
entropy

Article

A Hierarchical Gamma Mixture Model-Based Method
for Classification of High-Dimensional Data

Muhammad Azhar , Mark Junjie Li and Joshua Zhexue Huang *

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
azhar@szu.edu.cn (M.A.); jj.li@szu.edu.cn (M.J.L.)
* Correspondence: zx.huang@szu.edu.cn

Received: 20 August 2019; Accepted: 11 September 2019; Published: 18 September 2019
����������
�������

Abstract: Data classification is an important research topic in the field of data mining. With the rapid
development in social media sites and IoT devices, data have grown tremendously in volume and
complexity, which has resulted in a lot of large and complex high-dimensional data. Classifying such
high-dimensional complex data with a large number of classes has been a great challenge for current
state-of-the-art methods. This paper presents a novel, hierarchical, gamma mixture model-based
unsupervised method for classifying high-dimensional data with a large number of classes. In this
method, we first partition the features of the dataset into feature strata by using k-means. Then, a set
of subspace data sets is generated from the feature strata by using the stratified subspace sampling
method. After that, the GMM Tree algorithm is used to identify the number of clusters and initial
clusters in each subspace dataset and passing these initial cluster centers to k-means to generate
base subspace clustering results. Then, the subspace clustering result is integrated into an object
cluster association (OCA) matrix by using the link-based method. The ensemble clustering result
is generated from the OCA matrix by the k-means algorithm with the number of clusters identified
by the GMM Tree algorithm. After producing the ensemble clustering result, the dominant class
label is assigned to each cluster after computing the purity. A classification is made on the object by
computing the distance between the new object and the center of each cluster in the classifier, and the
class label of the cluster is assigned to the new object which has the shortest distance. A series
of experiments were conducted on twelve synthetic and eight real-world data sets, with different
numbers of classes, features, and objects. The experimental results have shown that the new method
outperforms other state-of-the-art techniques to classify data in most of the data sets.

Keywords: data mining; unsupervised classification; decision cluster; gamma mixture model;
expectation maximization; high-dimensional data; curse of dimensionality

1. Introduction

The classification of data is an important research topic in the field of data mining [1–6]. Intrusion
detection, weather forecasting, face recognition, product recommendations, and so forth are some
important applications of classification. Currently, there are several methods for classification in
which hierarchical techniques are the most famous due to their clear understanding and classification
accuracy. The decision tree [7–9] and its ensemble methods, like Bagging [10], Boosting [11],
and Random Forests [12] are the most important hierarchical techniques.

In addition to pure classification techniques, clustering methods have also been used for
classification purposes [13–15]. An early example of such methods was proposed in 1980 [16] that
uses the k-means clustering method to build a cluster tree classification model. In this method,
a binary cluster tree was built by interactively executing the k-means clustering algorithm. At each
node, a further partition was determined by the percentage of the dominant class in the cluster node.

Entropy 2019, 21, 906; doi:10.3390/e21090906 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-3687-0270
http://www.mdpi.com/1099-4300/21/9/906?type=check_update&version=1
http://dx.doi.org/10.3390/e21090906
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 906 2 of 21

However, only small numeric data could be classified, and every time, only two subclusters could be
formed. In 2000, Huang et al. [17] proposed a new interactive approach to build a decision cluster
classification model. In this approach, the k-prototypes clustering algorithm was used to partition
the training data, and a visual cluster validation method [18] was adopted to verify the partitioning
result at each cluster node.

With the expeditious advancement in IoT devices and social network sites [19,20], data
have grown exponentially in volume and complexity, resulting in a lot of large and complex
high-dimensional data. The large number of features in high-dimensional data have created the
issue of the curse of dimensionality [21,22] which is characterized by correlated, sparse, noisy,
and uninformative features [23]. Due to such types of complex data with a large number of
classes, the existing classification techniques face a lot of challenges. Thus, the traditional decision
tree performs well on a low-dimensional dataset, but in the case of high-dimensional data with
multiple classes, this technique is unable to get high accuracy [24–26]. The main reason behind this
shortcoming is how the build tree only uses a small number of features from high-dimensional data.
This is because each partitioning step in building a decision tree model only considers one feature,
while the information is usually stored among many features. When there is a large number of classes,
overfitting occurs due to the generation of a large number of leaves [27–29].

To classify such high-dimensional complex data with a large number of classes, in recent
years researchers have proposed several techniques. Some of these are pure classification
techniques [10–12], while others use clustering algorithms to classify data [30–34]. The major issue
with these techniques is the poor performance of classifying high-dimensional data with a large
number of classes in terms of classification accuracy and computation cost.

To solve this key issue of classifying high-dimensional data with a large number of classes, we
propose a new Hierarchical Gamma Mixture Model-based Unsupervised Method in this paper. In this
hierarchical method, we apply a subspace ensemble approach to deal with this challenging problem
by integrating multiple techniques in an innovative solution, named as the Stratified Subspace
Sampling GMM-based Supervised method, or SSS-GMM for short. In this method, we first use the
GMM Tree [35] to estimate the number of feature groups/strata given to the k-means algorithm as an
input parameter. The k-means algorithm partitions the set of features of the high-dimensional dataset
into a set of feature strata. After that, a stratified subspace sampling method is used to sample a set of
subsets of features on feature strata by using sampling without replacement. A set of subspace data
sets are generated from the set of feature subsets. These subspace data sets, produced by a stratified
sampling method, are good representations of the high-dimensional data. After generating the
subspace data sets, the GMM Tree algorithm is used again on each individual subspace dataset to
estimate the number of clusters and initial cluster centers which are given as input parameters to
the k-means algorithm to cluster the subspace dataset. Then, the link-based method [36] is used to
integrate the clustering results generated from each subspace dataset into an object cluster association
(OCA) matrix, on which the k-means algorithm is used to produce the ensemble clustering result with
the number of clusters identified by the GMM Tree algorithm.

After producing the ensemble clustering result, the class labels are assigned to the clustering
result as follows: (1) The purity of each cluster in the ensemble clustering result are computed
based on the percentage of each class. (2) The dominant class label is assigned to each cluster after
computing the purity and the clusters with less purity where α is discarded, and where α is the
threshold set for the purity of a cluster. After assigning the class labels to the clusters, the center of
each cluster is computed by finding the mean object. This clustering result with an assignment of
a dominant class is used as a classifier to classify new objects as follows: (1) The distances between
a new object and the center of each cluster in the classifier are computed, and the class label of the
cluster is assigned to the new object which has the shortest distance.

We have conducted experiments on 12 synthetic data sets and eight real-world data sets,
and compared the results of SSS-GMM with the results of k-NN, Bagging, C4.5, Random Forest,

Entropy 2019, 21, 906 3 of 21

and Adaboost in terms of classification accuracy. The results show that SSS-GMM significantly
outperforms all other algorithms in classifying the high-dimensional complex data with a large
number of classes.

The two key contributions of this paper are:

• We integrate the multiple techniques of stratified sampling, subspace clustering, GMM Tree,
k-means, and the link-based approach in an innovative algorithm to solve the challenging
problem of classifying the high-dimensional complex data with the curse of dimensionality
characteristics and a large number of classes.

• We report the classification accuracy by the new method on a high-dimensional complex dataset
with a large number of classes and demonstrate that the new method is capable of dealing with
such high-dimensional data sets. To our best knowledge, similar results were rarely reported in
existing publications.

The rest of this paper is organized as follows. Related work is presented in Section 2. Section 3
reviews the GMM Tree method. Section 4 presents the SSS-GMM. Section 5 shows the experimental
results on both synthetic and real-world data sets. Conclusions and future work are given in Section 6.

2. Related Work

In the last few decades, researchers have proposed several clustering-based classification
methods to solve the supervised classification problems [13,14,16,37,38]. According to the research
provided, it has been proved that classification can be considered as a high-level model in which
one class can be mapped to one, or more than one cluster. Thus, classification can be considered as
a clustering problem that can also be solved by the clustering techniques.

An early example of such types of methods is the interactive approach proposed by
Mui et al. [16]. In this method, the k-means [39] algorithm was used to find k clusters by partitioning
the training dataset without using the class label information. Then, the dominant class was found
in each cluster by computing the percentage of each class by using the class label information. In the
case of purity greater than 90 percent, the dominant class label was assigned to this cluster as its
class. Otherwise, the cluster needed further partitioning with the k-means algorithm. After finding
all clusters, the centers of each cluster was computed and a k-NN like classification model formed, in
which each cluster has a dominant class and its center.

To classify the objects in the test set, the distances between the objects of the test set and the
cluster centers were computed, and the class label of the cluster assigned to the new object which had
the shortest distance to the new object. Since the number of clusters was much less than the number
of training samples in a k-NN model, this cluster center-based classification model performed better
than the k-NN model.

Zhang et al. [13] proposed a cluster-based tree algorithm to improve k-NN classification,
consisting of tree construction and classification steps. This cluster-based tree algorithm performs
better than the standard k-NN. Kyriakopoulou et al. [15] made another contribution to test clustering
methods for classification. In their work, a new classification algorithm was proposed in which
both training and testing data sets are clustered. In the next step, the dataset was augmented with
meta-features, and finally, a classifier was trained on the expanded dataset. This method follows
a probability mixture model in which clusters are explored based on the distribution of objects of one
class in the multidimensional data space. The benefit of this method is that a classifier learns from
a small training dataset by combining unsupervised learning methods with classification methods.
However, a major shortcoming is that it does not perform well on high-dimensional data sets.

In 2000, Huang et al. proposed a decision clusters classifier model [17] that used the k-prototype
clustering method to construct a decision clusters tree by using an interactive Fast Map algorithm.
To perform classification, the k-NN-like algorithm was used. A major limitation of this method was
the manual procedure of the technique, because both the building model and validation of the clusters

Entropy 2019, 21, 906 4 of 21

were based on human judgment. Compared to this manual approach, the Automatic Decision Cluster
Classifier (ADCC), proposed by Yan Li et al. [40], was an automatic hierarchical clustering method
which used clustering algorithms in parallel to class label information during the tree construction to
generate a classifier.

To improve classification accuracy, researchers have proposed several methods which generate
and integrate multiple classifiers. The early work in this field has been done by Quinlan [41]
and [42]. After that, ensemble classifier methods have been proposed, in which the final result
could be obtained by combining the predictions of multiple classifiers. Bagging [10], Boosting [11],
and random forests [12] are prominent examples of such ensemble methods which generate multiple
diverse classifiers from the training dataset and use these classifiers for final classification results.
Boosting uses all objects of the training data in each iteration and assigns a weight for each object
based on the importance which is calculated according to the incorrectly classified objects. Thus,
incorrectly classified objects will get more importance in the next iterations.

Bagging generates multiple data sets by sampling the objects with replacement from the training
data. Bagging constructs classifiers from each bagged dataset. In both bagging and boosting methods,
the multiple classifiers make an ensemble and are used for voting to assign the class label of the new
objects. In boosting, classifiers have different vote importance, while bagging assigns the same vote
for every component classifier.

As we used the clustering method to do classification, finding the number of clusters was
a classical issue to do clustering. Thus, we used our GMM Tree method to find the number of clusters
and the initial cluster centers, which were used to explore decision clusters. An overview of a GMM
Tree is given below.

3. Overview of GMM Tree

This section presents an overview of the GMM Tree method [35], which plays a vital role in our
proposed SSS-GMM. The GMM Tree is a hierarchical method that estimates the number of clusters
and the initial cluster centers in a dataset by generating multiple levels of Gamma Mixture Models
(GMMs). The estimated number of cluster and initial cluster centers are used as input parameters
to the clustering algorithm to find the decision clusters in the training dataset, and these decision
clusters are then used to classify the objects of the test dataset. The important steps of the GMM Tree
method is discussed below.

Given a dataset X with N objects in which each object is a m-dimensional vector, the GMM
Tree method allocates an observation point p in the data space, and the distances between the N
objects and the allocated observation point p are calculated using the Euclidean distance function.
This process is described in Figure 1 in which Figure 1a shows an example of dataset X in
a two-dimensional space. The black dot (Obs. Point) is assigned as an observation point to the data
space. The distribution of distances between the objects in the dataset and the observation point is
shown in Figure 1b in which the peaks of the distance distribution shows the dense regions in the
dataset of Figure 1a, that is, the clusters.

Let Xd = {x1, x2, ..., xN} be a set of distance values, the distance distribution is modeled as
a GMM which is defined as:

P
(

x|θ
)
=

M

∑
µ=1

πµg
(

x|θµ

)
, x ≥ 0 (1)

where M is the number of Gamma components, θµ are the parameters of Gamma component µ,
including shape parameter αµ and scale parameter βµ, and πµ is the mixing proportion of component
µ. The condition ∑M

µ=1 πµ = 1 must hold to confirm that P
(
x|θ
)

is a well defined probability
distribution. The probability density function of Gamma component µ is

Entropy 2019, 21, 906 5 of 21

g
(

x|αµ, βµ

)
=

xαµ−1

Γ
(

αµ

)
β

αµ
µ

e
(−x)
βµ , αµ > 0, βµ > 0, (2)

where Γ(x) is a Gamma function. This Gamma function is defined as Γ (x) =
∫ ∞

0 f x − 1 e− f d f , which
is a definite integral for <[x].

(a) (b)

(c) (d)

Figure 1. Mappings of five clusters to a distance distribution with respect to the observation point.
(a) A sample dataset X in two dimensional space; (b) The distance distribution generated by
computing the distances between the objects in the dataset X and the observation point; (c) The GMM
components generated from the distance distribution; (d) Partition of the dataset X based on the GMM
components generated.

The parameters of the Gamma Mixture Model, defined in Equation (1), are solved by maximizing
the log likelihood function, which is defined as

ζ
(
θ|Xd

)
=

N

∑
i=1

log

 M

∑
µ=1

πµg
(

xi|αµ, βµ

) , (3)

This Equation (3) is solved using the Expectation Maximization algorithm [43].
The GMMs generated with different numbers of components and solved by Expectation

Maximization algorithm, the best-fitted GMM is selected by using second-order variant of AICc
(Akaike Information Criterion) [44]. AICc is defined as

AICc = −2 log
(

ζ
(
θ∗
))

+ 2Υ
(

N
N − Υ− 1

)
, (4)

Entropy 2019, 21, 906 6 of 21

where N is the total number of distances in Xd, Υ is the number of parameters, and ζ (θ∗) is the
maximum log-likelihood value of the Gamma Mixture Model. The best fitted GMM is selected based
on the the smallest value of AICc.

The dataset X is partitioned into M subsets based on the components of the best-fitted GMM, in
which each subset is identified by one GMM component. As discussed in example, Figure 1c shows
the vertical lines which partition the components, generated from the distance distribution, into four
zones. The partitions of the four zones on the original data space is shown in Figure 1d. It is clearly
seen from the Figure 1d that some component models identify more than one cluster, such as the
model Z2 while some other component models identify one cluster, such as the models of Z1, Z3,
and Z4.

The criteria to decide whether the subset of points needs further partitioning or not, are
as follows:

1. If the number of objects in the subset is greater than the given threshold of minimum points,
a new observation point is assigned to the data space, and the distance distribution vector is
computed with respect to the observation point. If the distance distribution contains only one
peak, the subset is made as a lead node. Otherwise, a new GMM is built from the distance
distribution to further partition the subset.

2. In case of the number of objects in the subset is smaller than the threshold specified for the
minimum number of points, the subset is made a leaf node without further partitioning.

The process continues until a GMM tree is built by generating all leaf nodes. An example of
GMM-tree is shown in Figure 2.

Figure 2. A GMM tree for identifying the number of clusters in a dataset.

Each leaf node of the GMM tree represents a cluster in the original dataset. A postprocessing
step using the k nearest neighbor method is carried out on the set of objects in each leaf node due to
the complexity of the dataset. The postprocessing step are discussed in detail in [35]. Our purpose is
to illustrate the basic process of generating the GMM Tree. If a leaf node of the GMM Tree does not

Entropy 2019, 21, 906 7 of 21

have high density due to less number of objects, then the objects are considered as outliers and that
leaf node is ignored. In case of more than one dense region in a leaf node, the centroid objects of each
dense region are taken as initial cluster centers. The number of initial cluster centers is considered
as the number of cluster candidates which is the output of the GMM Tree algorithm. The number
of clusters and the initial cluster centers found by the GMM Tree algorithm was used as an input
parameter to the clustering algorithm used in our proposed method to find decision clusters which
were used to classify the dataset.

4. Stratified Subspace Sampling GMM-Based Method (SSS-GMM)

This section presents a novel ensemble method to classify high-dimensional complex data with
a large number of classes. In this method, we first cluster the data by using the ensemble clustering
approach, and then we train the ensemble clustering result to make decision clusters by assigning
the class labels to clusters based on the dominant class. These decision clusters are used to classify
the new objects by computing the distances between the new objects and the centers of the decision
clusters. The class label of the decision cluster is assigned to the new objects, which has a minimum
distance from the center of the decision cluster. This ensemble method is named the stratified
subspace sampling GMM-based method (SSS-GMM). In the following subsections, we present the
key steps of SSS-GMM in detail.

4.1. Generation of Feature Strata from the Training Dataset Dtrain

Given a high-dimensional training dataset Dtrain, we first partitioned the features of Dtrain into
L feature clusters/strata in such a way that the features belonging to the same stratum were highly
correlated. To find these closely related feature strata, we used k-means. As k-means requires the
number of feature strata L as an input parameter, the GMM Tree method was used on the features
of Dtrain to discover the number of feature clusters L (or feature strata) and initial feature cluster
centers. This L number of feature cluster centers were given to k-means as an input parameter, and the
k-means algorithm generated feature clusters by grouping the features of Dtrain into L feature strata
{F1, F2, ..., FL} based on correlation. This process is discussed in detail in [45].

In the case of a large number of objects in Dtrain, a percentage of objects ϑ was selected from
Dtrain and the GMM Tree algorithm was used to estimate the number of feature strata ιi. This process
of selecting ϑ percent of objects and finding the number of clusters was repeated ν times. The number
of feature strata L was computed by Max(ι1,ι2, ..., ιν), which was given to the k-means algorithm to
partition the features of Dtrain into L feature strata {F1, F2, ..., FL}.

4.2. Generation of Subspace Data Sets from the Training Dataset Dtrain

After generation of the feature strata {F1, F2, ..., FL}, subspace data sets were generated by
stratified sampling without replacement, as follows. To generate T subspace data sets {D1, D2, ..., DT}
from Dtrain, dτ × (pl/p) features were randomly selected without replacement from each feature
stratum Fl , where dτ is the number of features in subspace dataset Dτ for (1 ≤ τ ≤ T), and pl/p
is the proportion of features in Fl . These selected features from each stratum were combined into
a single subset of dτ features. This process was repeated T = p/d times, and T subsets of features
were generated. After that, T subspace data sets {D1, D2, ..., DT}were generated by extracting the the
corresponding data from Dtrain for each feature’s subset in such a way that Dτ ∩ Dt = ∅ for (τ 6= t)
and ∪T

τ=1Dτ = D.

4.3. Generation of Clustering Results from Subspace data sets

After generating the subspace data sets {D1, D2, ..., DT}, the next step was to partition each
subspace dataset into clusters. For this purpose, the GMM Tree algorithm was used first to estimate
the number of clusters and initial cluster centers in each subspace dataset, and then the k-means
algorithm was used to partition each subspace dataset to generate the clustering result.

Entropy 2019, 21, 906 8 of 21

After producing the clustering results from each subspace dataset Dτ , we needed to ensemble
these base clustering results of subspace data sets into the global clustering results of Dtrain.

4.4. Generation of Ensemble Clusters from Individual Subspace Clustering Results

To generate an ensemble clustering result from the base clustering result Ψ1, Ψ2, ..., ΨT , we used
the link-based approach in [36] to ensemble the Ψτ into an object cluster association (OCA) matrix,
where each base clustering result Ψτ = {Cτ

1 , Cτ
2 , ..., Cτ

kτ
} represented the clustering result of the τth

subspace dataset. Each cluster Cτ
i contained a subset of objects in Dtrain where Ci 6= ∅ for (1 ≤ i ≤

kτ), ∪kτ
τ=1Ci = Dtrain and Ci ∩ Cj = ∅ for (i 6= j).

For any two base clusterings Ψi and Ψj, the link ex,y between cluster Cx ∈ Ψi and cluster Cy ∈ Ψj
was computed as

ex,y =
| Cx ∩ Cy |
| Cx ∪ Cy |

, (5)

where 1 ≤ x ≤ ki and 1 ≤ y ≤ k j.

Two clusters Cx ∈ Ψi and Cy ∈ Ψj were linked if ex,y > 0. By computing these links between
clusters in different base clustering results, the similarity was computed between two clusters of the
same clustering result that is, Cx, Cy ∈ Ψτ as

SIM(Cx, Cy) =
WTQx,y

WTQmax
∗ β, (6)

where β ∈ [0, 1] is a threshold for the confidence level of considering the two clusters as being similar,
and WTQx,y is called the Weighted Triple Quality that was used to measure the strength of the indirect
connection between Cx and Cy through clusters in other clustering results which form triples with Cx

and Cy through links. WTQx,y is calculated as follows:

• Find all clusters in other clustering results which are directly linked to Cx and Cy to form triples.
Assume the set of k clusters directly linked to Cx and Cy is Nk.

• For each cluster Ct in Nk, let Wt = et,x + et,y and WTQt
x,y = 1

Wt
.

• For all clusters in Nk, WTQx,y is calculated as

WTQx,y =
k

∑
t=1

WTQt
x,y. (7)

WTQmax is the maximum value of all WTQx,y.
Given a clustering result Ψτ , the association of each object xi in D to the clusters {Cτ

1 , Cτ
2 , ..., Cτ

kτ
}

is calculated as

OCA(xi, Ct) =

{
1 if Ct = C∗(xi)

SIM(Ct, C∗(xi)) otherwise
(8)

where C∗(xi) is the cluster to which xi belongs, and SIM(Ct, C∗(xi)) ∈ [0,1] is calculated
in Equation (6).

By computing the cluster associations of all clusters in Ψ1, Ψ2, ..., Ψτ and all objects in Dtrain
with Equation (8), a new object cluster association matrix (OCA matrix for short) was obtained as
a new representation of Dtrain. In the OCA matrix, each row indicated an object in Dtrain, while each
column was a cluster in one of the τ base clustering results Ψ1, Ψ2, ..., Ψτ . Thus, each element in the
OCA matrix indicates the association level of the row object to the column cluster. This computed
OCA matrix is the new representation of dataset Dtrain which was used to compute the ensemble
clustering result. For this purpose, we first ran the GMM Tree algorithm again on an OCA matrix to

Entropy 2019, 21, 906 9 of 21

find the number of clusters and initial cluster centers, and then used them as inputs to k-means to
cluster the OCA and produce the final ensemble clustering result.

4.5. Assignment of Class Labels to the Clusters in Ensemble Clustering Result

After producing the ensemble clustering result, the class labels were assigned to the clusters
as follows:

• The purity of each cluster in the ensemble clustering result, produced by k-means in the previous
step, were computed based on the percentage of each class.

• The dominant class label was assigned to each cluster after computing the purity.
• As we only needed the clusters which were pure, we kept the clusters in which objects belonging

to the dominant class were greater than threshold α percent. The clusters in which dominant class
objects were less than the threshold α were discarded.

4.6. Classification of the Objects in the Testing Dataset Dtest Based on Generated Classifier

After assigning the class labels to the clusters in the previous step, the center of each cluster was
computed by finding the mean object. This clustering result with an assignment of the dominant class
was used as a classifier to classify new objects as follows:

• The distances between objects of the testing dataset Dtest and the center of each cluster in the
classifier were computed.

• The class label of the cluster to the objects of Dtest based on the shortest distance was assigned.

The steps of the SSS-GMM are summarized in Figure 3.
The pseudo code was given in Algorithm 1, which took a high-dimensional training dataset

Dtrain = (x1, x2, ..., xn), test dataset Dtest, number of iterations ν to find feature strata, percentage of
objects µ to estimate the number of feature strata L, and the number of subspace data sets T as inputs,
whereas its output was the classification accuracy on the test set Dtest.

Entropy 2019, 21, 906 10 of 21

Figure 3. The process of SSS-GMM to classify a high-dimensional dataset.

Entropy 2019, 21, 906 11 of 21

Algorithm 1: SSS-GMM algorithm

Input: A high-dimensional training dataset Dtrain = (x1, x2, ..., xn), test dataset Dtest, number
of iterations ν to find feature strata, percentage of objects ϑ to estimate the number of
feature strata L, and number of subspace data sets, T.

Output: Classification accuracy
1 for i := 1 to ν do
2 Dtrain(i)⇐ Randomly extract ϑ percent objects from training dataset Dtrain;
3 ιi ⇐ Compute estimated number of feature strata by GMM Tree(Transpose(Dtrain(i)));

4 L⇐Max(ι1,ι2, ..., ιν);
5 Split training dataset Dtrain into L feature strata {F1, F2, ..., FL} by using k-means by giving L

initial feature cluster centers as input;
6 for τ := 1 to T do
7 Randomly pick dτ × (pl/p) features from each feature stratum Fl , where ∑L

l=1 pl = p,
∑L

l=1 pl/p = 1;
8 Generate subspace dataset Dτ by merging the randomly picked dτ × (pl/p) features;
9 Generate a set of kτ cluster centers Ωτ= {cτ

1 , cτ
2 , ..., cτ

kτ
} from GMM Tree(Dτ);

10 Use k-means(Dτ , Ωτ) to generate a set of kτ clusters Ψτ = {Cτ
1 , Cτ

2 , ..., Cτ
kτ
};

11 Generate Ψ from Ψ1, Ψ2, ..., ΨT where Ψτ = {Cτ
1 , Cτ

2 , ..., Cτ
kτ
};

12 Generate OCA matrix according to the Equations (5)–(8) from Ψ;
13 Determine the number of clusters K and initial cluster centers in OCA matrix by GMM Tree;
14 Use k-means method to cluster the data;
15 Compute the purity of each cluster in the ensemble clustering result based on the percentage

of each class;
16 Assign the dominant class label to each cluster;
17 Discard the clusters with purity less that α;
18 Compute the center of each cluster by finding the mean object;
19 Compute the distances between object of test dataset Dtest and the center of each cluster in

the classifier;
20 Assign class label of the cluster to the new object which has shortest distance;
21 Output the classification accuracy ;

5. Experiments

In this section, we present the performance analysis of SSS-GMM in comparison with k-NN,
Bagging, C4.5, Random Forest, and Adaboost in terms of accuracy and computational time. We have
used both synthetic and the real-world data sets in the experiments to demonstrate the performance
of our proposed method. These synthetic and real-world data sets are diverse in terms of the number
of features (p), objects (N), and classes (C) which are helpful to analyze the performance of our
proposed SSS-GMM. First, the characteristics of the synthetic and real-world data sets are described.
Then, the experimental settings are discussed. Finally, the experimental results of SSS-GMM are
discussed in comparison with the other state-of-the-art methods in terms of accuracy. Since our
proposed SSS-GMM relies on the construction of a decision cluster tree, which is, to some extent, like
a decision tree, it would be more convincing to compare our method with state-of-the-art decision
tree-like algorithms, including Bagging, C4.5, Random Forest, and Adaboost. In addition to this,
we have compared our proposed method with k-NN because we have also used k-NN in building
our proposed classifier.

Entropy 2019, 21, 906 12 of 21

5.1. data sets

The experiments were conducted on 12 synthetic data sets and eight real-world data sets.
R package clusterGeneration [46] was used to generate the 12 synthetic data sets. The characteristics
of these synthetic data sets are listed in Table 1. The first column from the left shows the dataset
name. The second column describes the number of objects N in each dataset. The third and the
fourth columns show the number of features p and the number of clusters K given in each dataset,
respectively. The same value of cluster separation index = 0.5 was used for each synthetic dataset
which indicated the degree of separation between a cluster and its nearest neighboring cluster.
We used this constant value for each synthetic dataset to see the trend change in the accuracy based
on the change in the number of features and the number of classes. Each cluster contained 100 objects
following a normal distribution. Thus, to generate the synthetic data sets with the settings according
to Table 1, we set parameters of clusterGeneration as sepVal (cluster separation index) = 0.5, numClust
(Number of clusters) according to Table 1: column 4 (Classes), clustSizeEq (cluster objects size) = 100,
numNonNoisy (Number of features) according to Table 1: column 3 (features).

Table 1. Characteristics of the synthetic data sets.

Data Sets Objects (N) Features (p) Classes (C)

DS1 15,000 200 150
DS2 20,000 200 200
DS3 25,000 200 250
DS4 30,000 200 300
DS5 35,000 200 350
DS6 40,000 200 400

DS7 15,000 1000 150
DS8 20,000 1000 200
DS9 25,000 1000 250
DS10 30,000 1000 300
DS11 35,000 1000 350
DS12 40,000 1000 400

To evaluate the performance of our proposed method on real data, eight real-world data sets
were selected. The details of the real-world data sets have been summarized in Table 2. These data
sets were high-dimensional, and the features ranged from 64 to 8460, taken from the UCI [47] and
KEEL repository [48]. All data sets were multiclass, with a range of 10 to 983. Optdigits was the
Optical Recognition of Handwritten Digits Data Set. The fbis dataset was from the Foreign Broadcast
Information Service data of TREC-5. Wap is a skew dataset with 20 classes. The remaining data
sets were selected from the KEEL dataset repository, while the Aloi(short) dataset was taken from
Amsterdam Library of Object Images dataset repository [49]. The Aloi(short) dataset contained
10,800 objects representing 100 objects (clusters). These data sets had diverse representations in
application domains and the numbers of objects, features, and classes.

The class labels were used to train our proposed method during the assignment of class labels
to generated clusters. These class labels were also used as ground truth to compare performance
accuracy on the testing set. The objects in some of these data sets belonged to more than one class.
Thus, classifying these kinds of data sets was more difficult due to high overlapping.

Entropy 2019, 21, 906 13 of 21

Table 2. Characteristics of the real-world data sets.

Number Data Sets Objects Features Classes

1 Optdigits 5620 64 10
2 fbis 2463 2000 17
3 wap 1560 8460 20
4 Isolet 6238 617 26
5 Aloi(short) 10,800 128 100
6 Corel5k 5000 499 374
7 Mediamill 43,907 120 101
8 Delicious 16,150 500 983

5.2. Experimental Settings

Here, we show the comparison results of SSS-GMM and other five classification methods:
decision tree (C4.5), Bagging, Original k-NN, Random Forest, and Adaboost on eight real data sets.
In our experiments, we used default parameters for C4.5, Random Forest, and k-NN in R. For C4.5,
the minimum number of instances per leaf was set as 2. For Random Forest, the random number
seed was set to 1. For k-NN, the number of neighbors, k, equaled to 1. The base classifier to be used
in Bagging and AdaBoost was C4.5. The default values for the GMM Tree algorithm (used in our
proposed method) were set according to [35]. The package mixtools [50] was used for GMM and EM.
For SSS-GMM, we set µ as 20 percent and the number of iterations ν as 10. In this way, 20 percent of
objects were randomly extracted 10 times to find the number of feature strata, and then the maximum
of these 10 iterations was used as the initial estimation of the number of feature strata in the dataset
D. The threshold parameter α was set as 90 percent to set the purity level of each cluster. We used
the 10-fold method to get classification accuracy. The number of subspace data sets M was set as 10,
which can be changed by the user but should not be very high because it will generate more GMM
Trees and increase the computation cost. The value of β used in Equation (6) was set to 0.8 as the
default value [36]. The minimum number of objects was set to be 10 as a termination threshold for
a leaf node. If a subset has 10 objects or less, this subset is either a small cluster or a set of outliers.
There is no need to partition it further.

The experiments were conducted on machines with 128 GB memory running on Windows Server
2012 R2 Standard and 3.30 GHz Intel(R) Core(TM)i5-4590 CPU with 12 GB of memory running
Windows 7 of 64-bit.

5.3. Experimental Results

In this section, we discuss the results on the comparison of our proposed algorithm with other
methods in classification accuracy. The comparative results of SSS-GMM and other classification
methods on synthetic data sets are given in Table 3. We can see that on comparatively
low-dimensional datasets, that is, from DS1-DS6, our proposed SSS-GMM performed better than
C4.5, Bagging, Original k-NN, and Random Forest, except Adaboost. While on high-dimensional
data sets, that is, from DS7-DS12, our method outperformed all other methods. As a whole, our
proposed SSS-GMM achieved the best performance in eight data sets out of 12 synthetic data sets,
and was only slightly worse than the best method in other four data sets. In general, our proposed
SSS-GMM was the best-performing method, followed by Adaboost. The accuracy performance is
shown in Figure 4 where Figure 4a shows the accuracy of all methods on data sets DS1-DS6 and
Figure 4b shows the accuracy on data sets DS7-DS12.

Entropy 2019, 21, 906 14 of 21

Table 3. Synthetic data sets: Comparison of SSS-GMM with other five state-of-the-art methods in
terms of accuracy.

Data Sets SSS-GMM k-NN Bagging C4.5 Random Forest Adaboost

DS1 95.61 87.45 88.34 86.76 95.34 96.73
DS2 94.54 86.34 86.98 85.15 92.45 94.67
DS3 94.15 85.67 85.71 85.74 91.77 93.18
DS4 92.72 84.86 84.73 84.67 91.19 92.99
DS5 90.34 84.78 84.23 83.66 90.32 91.56
DS6 88.85 84.45 83.56 82.87 87.67 88.11

DS7 81.85 74.23 75.14 72.56 79.56 80.89
DS8 80.76 73.34 74.92 71.87 78.34 80.23
DS9 79.17 73.67 74.29 71.34 76.84 78.86
DS10 78.67 72.34 74.15 71.89 76.93 78.11
DS11 78.15 71.74 73.02 70.23 75.72 77.67
DS12 77.75 71.47 71.89 70.67 75.32 77.13

(a)

(b)

Figure 4. Accuracy comparison on synthetic data sets (SSS-GMM, k-NN, Bagging, C4.5, Random
Forest, Adaboost). (a) Synthetic data sets (DS1-DS6) Features = 200 and Objects (15,000–40,000).
(b) Synthetic data sets (DS7-DS12) Features = 1000 and Objects (15,000–40,000).

Entropy 2019, 21, 906 15 of 21

Table 4 shows the classification accuracy performance of SSS-GMM and other classification
methods on real data sets. A confusion matrix of Optdigits(test set) generated by SSS-GMM is shown
in Figure 5 which was used to find the classification accuracy on the test set of Optdigits dataset. We
can see that, except for two data sets (Optdigits and Corel5k), our proposed SSS-GMM outperformed
all methods. As a whole, our proposed SSS-GMM achieved the best performance in six real-world
data sets out of eight data sets. Thus, our proposed SSS-GMM was also the best-performing method,
followed by Adaboost on real-world data sets. Adaboost is a state-of-the-art method which can
handle low-dimensional data without noise. However, in the case of high-dimensional noisy data and
outliers, its performance deteriorates. Thus, in the case of most of synthetic data sets, the performance
of Adaboost and SSS-GMM is similar, but in the case of real data sets, our proposed SSS-GMM
performed better. The accuracy performance on various data sets is shown in Figures 6 and 7. Figure 6
shows the classification accuracy on the data sets which had a relatively less number of classes (i.e.,
10–26 classes) as compared to the data sets used in Figure 7 where all data sets have more than
100 classes.

Table 4. Real data sets: Comparison of SSS-GMM with other five state-of-the-art methods in terms
of accuracy.

Data Sets SSS-GMM k-NN Bagging C4.5 Random Forest Adaboost

Optdigits 95.43 93.72 94.11 89.72 96.42 97.20
fbis 82.99 74.23 75.82 72.84 78.03 82.92
wap 80.23 76.41 79.63 65.64 71.15 67.95
Isolet 60.12 56.21 57.21 54.21 57.21 59.21

Aloi(short) 70.51 61.43 64.32 61.22 68.34 69.13
Corel5k 58.23 35.45 39.25 46.21 59.21 59.99

Mediamill 72.14 54.66 56.65 57.81 58.45 61.13
Delicious 69.32 57.34 57.99 56.13 62.36 63.83

Figure 5. Confusion matrix of Optdigits (test set) generated by SSS-GMM.

Entropy 2019, 21, 906 16 of 21

(a) (b)

(c) (d)

Figure 6. Accuracy comparison (Prop = SSS-GMM, k-NN, Bagging, C4.5, RF = Random Forest,
Adaboost) data sets: (a) Optdigits, (b) fbis, (c) wap, (d) Isolet.

(a) (b)

(c) (d)

Figure 7. Accuracy comparison (Prop = SSS-GMM, k-NN, Bagging, C4.5, RF = Random Forest,
Adaboost) data sets: (a) Corel5k, (b)Mediamill, (c) Delicious, (d) Aloi(short).

Entropy 2019, 21, 906 17 of 21

Table 5 shows the time comparison of SSS-GMM with five other state-of-the-art methods on
DS7-DS12. We selected these data sets due to their high dimensions and large number of classes.
From the results, it is clear that the testing time of SSS-GMM is at a minimum as compared to other
state-of-the art methods, which can compensate for the shortcoming of SSS-GMM of taking time
during training. The testing time of SSS-GMM was shortest because it only needs to find the distances
between centers of the clusters and the objects of the testing data sets. Thus, overall, our proposed
SSS-GMM outperformed other methods in terms of accuracy and testing time.

Table 5. Synthetic data sets: Training/testing time comparison of SSS-GMM with five other
state-of-the-art methods (time is in Minutes:Seconds format).

Data Sets SSS-GMM K-NN C4.5 Bagging Random Forest Adaboost

DS7 05:24/00:16 00:00/02:13 02:02/00:33 05:33/00:33 04:12/01:02 02:51/00:21
DS8 06:01/00:19 00:00/02:32 02:09/00:48 06:13/00:39 04:53/01:14 03:13/00:29
DS9 06:42/00:21 00:00/02:51 02:22/00:59 07:03/00:44 05:24/01:23 03:36/00:35
DS10 07:33/00:24 00:00/03:11 02:29/01:13 07:41/00:49 05:56/01:29 03:54/00:43
DS11 07:51/00:29 00:00/03:23 02:36/01:41 08:32/00:54 06:11/01:36 04:23/00:56
DS12 08:21/00:37 00:00/03:49 02:48/01:49 08:58/00:59 06:42/01:45 04:52/01:11

To validate the clustering result, we investigated the quality of the clustering results. To measure
the clusters’ quality, we used ARI [51] and Purity [52]. The Purity was defined as:

Purity =
1
N

K

∑
k=1

max1≤q≤K̄|Ck ∩Yq| (9)

where K is the number of true clusters, Ck is the set of objects in true cluster k, K̄ is the number
of clusters by k-means, N is the total number of objects in the dataset, and Yq is the set of objects
in cluster q by k-means. max1≤q≤K̄ denotes that for K̄ clusters by k-means, only the cluster q whose
intersection with Ck has the largest number of objects is considered. |.| indicates the number of objects
in the intersection of Ck and Yq. The value of Purity is between 0 to 1.

ARI [51] was also used to measure the clustering performance. It is a measure of agreement
between two partitions: one given by the clustering process, and the other defined by the ground
truth. Given a dataset D of N objects, and two partitions of these N objects, namely, C = C1, C2, ..., CK
being a partition of N objects into K clusters and Y = Y1, Y2, ..., YP being a partition of N objects into
P classes (the ground truth), ARI is defined as:

ARI =
∑jk (

Njk
2)−

[
∑j (

αj
2)∑k (

βk
2)
]

/(N
2)

1/2
[
∑j (

αj
2)∑k (

βk
2)
]
−
[
∑j (

αj
2)∑k (

βk
2)
]

/(N
2)

(10)

where Njk is the number of objects in cluster Cj and the second partition, Yk, αj is the number of
objects in the first partition, Cj, and βk is the number of objects in the second partition, Yk.

The Purity and ARI results on synthetic data sets are shown in Table 6, while the Purity and ARI
values measured by SSS-GMM on real data sets are shown in Table 7. From the results, it is clearly
seen that SSS-GMM performed very well in finding clusters on synthetic data sets, while in the case
of real data sets, it also performed well.

Finally, we have also shown the number of clusters found during construction of the SSS-GMM
for validation purposes. As shown in Tables 8 and 9, we found that our proposed SSS-GMM
successfully discovered most of the classes in both synthetic and real-world data sets.

From the above experimental results, we can conclude that our algorithm performed better than
all other methods on most of the data sets which were diverse in nature in terms of the number of
features and the number of classes.

Entropy 2019, 21, 906 18 of 21

Table 6. Purity and ARI measured by SSS-GMM on synthetic data sets.

Data Sets Classes Purity ARI

DS1 150 0.896 0.866
DS2 200 0.887 0.857
DS3 250 0.876 0.856
DS4 300 0.868 0.845
DS5 350 0.865 0.849
DS6 400 0.854 0.838

DS7 150 0.797 0.768
DS8 200 0.794 0.762
DS9 250 0.783 0.744

DS10 300 0.787 0.739
DS11 350 0.778 0.728
DS12 400 0.776 0.734

Table 7. Purity and ARI measured by SSS-GMM on real data sets.

Data Sets Classes Purity ARI

ISOLET 26 0.601 0.614
Aloi(short) 100 0.718 0.696

Corel5k 374 0.636 0.612
Mediamill 101 0.616 0.592
Delicious 983 0.706 0.681

Bibtex 159 0.528 0.532
Bookmarks 208 0.514 0.547

Topics 101 0.583 0.594
Industries 313 0.534 0.511
Regions 228 0.519 0.513

Table 8. Clusters found in the synthetic data sets by SSS-GMM.

Dataset Actual Clusters Total Clusters Found Unique Clusters Found

DS1 150 148 148
DS2 200 194 194
DS3 250 244 242
DS4 300 294 291
DS5 350 345 341
DS6 400 395 391

DS7 150 147 147
DS8 200 194 193
DS9 250 243 241
DS10 300 294 291
DS11 350 344 342
DS12 400 394 392

Table 9. Clusters found in the real-world data sets by SSS-GMM.

Number Dataset Classes Total Clusters Found Unique Clusters Found

1 Optdigits 10 14 10
2 fbis 17 20 17
3 wap 20 24 20
4 Isolet 26 39 26
5 Aloi(short) 100 128 97
6 Corel5k 374 423 368
7 Mediamill 101 121 97
8 Delicious 983 1012 977

Entropy 2019, 21, 906 19 of 21

6. Conclusions and Future Work

In this paper, we proposed a new hierarchical Gamma Mixture Model-based method (named
SSS-GMM) for classifying high-dimensional data with a large number of classes which used
a subspace ensemble approach to deal with this challenging problem by integrating multiple
techniques in an innovative way. For this purpose, we first used the GMM Tree to find the number
of feature strata, and then a k-means algorithm to divide the set of features of the dataset into feature
strata. Then, the stratified subspace sampling method was used to sample subspace features from the
feature strata and generate a set of subspace data sets from the high-dimensional dataset. After that,
the GMM Tree algorithm was used again to identify the number of clusters and initial clusters in
each subspace dataset for the k-means algorithm to cluster the subspace dataset. Then, the link-based
method was used to integrate the subspace clustering results into an object cluster association matrix,
from which the ensemble clustering result was generated by the k-means algorithm with the number
of clusters identified by the GMM Tree algorithm. After producing the ensemble clustering result,
the dominant class label was assigned to each cluster after computing the purity. A classification was
made on the object by computing the distances between the new object and the center of each cluster
in the classifier, and the class label of the cluster was assigned to the new object which had the shortest
distance. A series of experiments were conducted on twelve synthetic and eight real-world data
sets with different numbers of classes, features, and objects. The experimental results have shown
that the new method performs better in classifying data in all data sets as compared to the other
state-of-the-art techniques.

Our future work consists of analysing SSS-GMM on noisy data with thousands of features
and classes. We will also analyse the performance of this method on high-dimensional regression
data sets.

Author Contributions: Conceptualization, M.A., and J.Z.H.; Methodology, M.A., and J.Z.H.; Software, M.A.;
Validation, M.J.L. and M.A.; Formal Analysis, M.A., and J.Z.H.; Investigation, M.A., and M.J.L.; Writing, M.A.,
and and J.Z.H.

Funding: This work was supported by the Shenzhen—Hong Kong Technology Cooperation Fund
(SGLH20161209101100926).

Acknowledgments: We would like to thank Shenzhen University for all technical support and equipment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Valencia, F.; Gómez-Espinosa, A.; Valdés-Aguirre, B. Price Movement Prediction of Cryptocurrencies Using
Sentiment Analysis and Machine Learning. Entropy 2019, 21, 589. [CrossRef]

2. Khan, K.; Attique, M.; Syed, I.; Sarwar, G.; Irfan, M.A.; Khan, R.U. A Unified Framework for Head Pose,
Age and Gender Classification through End-to-End Face Segmentation. Entropy 2019, 21, 647. [CrossRef]

3. Zhang.; Zhou. A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite
Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition. Entropy 2019, 21, 680.
[CrossRef]

4. Xue, N.; Luo, X.; Gao, Y.; Wang, W.; Wang, L.; Huang, C.; Zhao, W. Kernel Mixture Correntropy Conjugate
Gradient Algorithm for Time Series Prediction. Entropy 2019, 21, 785. [CrossRef]

5. Wei, Y.; Fang, S.; Wang, X. Automatic Modulation Classification of Digital Communication Signals
Using SVM Based on Hybrid Features, Cyclostationary, and Information Entropy. Entropy 2019, 21, 745.
[CrossRef]

6. Sagheer, A.; Zidan, M.; Abdelsamea, M.M. A Novel Autonomous Perceptron Model for Pattern
Classification Applications. Entropy 2019, 21, 763. [CrossRef]

7. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
8. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA,

USA, 1993.

http://dx.doi.org/10.3390/e21060589
http://dx.doi.org/10.3390/e21070647
http://dx.doi.org/10.3390/e21070680
http://dx.doi.org/10.3390/e21080785
http://dx.doi.org/10.3390/e21080745
http://dx.doi.org/10.3390/e21080763
http://dx.doi.org/10.1007/BF00116251

Entropy 2019, 21, 906 20 of 21

9. Rastogi, R.; Shim, K. PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning. Data Min.
Knowl. Discov. 2000, 4, 315–344.:1009887311454. [CrossRef]

10. L, B. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
11. Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. Avaialbe online:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.6252&rep=rep1&type=pdf (accessed on 10
September 2019).

12. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
13. Zhang, B.; Srihari, S.N. Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans. Pattern

Anal. Mach. Intell. 2004, 26, 525–528. [CrossRef]
14. Zeng, H.J.; Wang, X.H.; Chen, Z.; Lu, H.; Ma, W.Y. CBC: Clustering based text classification requiring

minimal labeled data. In Proceedings of the Third IEEE International Conference on Data Mining,
Melbourne, FL, USA, 22–22 November, 2003, pp. 443–450.

15. Kyriakopoulou, A.; Kalamboukis, T. Combining clustering with classification for spam detection in social
bookmarking systems. In Proceedings of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, 15–19 September 2008.

16. Mui, J.K.; Fu, K.S. Automated classification of nucleated blood cells using a binary tree classifier.
IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 429–443. [CrossRef]

17. Huang, Z.; Ng, M.K.; Lin, T.; Cheung, D. An interactive approach to building classiffication models
by clustering and cluster validation. In Proceedings of the International Conference on Intelligent Data
Engineering and Automated Learning, Hong Kong, China, 13–15 December, 2000, pp. 23–28.

18. Huang, Z.; Lin, T. A visual method of cluster validation with Fastmap. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Kyoto, Japan, 18–20 April, 2000, pp. 153–164.

19. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

20. Rathore, P.; Rao, A.S.; Rajasegarar, S.; Vanz, E.; Gubbi, J.; Palaniswami, M. Real-Time Urban Microclimate
Analysis Using Internet of Things. IEEE Internet Things J. 2018, 5, 500–511. [CrossRef]

21. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin,
Germany, 2006.

22. Bellman, R.E. Adaptive Control Processes: A Guided Tour; Princeton University Press: Princeton, NJ, USA,
2015; Volume 2045.

23. Kriegel, H.P.; Kröger, P.; Zimek, A. Clustering high-dimensional data. ACM Trans. Knowl. Discov. Data
2009, 3, 1–58. [CrossRef]

24. Piatetsky-Shapiro, G.; Djeraba, C.; Getoor, L.; Grossman, R.; Feldman, R.; Zaki, M. What are the grand
challenges for data mining?: KDD-2006 panel report. ACM SIGKDD Explor. Newsl. 2006, 8, 70–77.
[CrossRef]

25. Wu, Q.; Ye, Y.; Liu, Y.; Ng, M.K. SNP Selection and Classification of Genome-Wide SNP Data Using
Stratified Sampling Random Forests. IEEE Trans. NanoBiosci. 2012, 11, 216–227. [CrossRef]

26. Ye, Y.; Wu, Q.; Zhexue Huang, J.; Ng, M.K.; Li, X. Stratified sampling for feature subspace selection in
random forests for high-dimensional data. Pattern Recognit. 2013, 46, 769–787. [CrossRef]

27. Sánchez-Rodríguez, D.; Hernández-Morera, P.; Quinteiro, J.; Alonso-González, I. A Low Complexity
System Based on Multiple Weighted Decision Trees for Indoor Localization. Sensors 2015, 15, 14809–14829.
[CrossRef]

28. Cai, L.; Gu, J.; Ma, J.; Jin, Z. Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer
Learning Embedded Gradient Boosting Decision Trees. Energies 2019, 12, 159. [CrossRef]

29. Mao, Q.; Ma, H.; Zhang, X.; Zhang, G. An Improved Skewness Decision Tree SVM Algorithm for the
Classification of Steel Cord Conveyor Belt Defects. Appl. Sci. 2018, 8, 2574. [CrossRef]

30. Ahn, E.; Kumar, A.; Feng, D.; Fulham, M.; Kim, J. Unsupervised Feature Learning with K-means and
An Ensemble of Deep Convolutional Neural Networks for Medical Image Classification. arXiv 2019,
arXiv:1906.03359.

31. Richardson, A.; Goodenough, D.G.; Chen, H. Hierarchical unsupervised nonparametric classification
of polarimetric SAR time series data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing
Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4730–4733.

http://dx.doi.org/10.1023/A:1009887311454
http://dx.doi.org/10.1023/A:1018054314350
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.6252&rep=rep1&type=pdf
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/TPAMI.2004.1265868
http://dx.doi.org/10.1109/TPAMI.1980.6592364
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/JIOT.2017.2731875
http://dx.doi.org/10.1145/1497577.1497578
http://dx.doi.org/10.1145/1233321.1233330
http://dx.doi.org/10.1109/TNB.2012.2214232
http://dx.doi.org/10.1016/j.patcog.2012.09.005
http://dx.doi.org/10.3390/s150614809
http://dx.doi.org/10.3390/en12010159
http://dx.doi.org/10.3390/app8122574

Entropy 2019, 21, 906 21 of 21

32. Marapareddy, R.; Aanstoos, J.V.; Younan, N.H. Unsupervised classification of SAR imagery using
polarimetric decomposition to preserve scattering characteristics. In Proceedings of the 2015 IEEE Applied
Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 13–15 October 2015; pp. 1–5.

33. Yumus, D.; Ozkazanc, Y. Land Cover Classification for Synthetic Aperture Radar Imagery by Using
Unsupervised Methods. In Proceedings of the 2019 9th International Conference on Recent Advances
in Space Technologies (RAST), Istanbul, Turkey, 11–14 June 2019; pp. 435–440.

34. Yin, X.; Song, H.; Yang, W.; He, C.; Xu, X. Unsupervised PolSAR image classification based on ensemble
partitioning. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-
IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 3183–3186.

35. Azhar, M.; Huang, J.Z.; Masud, M.A.; Li, M.J.; Cui, L.Z. Identify the Number of Clusters from Complex
Data with Many Clusters using GMM Trees and Forests. Appl. Soft Comput. 2019, under review.

36. Iam-On, N.; Boongeon, T.; Garrett, S.; Price, C. A link-based cluster ensemble approach for categorical data
clustering. IEEE Trans. Knowl. Data Eng. 2010, 24, 413–425. [CrossRef]

37. Kyriakopoulou, A.; Kalamboukis, T. Text classification using clustering. In Proceedings of the Discovery
Challenge Workshop at ECML/PKDD 2006, Berlin, Germany, 22 September 2006; pp. 28–38.

38. Ye, N.; Li, X. A machine learning algorithm based on supervised clustering and classification.
In Proceedings of the International Computer Science Conference on Active Media Technology, Hong Kong,
China, 18–20 December 2001; pp. 327–334.

39. Macqueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings
of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18
July 1965, 27 December 1965–7 January 1966; pp. 281–297.

40. Li, Y.; Hung, E.; Chung, K.; Huang, J. Building a decision cluster classification model for high dimensional
data by a variable weighting k-means method. In Proceedings of the Australasian Joint Conference on
Artificial Intelligence, Auckland, New Zealand, 1–5 December 2008; pp. 337–347.

41. Quinlan, J.R.; Compton, P.J.; Horn, K.A.; Lazarus, L. Inductive knowledge acquisition: A case
study. In Proceedings of the Second Australian Conference on Applications of Expert Systems, 1987;
Addison-Wesley Longman Publishing Co., Inc.: Redwood City, CA, USA, 1987; pp. 137–156.

42. Buntine, W. Learning classification trees. Stat. Comput. 1992, 2, 63–73. [CrossRef]
43. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data Via the EM

Algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–22. [CrossRef]
44. Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989,

76, 297–307. [CrossRef]
45. Jing, L.; Tian, K.; Huang, J.Z. Stratified feature sampling method for ensemble clustering of high

dimensional data. Pattern Recognit. 2015, 48, 3688–3702. [CrossRef]
46. Qiu, W.; Joe, H. clusterGeneration: Random cluster generation (with specified degree of separation).

R Packag. Vers. 2009, 1, 70122–75275.
47. Dua, D.; Graff, C. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml

(accessed online 14 September 2019).
48. Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S. KEEL Data-Mining Software Tool: Data

Set Repository, Integration of Algorithms and Experimental Analysis Framework. Mult.-Valued Log.
Soft Comput. 2011, 17, 255–287.

49. Geusebroek, J.M.; Burghouts, G.J.; Smeulders, A.W. The Amsterdam Library of Object Images. Int. J.
Comput. Vis. 2005, 61, 103–112. [CrossRef]

50. Benaglia, T.; Chauveau, D.; Hunter, D.R.; Young, D. mixtools: An R Package for Analyzing Finite Mixture
Models. J. Stat. Softw. 2009, 32. [CrossRef]

51. Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
52. Manning, C.; Raghavan, P.; Schütze, H. Introduction to information retrieval. Nat. Lang. Eng. 2010, 16,

100–103.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TKDE.2010.268
http://dx.doi.org/10.1007/BF01889584
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1016/j.patcog.2015.05.006
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1023/B:VISI.0000042993.50813.60
http://dx.doi.org/10.18637/jss.v032.i06
http://dx.doi.org/10.1007/BF01908075
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Overview of GMM Tree
	Stratified Subspace Sampling GMM-Based Method (SSS-GMM)
	Generation of Feature Strata from the Training Dataset Dtrain
	Generation of Subspace Data Sets from the Training Dataset Dtrain
	Generation of Clustering Results from Subspace data sets
	Generation of Ensemble Clusters from Individual Subspace Clustering Results
	Assignment of Class Labels to the Clusters in Ensemble Clustering Result
	Classification of the Objects in the Testing Dataset Dtest Based on Generated Classifier

	Experiments
	data sets
	Experimental Settings
	Experimental Results

	Conclusions and Future Work
	References

