, it may be just a cyclic change as the machine vibrates. That does
not change in a certain direction as performance degradation occurs.

The Robustness indicator reflects the tolerability of damage indicators for outliers. Robustness
measures whether the degradation parameter is capable of resisting random interference [27]. If a
parameter is sensitive to external disturbance, it does not contain valuable information even if it
fluctuates wildly.

The equations applied to compute each of the indicator indicators are stated in Appendix B.

This study proposes a combination function W with three indicators above as a “ruler” to select
several optimal parameters for following RUL prediction.

maxW = w; Corr(x) + woMon(X) + wsRob(X)with : ;> 0N Y wi=1i=1,23 @)
1

In this equation, W is the combination function, distributed in the range of [0, 1]; () represents a
set of candidate damage indicators; and w; represents the weight of each indicator. The parameter
with a larger value of W should be selected for effective RUL prediction. w; is determined by
two sources: Subjectively, due to the fact that damage indicator is used to describe performance
degradation trajectory as time goes, Mon should take up the largest weight. This is in compliance
with similarity-based prediction method. So w; will be subjectively assigned a value denoted as prior
weighing a;. While objectively, the optimal combination of the chosen damage indicators in essence is
about constrained optimization. We adopt the solving model with AMPL, input the permutation and
combination of three indicators” weights (adjustment of weighting is from 0.2~0.8), and determine
the posterior weighting b;. according to the results. At last, considering both prior weighing a; and
posterior weighting b;, w; will be determined, and some more significant damage indicators can be
chosen for subsequent RUL estimation.

wi=aa;+(1-a)b;,(0<a<1) (8)

2.3. Similarity-Based RUL Prediction

As Figure 3 shows, the concept of the similarity-based RUL prediction method is that assets that
show similar behavior of their damage indicators have similar RUL values [28]. By comparing the
damage indicator time series of an asset with corresponding historical reference time-series, the RUL
of the asset can be predicted. It is assumed that the assets from which reference indicator curves are
available are the same or of closely related type of product or system—and have performed under
more or less similar operating environments and conditions—as the asset under study.

The blue curve represents the time-series of one of the damage indicators over time for a reference
gearbox, while the red curve is the time-series of same indicator for a gearbox in use on which we wish
to make an RUL prediction. Now the similarity concept states that we should find the most similar
certain part of blue curve to red curve, which named ‘optimal match’. When an optimal match has
been established then as estimate for the RUL of gearbox of interest the length of the time interval
of the blue curve which is on the right of the red is applied. Here we always assume that the final
available measurement point of any of the reference curves corresponds with the end of the remaining
useful life of the reference gearbox.
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Figure 3. Principle of similarity-based Remaining Useful Life (RUL) prediction.

To apply the similarity prediction method, its four core elements need to be defined. These are
the time window D, the similarity measure function S(.), a weight function w(.), and the performance
evaluation indicator Q. The time window D refers to the time interval of similarity between the
test sample and reference samples, shown as the data block length marked as yellow in Figure 3.
The similarity measurement function S(.) quantifies the similarity of the degradation trajectory of the
test sample and reference samples. This paper will establish the DTWD-based nonlinear dynamic
programming algorithm as S(.) which will be explained in Section 2.4. The weight function w(.)
concerns the similarity between the test sample and reference samples, and it gives different weights to
different reference samples and different parameters in line with their contributions. The performance
evaluation indicator Q is used to describe differences between the RUL estimated value and its
actual value, which helps to find the optimal method through comparing different RUL prediction
methods. We borrowed 5 indicators as the performance evaluation indicator Q, which are shown in
Appendix B (2).

Similarity-based RUL prediction follows four steps:

(1) Define the time window D to be used for each of the damage indicators related to an asset.
The right side of the data block is the state of asset under study. The red curve is the time window
D of the test sample and the blue curve is the life-cycle degradation state of reference sample.
The right boundary line of D is observation point at present for test sample.

(2) Define a similarity measure function S(.) through which the similarity or closeness between two
time-series is defined. DTWD algorithm is established as the similarity measure function S(.) in
order to find the most similar part in one certain reference asset with the time window D, so one
similarrity distance could be obtained. Suppose H most significant damage indicators are selected
and L reference assets are compared with the asset under study, which means each reference asset
contains H damage indicators. Then H*L similarity distances between each damage indicator in
the asset under study and each damage indicator in those reference assets could be obtained by
DTWD algorithm.
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(3) Based on the thought “the more similar the two-time series is, the larger the weight value is”,
we will make weighted summation among those H*L similarity distances. That is normalizing
H*L similarity distances and then assigning different weights according to the thought such
as closer distances will be given greater weights. The details of weight function w(.) based
on multi-parameter and multi-sample refers to Equations (12) and (14) and Equations (16) and
(18), respectively.

(4) For those RUL values referring to different parameters or different samples, weighted average
method is used to obtain the test sample’s RUL estimation based on the corresponding weights
calculated in step (3).

2.4. Similarity Measurement Function S(.): Dynamic Time Warping Distance (DTWD)

The DTWD is a dynamic nonlinear programming idea, and an algorithm that matches time
dimension warping with distance optimization planning [29]. DTWD has been widely used in text data
matching, voice information processing and other fields in recent years. Compared with the traditional
Euclidean distance, it shows better recognition accuracy and robustness in the application of time
series. DTWD can compress and bend time series, make the overall distance of two sequences smaller.
The DTWD of two time series is defined as the minimum distance between the two series calculated by
time dimension bending. when calculating the distance between series A and B, traditional Euclidean
Distance takes the distance between two time series A and B at same time point, while DWTD takes
the distance between two time series A and B that needn’t at same time point in order to obtain the
shortest distance. For example, supposing that time series A = {2,5,2,5,2,3}, B = {0,3,6,0,6,0}, so the
traditional Euclidean Distance is calculated as2 +2 +4 + 5+ 4 + 3 = 20, and DTWD is calculated as
Figure 4. The gray elements from the upper left corner to the lowest right corner are dynamic time
warping path. The lowest right corner element ”12” is the cumulative distance Dyyq(A,B) = 12.

B
AJO0[3]6]0|6]0
20203 |7]9|13]15
5 414 |9|10]15
29|58 10 | 12
50147 6|11 712
2 (16| 8 |10 8 |11]9
30198 |1 |11]11[12

Figure 4. The dynamic time warping path.

Therefore, DTWD is calculated as follows: Setting time series A = (a1,43, ... ,a;) and B = (by,by, ...
,bj ... by), I and k represent the sequence length of A and B, respectively. The DTWD algorithm needs
to first align two time series and establish a I X k matrix D which contains the value d(a;,;) on its ij-th
entry. d (a;,b;) represents the distance between points 4; and b; in two time series.

In matrix D, P (P = 41,92, ... 4n, - .- ,4N) denotes the dynamic time warping path of time series
A and B, g; represents the distance of time series A and B at time point i. Path P needs to meet the
following four restraint conditions:

(1) Boundedness: max(l,k) < N <1+ k_q;

(2) Boundary conditions: q; = D(1,1) and qn = D(/k), that is, the start and end points of the dynamic
warping path can only be on the diagonal of the matrix;

(3) Continuity: For g, = (a,b) and gn—1 = (a’,b"), the conditions a —a’ <1 and b -V’ < 1 must be met;
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(4) Monotonicity: For g, = (a,b) and g1 = (a’,b"),a —a’ =0and b — b" = 0 can’t happen. that is, all line
segments representing the dynamic bending paths cannot intersect each other.

For small-scale data, an exhaustive search method can be used to find an optimal dynamic time
warping path. For large-scale data, based on the Dynamic Programming Model, the optimal dynamic
time warping path can be obtained by a recursive search algorithm with the local optimal solution
from point (1,1) to point (i,j). Using DTWD to represent DTWD between time series A and time series
B, the computation process is

Diwd (A, rest(B))
Diwd (A, B)= d(aj,by)+min{ Dyyq(rest(A),B) ©)
Diwd (rest(A), rest(B))

d(a,b) = lla ~bll,

In the equation, p denotes the norm, rest(A) = {ap, a3 ... aj}, rest(B) = {by, b3 ... bx}. As Equation
(9) showed, d(a;,b;) represents the first point’s distance between two time series, then search for each
shortest bending path at each rest point(i.e., rest(A) and rest(B)) between two series. The pseudocode
of DTWD algorithm is shown in Appendix B (3).

2.5. RUI Estimation by Multi-Parameter Fusion

Multi-parameter similarity fusion focuses on the impact of different parameters on the RUL
estimation of the asset under study. As the four steps showed in Section 2.3, Suppose H most significant
damage indicators are selected and L reference assets are compared with the asset under study, which
means each asset contains [ damage indicators. Then H*L similarity distances between each damage
indicator in the asset under study and each damage indicator in those reference assets could be obtained
by DTWD algorithm. First, according to the weight idea in step (3) of Section 2.3, different weights are
arranged to those H*L similarity distances. Second, for each certain damage indicator Hi, we make
weighted summation among those Hi from L reference assets respectively, which is called “first fusion”
and need to be traversal H times because there are total of H damage indicators. After first fusion
there will be H similarity distances formed. Third, for those formed H similarity distances, we make
weighted summation among them again based on the weight idea in step (3). This is called “second
fusion”. There will be one similarity distances formed called “RUL value”. At last, by finding the
corresponding time point of “RUL value”, we can estimate the RUL.

The following is the calculation process of mathematical theory:

For a diesel generator gearbox, with a asset under study(called “test sample”) of X, suppose H
performance damage indicators can be obtained with the method in Section 2.2. With the [-th reference
sample Y1 (1=1,2,---,L) is the label of reference sample and L is the number of reference samples.
The idea of multi-parameter similarity fusion is shown in Figure 5.

In Figure 5, by yil we denote the time-series of the h-th damage indicator of the I-th reference
gearbox, with /=1, ..., L, and L the total number of reference gearboxes. Further, U;ﬁ represents the
RUL estimation described by the h-th damage indicator of the /-th reference sample, and Uy, represents
the RUL value estimated by the h-th damage indicator after first fusion.
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Figure 5. Similarity fusion of multi-parameter.

(1) Calculating similarity distance between each damage indicator in the asset under study and
each damage indicator in those reference assets which is denoted by Uil*, so we need to run this step
H*L times and obtain total of H*L similarity distances. let SL* denotes the optimal similarity distance by
DTWD between the h-th damage indicator of the [-th reference sample and the h-th damage indicator
of the test sample. The calculation of Ullﬁ is as follows:

She = min Do (s ¥y, (N =D = ) (10)

ul, = arg min Diwd(Xper ¥}, (N =D = A)) (11)

As Figure 3 shows, we need to match the red block such that is most similar (w.r.t. a certain
measure) to a part of the blue curve, that is to find an ‘optimal match’. Only when the Dy, attains a
minimum, we can conclude that the right boundary line of D which corresponds to a time point of
reference sample reflects the RUL of test sample. With the minimum of distance Sil* is determined,
the UL* is determined.

(2) First fusion:wél* represents the weight of U;H, so Equation (12) is established as weight function
w(.) for the first fusion according to the idea” The smaller the distance between the two time series is,
the larger the weight value of the parameter is.”, then U, could be obtained as showed in Figure 6.
SL* and UZ* have been calculated in Equations (10) and (11).

L
Y s
I =1
Wy, = L L (12)
=1 I=1

L
u, =Y w,- U, (13)
I=1
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Figure 6. Similarity fusion of multi-sample.

(3) Second fusion: After obtaining a total of H Uy, wy, represents the weight of Uy, so Equation
(14) is established as weight function w(.) for the second fusion.

(14)

U=y w U (15)

2.6. RUI Estimation by Multi-Sample Fusion

Compared with multi-parameter similarity fusion, multi-sample similarity fusion focuses more
on the similarity between reference assets and the asset under study, rather than the similarity among
different parameters. Same as Section 2.5, suppose H most significant damage indicators are selected
and L reference assets are compared with the asset under study, which means each asset contains H
damage indicators. Then H*L similarity distances between each damage indicator in the asset under
study and each damage indicator in those reference assets could be obtained by DTWD algorithm.
First, according to the weight idea in step (3), different weights are arranged to those H*L similarity
distances. Second, for each certain reference sample L;, we make weighted summation among those
Hi, which is called “first fusion” and need to be traversal L times because there are total of L reference
samples. After first fusion there will be L similarity distances formed. Third, for those formed L
similarity distances, we make weighted summation among them again based on the weight idea in
step (3). This is called “second fusion”. There will be one similarity distances formed called “RUL
value”. At last, by finding the corresponding time point of “RUL value”, we can estimate the RUL.

The following is the calculation process of mathematical theory:
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(1) Repeating the steps (1) in Section 2.5 based on multi-parameter similarity fusion;

(2)  First fusion: w;l* represents the weight of U! . 50 Equation (16) is established as weight function
w(.) for the first fusion, then U, could be obtained as showed in Figure 7. Unlike multi-parameter
fusion, each reference sample is treated as a “unit”, H damage indicators of a certain reference
sample will have a fusion firstly in those units.

H
. L S,
I h=1
wh* T H H (16)
h=1 h=1
ul ]
ul =y doy, - Uy, (17)
h=1

(3) Second fusion: For the obtained U!, We used Equation (18) as weight function w(.) and make

weighted summation to integrate L reference sample to the final RUL value U:

H L
hzllzl Sé‘*
w = — (18)
. XLXs. H
Y (5—)- LS,
=1 Y 51& h=1
h=1
. L
U= Z o Ul (19)
=1

Multi-parameter
similarity fusion

L reference samples

l—‘—l

Multi-sample
similarity fusion

I

H damage indicators

Reference Reference
Parameter 1 |-+1 Parameter H sample 1 sample L
DTWD
| fusion of RUL | | fusion of RUL |
_________________ T
C T
l

Performance evaluation indicator Q

]

Combining two estimates

End

Figure 7. Combination of the two methods.
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2.7. Combining the Two Estimates into One

After obtaining the two results of RUL estimation with two methods, it’s feasible to make
“third fusion” to combining the two estimates into one. This paper provides another idea about
combining yet. As Figure 7 showed, the performance evaluation indicator Q is established to discuss
the estimation results of the two methods, and the better RUL estimation result is selected for the diesel
generator gearbox.

In addition, for a mechanical system, we will use the both methods and then prefer a more suitable
result. Performance evaluation indicator Q is used to measure which result is better, they are some
index like deviation of estimation in Appendix B. The two methods make the fusion process from
different perspectives and take into account influencing factors comprehensively, so there is no need to
fuse the two method’ results.

3. Experimental Results and Comparative Analysis

In this paper, the RUL of a diesel generator gearbox is studied by analyzing the vibration signals
of a gearbox shell surface as Figure 8 showed. Data comes from the High Stress Accelerated Life Test
of a certain type of heavy high-speed vessel diesel manufactured by the China Shipbuilding Industry
Corporation (CSIC), which is collected from the gearbox Monoblock’s accelerometers. The number of
teeth of the drive pinion is 17, and the number of teeth of the driven bull gear is 75. The input shaft
bearing has a pitch diameter of 60 mm, a rolling element diameter of 19.05 mm, and six steel balls;
the output shaft bearing has a diameter of 95 mm, a rolling element diameter of 22.25 mm, and eight
steel balls. The data were recorded every 5 or 10 min at a sampling rate of 20 KHz. Four sets of diesel
generator gearbox data were recorded during the life-cycle degradation process in Table 1. GU1, GU2,
GU3, and GU4 all belong to the same type of component of the system, which are of similar working
environments and operating conditions.

Figure 8. Typical diesel engine (Inside the black frame is a gearbox).

Table 1. Vibration data sets for the diesel generator gearbox.

Gearbox No. Service Time (Unit: h) Record Interval (Unit: min)
GU1 467 50r 10
GU2 390 50r10
GU3 410 50r10
GU4 408 50r 10

Figure 9 depicts the whole vibration signal in a gearbox lifecycle. The amplitude of the vibration
signal increases gradually until the gear box fails to work properly.
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Figure 9. Vibration signal diagram in the life-cycle degradation process.

3.1. Parameters System: Gearbox Performance Degradation Data

With the theory in Sections 2.1 and 2.2, the evaluation result of 25 damage indicators is showed
in Table 2. According to the calculation result of Equation (7), the weights are w; = 0.2, wy = 0.5,
and w3 = 0.3, respectively. According to the Section 2.2, the first six damage indicators (Fy9, Fy13, Fs4,
Fp3, Fs2, and Fp1) ranked from large to small according to the W value are selected to construct the
performance damage indicator system of the diesel generator gearbox. They will be the input of two
RUL estimation methods. Figure 10 shows the life-cycle trajectories of Fyg, Fp13, Fs4, Fp3, Fs2, and Fp1.

After establishing the gearbox performance damage indicator system [Fy9, Fy13, Fsa, Fp3, Fs2, Fp1],
the performance damage indicator data set of four samples (GU1 to GU4) is calculated. Figure 11
indicates that the curves of the same performance damage indicator from different samples have similar
states. This proves that the gearbox registers a similar degradation trajectory in line with the running
state and environment, which provides strong practical evidence for the subsequent RUL prediction
based on multi-parameter and multi-sample similarity fusion. On the other hand, the different
characters of Fp13, Fp3, and Fpj exactly reflect the different performance degradation trajectories of four
samples. By selecting samples with different performance degradation, the verification of experience
could be more convincing. In addition, in the aspect of the sample, Fpy3, Fp3, and Fpj from a same
sample have similar degradation trajectories, and the amplitude ranges are also so similar. This proves
that these three parameters could actually reflect the performance degradation and should be selected
for RUL prediction.

Table 2. Evaluation results of time-domain and frequency-domain damage indicators.

Da.m age Corr Mon Rob A\ Ranking Dafnage Corr Mon Rob \ Ranking
Indicators Indicators

Fsq 0.0723  0.0060 0.3936  0.13554 25 Fpq 0.6379 0.0496 0.9491 043711 10
Fsp 0.7374  0.0641 0.9418 0.46207 5 Fps 0.5585 0.0641 0.8725 0.4055 14
Fs3 0.5224 0.0675 0.9084 0.41075 13 Fpe 0.9134 0.0051 0.9016 0.45571 8
Fsy 0.7452  0.0675 0.9514 0.46821 3 Fp7 0.1305 0.0436 0.5069 0.19997 24
Fss 0.7440  0.0051 0.4542 0.28761 22 Fpg 0.1091  0.0017 0.9956 0.32135 20
Fse 0.5463  0.0009 0.9797  0.40362 15 Fpo 0.8201  0.0513 0.9696  0.48055 1
Fsy 0.5228 0.0009 0.8678 0.36535 18 Fpo 04615 0.0188 0.9928 0.39954 16
Fsg 0.6418 0.0239 0.8301 0.38934 17 Fpoun 0.5650 0.0239  0.9917 0.42246 11
Fso 0.7128 0.0474 0.8501 0.42129 12 Fpi2 0.0447  0.0265 0.9950  0.32069 21
Fs10 0.8328 0.0248 0.8696 0.43984 9 Fpis 0.8896  0.0615 0.8985 0.47822 2
Fp1 0.9135 0.0085 0.9071 0.45908 6 Fpia 04418 0.0094 05156 0.24774 23
Fpo 0.9135 0.0085 0.9071 0.45908 7 Fp1s 0.3534 0.0581 0.8413 0.35212 19
Fp3 0.9105 0.0077 0.9222  0.46261 4
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Figure 10. Life-cycle diagrams of six selected performance damage indicators.
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Considering the running time and data features, this study sets Sample GU1 as the test sample and
GU2, GU3, and GU4 as reference samples to prove the validity of multi-parameter and multi-sample
similarity fusion.

3.2. RUL Prediction Results

(1) Results based on multi-parameter similarity fusion

This study unrolled the prediction of a diesel generator’s data starting from the point of 200 h,
with the time window D of 30. The details of RUL prediction result based on multi-parameter similarity
fusion with Euclidean distance/DTWD are shown in Tables A3 and A4 of Appendix B. Figures 12
and 13 show the relative error between the actual values and predicted values of RUL.

Relative Error

—o— Relative Error
—=— Prediction Value

350+ ~ Actual Value

0 100 200 300 400 500
Usage time/h

Figure 12. Actual values and predicted values of RUL based on multi-parameter similarity fusion with
Euclidean distance.

Relative Error

400 —o— Relative Error

——a— Prediction Value
350 + — Actual Value 4

0 100 200 300 400 500
Usage time/h

Figure 13. Actual values and predicted values of RUL based on multi-parameter similarity fusion with
Dynamic Time Warping Distance (DTWD).

In RUL prediction based on multi-parameter similarity fusion with DTWD, the relative error
between the predicted values and the actual values ranges from —0.88% to —95.82%. Except for very
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few points with large errors, the relative errors of most of the predicted values are below 30%, which
could obtain more accurate values than traditional Euclidean distance.

(2) Result based on multi-sample similarity fusion

The RUL estimation values based on multi-sample similarity fusion during the life-cycle
degradation process are shown in Tables A5 and A6 of Appendix B. Figures 14 and 15 show the relative
error between the actual values of RUL and the predicted values with Euclidean distance /DTWD.

Relative Error

—o— Relative Error
=== Prediction Value
350 Actual Value

Ui
b

0 100 200 300 400 500
Usage time/h

Figure 14. Actual values and predicted values of RUL based on multi-sample similarity fusion with
Euclidean distance.

Relative Error
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400 |

—e— Prediction Value |
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300
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200
150+
100
50t

0 100 200 300 400 500
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Figure 15. Actual values and predicted values of RUL based on multi-sample similarity fusion
with DTWD.

With RUL prediction based on multi-sample similarity fusion, the relative error between the
predicted values and the actual values ranges from —0.35% to —76%. Except for very few points with
large errors, the overall relative error is controlled below 30%, which has a better prediction accuracy
than the RUL prediction result based on multi-parameter similarity fusion.

3.3. Comparative Analysis with Single-Parameter RUL Prediction

Unlike methods of single-parameter similarity fusion, the method of multi-parameter similarity
fusion generates a combination of results predicted by multiple parameters. In order to prove the
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validity and rationality of the model, a performance degradation curve is established upon each and
every one of the reference samples” parameters. The calculation adopts that of the single-parameter
similarity prediction method and the weight value calculation process of different reference samples is
the same as above. The test data set contains six performance damage indicators of Sample GU1: Fo9,
Fp13, Fsa, Fp3, Fsp, and Fp1. They are compared to parameters Fy9, Fp13, Fs4, Fp3, Fs2, and Fpq of Sample
GU2, GU3, and GU4 to determine the RUL.

In this study, Principal Component Analysis (PCA) technology is used to integrate elements
of the performance degradation index system [30]. The first principal component PCA-1 and the
second principal component PCA-2 were extracted respectively to conduct RUL prediction through the
single-parameter life RUL prediction method [31]. This paper takes the life cycle data set of Sample
GU1 as an example. Through PCA of its six performance damage indicators, we get the KMO of 0.748,
higher than 0.5, indicating that the six parameters are suitable for dimensionality reduction processing.

The curve of the first-order principal component and second-order principal component of the
performance damage indicator system of Sample GU1’s life cycle data is shown in Figure 16.

WMMM”\M

PCA-1
- S
T T T T T T

0

) P , . .
0 100 200 . , 300 400 500
400 500 usage time / i

1

1 h
0 100 200 300
usage time/ h

Figure 16. First- and second-order principal component of Sample GU’s performance damage
indicator system.

The single-parameter RUL prediction results of the first-order performance principal component
PCA-1 and the second-order principal component PCA-2 are shown in Table 3.

Table 3. Comparison with single-parameter Remaining Useful Life (RUL) prediction.

Performance Evaluation Indicators Q

Parameter
MAE MSE MAPE ESD MADM
Fpg 23 751.86 36.51% 24.78 21.10
Fp13 20 709.71 20.30% 26.45 19.97
Fsy 21 676.81 21.35% 21.98 18.92
Fp3 41 4142.53 79.74% 63.75 40.72
Fs» 23 1014.17 40.64% 25.22 19.34
Fp1 38 3023.67 69.93% 54.82 38.20
PCA-1 13 241.22 18.79% 15.39 13.05
PCA-2 16 490.60 22.69% 21.90 16.02

It can be seen from the table that there are significant differences in the prediction effects of the six
parameters in the diesel generator gearbox performance degradation index system. The prediction
accuracy of Fy13 and Fs4 is higher than the rest, whereas the prediction of all the six first-order principal
components of PCA-1 is more accurate than that of a single-parameter. The single-parameter similarity
RUL prediction registers a poorer performance. In summary, the multi-parameter fusion-based RUL
prediction method proposed in this study has certain advantages and effectiveness.
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3.4. Comparative Analysis with Al-Based RUL Method: MSVM

Research on RUL prediction based on artificial intelligence has also been developed, such as
Bayesian methods, which are deep learning methods. This paper uses the multivariable support vector
machine (MSVM) for comparative analysis. MSVM fully considers the interaction and constraints
between multiple variables, and realizes the maximum mining of potential information for small
sample data. According to Section 3.1, Fp9, Fp13, Fs4, Fp3, Fs2, and Fp; are selected as the input of
MSVM, and a regression function is constructed:

f(x) = (w-x)+b,(weR",beR) (20)
w and b can be obtained by solving the optimum solution of the following equation:

n
min Jlolf +C X (& + &)
1=
with:(w-x)) +b—-yi <&+ &yi—(w-x)—b< & +ei=12,-- ,n(,C >0

(21)

C is a penalty factor, ;, C;.* are relaxation factors, and ¢ is an unsensitive factor. When the data set
shows a nonlinear relationship, a kernel function is introduced into the SVM operation to map the
original data into the high-dimensional feature space. The Radial Basis Function (RBF) and Poly kernel
function are as follows:

i = x;I? ]

K(xi, X ]-) = exp( 27

P is the index of RBF. The Lagrangian function is introduced to transform the optimization
problem into a convex quadratic programming problem. a;, a; are Lagrangian multipliers.

(22)

n

max W(ai, a;‘) = —% i (ai - a;)(aj - a;)K(xi, x]-) - sli (ai - a;) + 'Z y,-(ai - a;)
i,j=1 i=1 i=1 (23)
with: ¥ (a—a) = 0,0 <@ < GO < a; < Cli = 1,2, )
i=1

The calculation results of the comparative analysis are shown in Table 4.

Table 4. Results of different prediction methods.

Performance Evaluation Indicators Q
MAE MSE MAPE ESD MADM

RUL Prediction Method Similariy Measure

multi-parameter Euclidean distance 23 808.81 30.90% 27.78 22.56
similarity fusion DTWD function 14 292.11 17.15% 16.82 13.73
multi-sample similarity Euclidean distance 22 684.30 21.43% 2241 19.35
fusion DTWD function 12 219.37  14.00% 14.76 12.39
Euclidean distance 19 351.02 23.34% 17.83 12.24

MSVM DTWD function 17 287.34  20.14% 16.21 11.45

Table 4 indicates that the prediction accuracy of multi-sample similarity fusion is higher than
multi-parameter similarity fusion concerning the prediction’s average relative error, and the two
methods” MAPE are both lower than MSVM, validating the effectiveness of the proposed method
compared with the Al-based method. In addition, the proposed DTWD-based algorithm performs
better than the traditional Euclidean distance.
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In parameter similarity fusion, RUL values predicted by the same performance damage indicators
are integrated to calculate the RUL of the test sample; while in sample similarity fusion, the RUL values
of samples are integrated on the basis of performance damage indicators carried by each sample.

Multi-parameter and multi-sample methods are similar in calculation, but differ in some respects.
Multi-parameter similarity fusion depends more on parameters’ feedback on the performance
degradation process, while multi-sample similarity fusion relies on the sample data that is similar to
the life-cycle trajectory in the gearbox running process. The more similar the test samples are with
reference samples in terms of operating methods, conditions, and load environments, the larger the
weight value that can be obtained, and the closer the RUL prediction value is to the actual value.
Experimental results of the comparison are shown in Figure 17.

20 25%
19 - .34%

== VIAE
18 - 0.74% | 20%
17 - 17.15% —#—ESD

MADM

16 14.0 15%
15 - == NMAPE

14 - «\ <o - 10%
13
12 - \V - 5%

11 -~

10 T 0%
multi-parameter multi-sample MSVM PCA

Figure 17. Comparison of four RUL prediction methods.
3.5. Limitations and Future Work

This paper proposes an RUL prediction model based on multi-parameter and multi-sample
fusion, and has verified its effectiveness through analyzing a certain type of heavy high-speed diesel
generator manufactured by an affiliate of CSIC. The results show that the proposed method is superior
to previous studies in terms of the prediction accuracy. However, there are still some limitations in
several respects. First, this paper verifies the proposed model with the diesel generator gearbox as
an example, but further efforts should be devoted to testing broader gearbox equipment and even
the mechanical rotating equipment. Second, this study does not classify types of malfunction at the
termination and identify the degradation trend at different stages. Future researches can focus more on
RUL under different malfunctions, grouping and decomposing the performance degradation process
to identify test samples’ running stages, and refining the RUL prediction problems and models. Third,
the research is conducted on the vibration signal of the diesel generator gearbox. To develop a more
comprehensive RUL prediction method, future research should incorporate more data sources, such as
performance parameters and environmental parameters.

4. Conclusions

This paper takes a certain type of heavy high-speed diesel generator as the study case. In the
first step, through extracting time and frequency domain features of the original vibration and fuzzy
filtering based on approximate entropy variance, the diesel generator performance damage indicators
system is established. Next, this paper analyses the four core elements of similarity-based RUL
prediction and establishes DTWD as the similarity measurement function. Then, we propose the
methods of multi-parameter similarity fusion and multi-sample similarity fusion. Based on the two
methods, the performance comparison research is carried out. The experimental results show that
the MAPE values of the two RUL prediction methods proposed here are below 14%, which are lower
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than MSVM'’s and PCA’s. This fully validates the effectiveness of the proposed method for predicting
the RUL.And the RUL prediction based on the dynamic time bending distance function in the sample
similarity fusion has the best accuracy which is below 10%. The similarity-based RUL prediction
method has the merit of avoiding establishing a system degradation model, and is simple and practical.
Moreover, it fully employs effective information provided by vibration signals, considers multiple
parameters that can reflect performance degradation, and conducts a comparative analysis of multiple
samples. The predicted results are stable as experimental results showed.
In summary, the innovations of this article are mainly as follows:

(1) We put forward the idea of similarity fusion with multi-parameter and multi-sample
methods, and established the RUL prediction model. The performance degradation process is
multi-dimensional and multifaceted. Multi-parameter similarity fusion takes full consideration of
multiple parameters of vibration signals and a whole performance degradation process. Hence,
a more comprehensive and accurate prediction is achieved. In contrast, multi-sample similarity
fusion considers multiple samples with life-cycle degradation. By integrating RUL prediction
values calculated by damage indicators carried with those samples, we improve the stability
and credibility of RUL prediction; the MAPE is reduced to less than 14%, the MSE less than 220,
the MADM less than 13.

(2) The DTWD-based nonlinear dynamic programming algorithm is established as the distance
measure of similarity in RUL prediction. In the time series analysis, it performed better than
the traditional Euclidean distance, the average relative errors of DTWD is 17% less than
Euclidean distance.

(3) After time domain and frequency domain features extraction, we proposed approximate entropy
variance (Aev) for low-pass filtering to remove signal noise.
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Appendix A

In Table A1, Fs represents the time domain parameter of s, and x; represents the amplitude of the
vibration signal collected by the gearbox sensor within a certain period (i=1,2, ..., Ng), where Ny is
the quantity of data points collected within the period.

In Table A2, The spectrum of the original signal x; collected within a certain period is represented
assj, wherej=1,2,...,].]is the spectral line quantity of the spectrum, f; represents the frequency value
of the j-th line, and F,i below represents the value of the k-th frequency domain damage indicator Fp,.
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Table Al. Time domain damage indicators of the gearbox vibration signal.

. Feature . o
Damage Indicators Symbol Equation Implication
Average energy value of gearbox
1 8 8y g
Average value Fa Fa =53 E Xi vibration within a certain period
No Better manifesting performance
Mean square Fo Fo = NL Y ox2 degradation trend of gear and
Yi=1 bearing [32-34]
. Sensitive to larger amplitude
Mean-square amplitude Fg Fy3 = [ . Z Vix; ] change [35]
No Calculating absolute value before
Absolute average Fgy Foy = I\_f Y il calculating averages, which can avoid
=1 positive-negative offset
X . o
Skewness index Fus Fis — NL Y 33 Measuring asymmetry of vibration
0,2 signals
No Representing deviated and inclined
Waveform index Fs % igl ; value between present vibration signal
Foo = —F; and sine wave
r max(x;) Manifesting stability and destruction
Pulsatility index Fs7 77 level of gearbox’s degradation and
N X lxil .
i1 malfunction [36]
No
W5t Measuring “bending and arching” level
Kurtosis index Fig Fig = S easuring “bending and arching” leve
N of vibration signal
( voi)gl x?)
. ' e Reflecting impact vibration resulted
Peak-peak value Fs9 Fs9 = max(x;) — min(x;) trom malfunction
. _ max(x) Reflecting Abrasion level of gear and
Margin index Fs10 Fqp = T bearing [35]

Table A2. Frequency domain features of the vibration signal.

Feature Equation Feature Equation Feature Equation
Symbol g Symbol 1 Symbol 1
J _ Jo_
L 58 X5
Fin — Fpa = Fys Fpy = Fp1?
21y s; 42y, 52
j=1 j:l
) ¥ (5-F)
v s;i—Fp
Fps Fys B ) Fpe R ;43
T J(\Ess)
]
L fisi I
Fyy Fyg ,,} Fpo §(f/ 18)7S)
Y sj T
j=1
]
jglszs,
FplO Fpll FP12 N
Y.siX ffs
=1 =1
F 5 (f-F)’ % (f-F)
) S‘ i—. S
Fpi3 ﬁ Fp1a =0 Fpi5 o

JFp93 JFpot




Entropy 2019, 21, 861 23 of 28

Appendix B
(1) Calculation of Corr, Mon and Rob

k

‘K% Xr(te)tk = % Xr(t) Xt

Corr(X,T) = (A1)
\/[Kz Xr(0)? - (2 X007 K02 (20
k k k k
Mon(x) = 25 X1 (ter1) = Xr(te)) Z(S Xr(te) = Xr(tes1)) (A2)
Rob(X KZ XR t" ) (A3)

In those equations, K represents the total number of time series and 0( ) represents the unit step
function. When the value of the independent variable in parentheses is larger than 0, the value of 5( ) is
1; otherwise, the value of 6( ) is 0.They are all distributed in the range of [0, 1] and positively correlated
with time domain features and frequency domain features.

(2) The performance evaluation indicator Q

Mean Absolute Error (MAE): B is the start time of the test sample’s prediction, E is the end time
of prediction, and i is the time point of prediction. A(i) represents the difference between the predicted
value and actual value of the i-th prediction. The smaller the MAE is, the higher the prediction
accuracy is.

E
i§B|A(i)|
MAE = s—5— (Ad)
Mean Squared Error (MSE):
MSE = ;E_ZB"MA@)Z (A5)
E-B+1

Mean Absolute Percentage Error (MAPE): The concept of Relative Error is introduced in this
paper considering the difference between the predicted value and actual value.

E-B+1
1

100A (i)
APE =
T )

ud)

(A6)

Error Standard Deviation (ESD): This reflects fluctuation of the error value. The smaller the
value is, the more stable the gearbox is.

1 E-B+1
M=t ; All) (A7)
E-B ) 5
Y (A()-M)

(A8)
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Error Standard Deviation (ESD): Me denotes the median of the error value. MADM reflects the
deviation degree of the error value from the median value, which applies to cases where the error
value does not conform to Normal Distribution.

MADM = z—p— Z |AG) - Mel (A9)

(3) The pseudocode of DTWD (Algorithm A1)

Algorithm A1: Main: calculate DTWD

Input: time series A (array [1, 1]), Barray [1,k])

Output: DTWD

(1) Matrix D = AT B.

(2) Set constraint condition:

Boundedness, Boundary conditions, Continuity, and Monotonicity
(3) Dywq =0

(4) FOR i: = 1:IDO

DTWD [i, 0]: = o0

(5) FOR i: = 1:I DO

DTWD [0, i]: = o0

(6) DTW [0,0]: =0

(7) FORi=1: DO

{ FORj=1: kDO

(i, j) = lli - I,

cos t := d(A[i], B[j])

DTWD [i,j]: = cost + minimum (DTWD [i — 1,j], DTWD [i,j — 1], DTWD [i — 1,j — 1])
}

(8) return DTWD

The details of RUL prediction result based on multi-parameter similarity fusion with Euclidean
distance/DTWD.

Table A3. RUL prediction results based on multi-parameter similarity fusion with Euclidean distance.

RUL Relati RUL Relati
NO.  Actual Predicted Error Erioar l(‘o,/:) NO.  Actual Predicted  Error Erioar 1(:/:)
Value Value Value Value
1 267 348 -81 -30.35 28 132 128 4 2.97
2 262 238 24 9.17 29 127 137 -10 -7.50
3 257 351 -94 —-36.54 30 122 135 -13 -10.33
4 252 235 17 6.91 31 117 128 -11 -9.35
5 247 236 12 4.67 32 112 115 -3 -2.90
6 242 227 15 6.39 33 107 122 -15 -13.69
7 237 223 14 6.05 34 102 129 =27 —26.31
8 232 218 14 6.03 35 97 116 -19 —-19.45
9 227 208 19 8.36 36 92 111 -19 -20.36
10 222 209 13 5.83 37 87 113 -26 -30.06
11 217 207 10 4.73 38 82 103 =21 —25.65
12 212 203 9 4.12 39 77 94 =17 -21.66
13 207 166 42 20.08 40 72 96 —24 —33.46
14 202 167 36 17.61 41 67 92 =25 -37.67
15 197 163 34 17.20 42 62 97 =35 —55.75
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Table A3. Cont.

RUL Relati RUL Relati
NO.  Actual Predicted Error Ereroar 1(“)1/:) NO. Actual  Predicted Error Ereroar I(Z/:)

Value Value Value Value
1 267 348 —81 -30.35 28 132 128 4 2.97
2 262 238 24 9.17 29 127 137 -10 -7.50
3 257 351 —-94 -36.54 30 122 135 -13 -10.33
4 252 235 17 6.91 31 117 128 -11 -9.35
5 247 236 12 4.67 32 112 115 -3 —-2.90
6 242 227 15 6.39 33 107 122 -15 -13.69
7 237 223 14 6.05 34 102 129 =27 -26.31
8 232 218 14 6.03 35 97 116 -19 —-19.45
9 227 208 19 8.36 36 92 111 -19 -20.36
10 222 209 13 5.83 37 87 113 -26 -30.06
11 217 207 10 4.73 38 82 103 =21 —25.65
12 212 203 9 4.12 39 77 94 =17 -21.66
13 207 166 42 20.08 40 72 96 -24 -33.46
14 202 167 36 17.61 41 67 92 -25 -37.67
15 197 163 34 17.20 42 62 97 =35 —55.75

Table A4. RUL prediction results based on multi-parameter similarity fusion with DTWD.

RUL Relati RUL Relati
NO.  Actual Predicted Error Erioar I(Z/:) NO. Actual  Predicted Error Erioar I(Z/:)

Value Value Value Value
1 267 239 28 10.36 28 132 127 5 3.95
2 262 242 20 7.67 29 127 135 -8 —6.38
3 257 240 17 6.52 30 122 134 -11 -9.38
4 252 237 15 6.13 31 117 126 -9 -7.55
5 247 232 15 6.13 32 112 122 -10 —8.69
6 242 232 10 4.28 33 107 121 -14 -12.84
7 237 222 15 6.52 34 102 110 -8 -7.56
8 232 215 17 7.22 35 97 120 =23 —23.53
9 227 214 13 5.73 36 92 111 -18 -19.95
10 222 215 7 3.05 37 87 100 -13 -14.76
11 217 213 4 1.85 38 82 98 -16 -19.31
12 212 210 2 1.00 39 77 92 -15 -19.27
13 207 204 4 1.72 40 72 86 -14 -19.21
14 202 206 -4 -1.81 41 67 81 -14 -20.64
15 197 205 -8 -3.89 42 62 98 =35 —-56.96
16 192 201 -9 —4.66 43 57 95 -38 —66.05
17 187 202 -15 -8.12 44 52 94 —42 -79.67
18 182 202 -20 -11.01 45 47 92 —45 -95.82
19 177 150 27 15.23 46 42 45 -3 -7.55
20 172 149 23 13.36 47 37 25 12 31.81
21 167 191 —24 -14.59 48 32 42 -9 -29.06
22 162 148 14 8.44 49 27 25 2 7.94
23 157 143 14 9.00 50 22 30 -8 -36.89
24 152 141 11 7.10 51 17 30 -12 -71.91
25 147 138 9 5.94 52 12 16 -4 —28.81
26 142 138 5 3.19 53 7 5 2 27.88
27 137 138 -1 —0.88

The details of RUL prediction result based on multi-sample similarity fusion with euclidean
distance/DTWD.
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Table A5. prediction results based on multi-sample similarity fusion with euclidean distance.

RUL Relati RUL Relati
NO.  Actual Predicted Error Erioar I(Z/f) NO. Actual  Predicted Error E:;.Oar 1(‘-;:)
Value Value Value Value
1 267 221 46 17.14 28 132 121 11 8.09
2 262 221 41 15.72 29 127 120 7 5.37
3 257 220 37 14.34 30 122 123 0 —0.38
4 252 222 30 11.89 31 117 119 -2 -1.60
5 247 221 26 10.43 32 112 105 8 6.75
6 242 205 37 15.25 33 107 93 14 13.36
7 237 204 33 13.78 34 102 91 11 10.94
8 232 199 33 14.07 35 97 97 0 -0.13
9 227 192 35 15.33 36 92 93 -1 -1.37
10 222 189 33 15.03 37 87 85 2 2.84
11 217 188 30 13.60 38 82 86 -3 —4.12
12 212 163 49 23.18 39 77 73 5 6.01
13 207 157 50 24.30 40 72 76 —4 -5.06
14 202 157 45 22.16 41 67 71 —4 —5.64
15 197 153 44 22.27 42 62 61 1 1.98
16 192 150 42 2211 43 57 74 -17 —28.88
17 187 155 32 17.17 44 52 76 -24 —46.44
18 182 151 31 17.17 45 47 70 -23 —49.52
19 177 140 37 20.85 46 42 74 =31 —74.72
20 172 141 32 18.35 47 37 58 =21 -57.02
21 167 144 23 13.97 48 32 59 -27 -84.10
22 162 140 22 13.35 49 27 54 -27 -98.48
23 157 137 20 12.60 50 22 35 -13 -57.95
24 152 130 22 14.43 51 17 26 -9 -51.51
25 147 128 19 12.79 52 12 21 -9 -72.66
26 142 127 15 10.83 53 7 8 -1 -11.67
27 137 128 10 6.95

Table A6. RUL prediction results based on multi-sample similarity fusion with DTWD.

RUL Relati RUL Relati
NO.  Actual Predicted Error E::.Oar 1(‘01/5 NO. Actual  Predicted Error Erioar 1(‘-;:3)
Value Value Value Value
1 267 284 -17 —6.40 28 132 133 0 -0.35
2 262 263 -1 -0.47 29 127 137 -10 -8.07
3 257 272 -15 -5.79 30 122 136 -14 -11.36
4 252 224 28 11.04 31 117 132 -15 -12.51
5 247 224 23 9.34 32 112 116 —4 -3.29
6 242 216 26 10.58 33 107 113 -6 -5.30
7 237 215 22 9.19 34 102 111 -9 —8.33
8 232 213 19 8.40 35 97 115 -18 -18.84
9 227 207 20 8.90 36 92 109 -17 -17.94
10 222 211 11 4.89 37 87 109 =21 —24.59
11 217 205 12 5.65 38 82 101 -18 —22.37
12 212 200 12 5.59 39 77 91 -14 -18.31
13 207 191 16 7.64 40 72 91 -19 -26.62
14 202 189 13 6.46 41 67 90 -23 -34.15
15 197 187 10 5.09 42 62 92 =30 —48.85
16 192 186 6 3.38 43 57 80 -23 -39.99
17 187 185 2 0.87 44 52 76 -24 —45.74
18 182 182 0 0.26 45 47 55 -8 -16.65
19 177 155 22 12.63 46 42 55 -13 -30.48
20 172 154 18 10.52 47 37 40 -3 -7.66
21 167 162 5 3.18 48 32 40 -8 -24.40
22 162 152 10 6.42 49 27 35 -8 —-28.88
23 157 149 9 5.43 50 22 39 -17 -76.00
24 152 146 7 4.34 51 17 18 -1 —4.89
25 147 144 3 1.80 52 12 10 2 17.78
26 142 143 -1 -0.61 53 7 5 2 30.21
27 137 142 -5 -3.83
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