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Abstract: While Bell operators are exploited in detecting Bell nonlocality and entanglement
classification, we demonstrate their usefulness in exploring Einstein–Podolsky–Rosen (EPR) steering,
which represents the quantum correlation intermediate between entanglement and Bell nonlocality.
We propose a task function that detects steerability of multi-qubit states in bipartite scenarios. A novel
necessary and sufficient steering criterion is based on the superposition of the recursive Bell operators
which are often employed for detecting Bell nonlocality. Utilizing the task function we can (i) reveal
the one-to-one mapping relation between joint measurability and unsteerability, (ii) geometrically
depict and compare the entanglement classification and the steering criteria and propose a geometrical
measure, and (iii) compare the EPR steering with Bell nonlocality using an alternative task function.
We extend the result to detect EPR steering for multi-qutrit cases and some numerical results are
illustrated as examples. Finally, the steering criteria in a star-shaped quantum network is studied to
see how the result is applied to a genuine multipartite steering case.

Keywords: quantum steering effect; Bell operators; quantum network

1. Introduction

Entanglement, steerability, and Bell nonlocality are three quantum aspects distinguishable from
classical physics. Although they are not equivalent [1–4], they are closely inter-related. On the one
hand, there is a hierarchal structure of three types of nonclassical correlation/nonlocality represented
by these three aspects [2,5]. Bell nonlocality refers to the strongest type of quantum correlation that
cannot be reproduced by using any local hidden variable (LHV) model. Entanglement is characterized
by the inseparability of quantum composite systems; it cannot be modeled in terms of separable local
states. Given any entangled state, there exists an entanglement witness to detect it [6]. An entanglement
witness can demonstrate correlations that cannot be reproduced by using any combination of local
hidden state (LHS) models. The notion of quantum steering was first introduced by Schrödinger [7] in
response to the Einstein–Podolsky–Rosen (EPR) paradox [8]. When two systems are ‘entangled’, one
party, through a local measurement on the accessible systems, can steer or pilot the state of the other
remote system. EPR steering is an intermediate type of quantum correlation between Bell nonlocality
and entanglement. The steering effect can be exploited to characterize the evident ability of nonlocality
by [2,9–11], and witnessing steering implies entanglement certification [12]. In quantum information,
the EPR-steering has attracted much attention since it provides an alternative advantage involving
randomness extraction [13], subchannel discrimination [14], one-sided device-independent quantum
key distribution [15], and quantum communication [16,17].

There are two operational definitions of quantum steering. Let a bipartite state be distributed by
two spatially separated parties, Alice and Bob. To demonstrate steerability from Alice to Bob, Alice as
the steering party performs her local measurements on her particles. Therein, Alice’s measurement
devices are untrusted while Bob’s are trusted. This state is steerable if and only if the unnormalized
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conditional post-measured states in Bob’s hand, often referred to as a measurement assemblage, cannot
be described by any combination of LHS and LHV models. Various steering criteria or inequalities
based on this definition have been proposed [1,2,18–21].

In this paper, we employ the other definition for EPR steering as a task with two parties [2,17].
In this task, all measurement devices for both sides are trusted but Alice can be dishonest. Alice’s task is
to convince Bob of her steerability on the qubits in Bob’s hand, and she is allowed to inform Bob of her
local measurement settings and outcomes via one-way classical communication. If Alice is honest, she
prepares an n-qubit entangled state W and sends (n− k) qubits from it to Bob. In contrast, if Alice is
dishonest, she sets up an LHV λ with a probability pλ, sends Bob local (n− k)-qubit pre-existing states
with density matrices ρλ, and announces forged measurement settings and outcomes via classical
communication. In this case, Bob’s assemblage of this state can be reproduced using the LHS model
{ρλ, pλ}. A quantum state is unsteerable if and only if it can be simulated using a combination of
LHV and LHS (denoted as LHV–LHS, or V–S for short) models; otherwise, it is steerable [1,2,22].
To verify Alice’s steering ability, Bob can evaluate the strength of the bipartite correlation using a task
function based on his local operations and one-way classical communication. As a steering criteria,
since quantum steering is a type of correlation stronger than that in terms of any LHV–LHS model,
Bob confirms EPR steering if and only if the value of the task function is larger than the upper bound
of the task function value using any LHV–LHS model. Therein, Bell operators play an essential role in
bipartite correlation evaluation and hence steering witness.

In this paper, we explore a novel way of detecting multiqubit/multiqutrit steering with Bell
operators; in the pioneer work [23,24], the two-level multipartite steering inequalities were proposed
based on the Mermin-type inequalities [25] in which the proposed inequalities are analogous to
Bell-type inequalities. We extend the ideas and results from two-qubit cases [26,27] to multi-qubit
cases. Instead of directly characterizing the steerability of two non-commuting Bell operators, we
evaluate the steerability of their superposition. On one hand, as a combination of the analogs of
the Klyshko-type Bell inequalities and entanglement classification, the proposed nonlinear steering
inequalities can reveal the one-to-one mapping relation between joint measurability and unsteerability.
On the other hand, besides detecting Bell nonlocality, Bell operators are also employed for entanglement
classification [28,29] and entanglement witness [30]. Therefore, through Bell operators, the proposed
criteria can be regarded as resources for demonstrating EPR steering compared to Bell nonlocality
and entanglement.

The remainder of this paper is organized as follows: In Section 2, we introduce the Bell operators
appeared in the Klyshko-type inequalities, which can be regarded as the generalization of the
Clauser–Horne–Shimony–Holt (CHSH) inequality [31–34]. Specifically, these Bell operators can be
explicitly expressed as recursive forms, and are exploited in an entanglement classification. In Section 3,
we propose novel nonlinear steering inequalities for the bipartition of n-qubit multipartite states. The
connection between unsteerability and joint measurability is argued. We derive the necessary and
sufficient criteria of unsteerability, and the related measure of steering is given from the geometrical
viewpoint. The EPR steering in qutrit systems is considered in Section 4. The recursive Bell operators
are also found to be useful for drawing nonlinear steering criteria, and some numerical results are
presented. In Section 5, the steering effect in a star-shaped quantum network is analyzed; here, the
source center tries to steer the states of many end-users. This is a type of genuine multipartite steering,
and the steering inequality for this network is proposed. Finally, the conclusion is drawn in Section 6.

2. Preliminaries

Denote the n-qubit Klyshko-type Bell operators by

Bn = B+
k Bn−k + B−k B′n−k (1)

= BkB+
n−k + B′kB−n−k, (2)
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B′n = B+
k B′n−k − B−k Bn−k (3)

= B′kB+
n−k − BkB−n−k, (4)

where B±k = 1
2 (Bk ± B′k) and 1 ≤ k ≤ n− 1 [35,36]. The one-qubit Bell operators B1 and B′1 on the j-th

subsystem are spin observables M0
j = −→uj · −→σ and M1

j = −→vj · −→σ , respectively, where −→σ = (σx, σy, σz)

is a vector of Pauli matrices, and −→uj and −→vj both are the unit vectors on the Bloch sphere. These
operators can also be recursively obtained from the fundamental relation, Bn = 1

2 [Bn−1(M0
n + M1

n) +

B′n−1(M0
n −M1

n)] and the other one by exchanging all the non-primed Bk and primed B′k. For example,
the two-qubit Bell operator reads

B2 =
1
2
[
M0

1 M0
2 + M1

1 M0
2 + M0

1 M1
2 −M1

1 M1
2
]

,

which is nothing but the CHSH operator multiplied with the extra factor 1
2 . The Bell operator B′n

is given by the same expression Bn but with M0
j ↔ M1

j for each j. In the following, we denote the

outcomes of Mi
j by oi

j, where i ∈ {0, 1} and oi
j ∈ {1,−1}. Notably, the Bell operators Bn and B′n can be

exploited in the entanglement classification as follows [28,29]. Given the n-qubit state, we have√
〈Bn〉2 + 〈B′n〉

2 ≤
√

2En−1, (5)

where the entanglement index of the n-qubit system is En = n− Kn − 2Ln + 2, Kn is the number of
separated single qubits, and Ln is the number of groups into which the entangled n− Kn qubits are
divided with each group of qubits being fully entangled. Notably, RHS of (5) is different from (12)
in [28] since the different two-qubit Bell operators are exploited.

Note that the upper bound appeared in RHS of (5) is tight and state-dependent. As a preparation
for proposing steering criteria in the following sections, we look for a state-independent bound
of m-qubit system which is given as a local hidden state. We follow Roy’s work to verify that
the maximum of Em is m with Km = 0 and Lm = 1, which can be achieved using the m-qubit
Greenberger–Horne–Zeilinger (GHZ) state [37,38]. (In the next section, we apply the following result
for the cases with m being n− k or n′ − k′.) Firstly we introduce the Mermin-type Bell operators

M+
m =

1
2
(⊗m

j=1σ+
j +⊗m

j=1σ−j ), M−m =
1
2i
(⊗m

j=1σ+
j −⊗

m
j=1σ−j ), (6)

where σ±j = σx ± iσy, and σx and σy are the usual Pauli operators. Without loss of generality, let M1
j be

σy and M0
j be either σx or −σx hereafter. Up to the phase −1 and for even m, we have either

Bm =
1

2
m
2
(M+

m ±M−m), B′m =
1

2
m
2
(M+

m ∓M−m);

for odd m, we have either

Bm =
1

2
m−1

2
M±m , B′m =

1

2
m−1

2
M∓m .

For the m-qubit GHZ state
∣∣ψθ

m
〉
= 1√

2
(|0〉⊗m + eiθ |1〉⊗m), we have [38]

〈
ψθ

m
∣∣M+

m
∣∣ψθ

m

〉
= 2m−1 cos θ,

〈
ψθ

m
∣∣M−m ∣∣ψθ

m

〉
= 2m−1 sin θ. (7)

As a result, we reach a state-independent inequality√
〈Bm〉2 + 〈B′m〉

2 ≤ 2
m−1

2 ≡ Rm, (8)
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where the equality holds if the state is maximally-entangled with the corresponding index
Em = m [23,24]. In this paper, we focus on a one-way steering effect, and for the (n − k)-qubit

system (namely m = n− k), denote Rn−k = 2
n−k−1

2 as the least upper bound of

√
〈Bn−k〉2 +

〈
B′n−k

〉2
in

the quantum region, which can be achieved using the (n− k)-qubit GHZ state
∣∣∣ψθ

n−k

〉
= 1√

2
(|0〉⊗n−k +

eiθ |1〉⊗n−k).

3. Multipartite Criteria of Unsteerability

To test the Alice’s ability of steering Bob’s qubits, we consider the following bipartite
communication task. Given a generic n-qubit state W distributed between Alice (k-qubit) and Bob
((n− k)-qubit), the goal is to maximize the value of a task function F(n,k)(W), where

F(n,k)(W) =

√〈
B+

k Bn−k
〉2

+
〈

B+
k B′n−k

〉2
+

√〈
B−k Bn−k

〉2
+
〈

B−k B′n−k

〉2
. (9)

Notably, the first and second terms in the RHS are to quantify the steering ability of two
observables, B+

k and B−k , which are the superpositions of the non-commuting Bell operators, Bk and
B
′
k. Some remarks are made before proceeding further. Firstly, F(2,1)(W) has been extensively

studied in [26,27], which is regarded as an analog of CHSH inequality for steering [27]. Later we
will investigate the relation between steering and either nonlocality or entanglement classification
using F(n,k)(W) and its generalized form. Secondly, it will be shown that the superposition of
Bk and B

′
k and the nonlinearity in (9) are necessary to reveal the strong connection between

unsteerability and joint measurability [39,40]. Finally, as for the physical realization, the local
observable measurements for testing EPR steering therein can also be exploited for testing nonlocality
and entanglement classification.

In the protocol of this task, an honest Alice initially prepares an n-qubit state W. She keeps k
qubits and sends the other (n− k) qubits to a distant Bob. Alice measures local observables, and then

sends Bob the content of an input-output set c = {(M
ij
j , o

ij
j )|1 ≤ j ≤ k, ij ∈ {0, 1}} via one-way classical

communication. On receiving c, Bob measures the observable either M0
j′ or M1

j′ on the j′-th qubit at

hand (k + 1 ≤ j′ ≤ n). At last, Bob evaluates the value of F(n,k)(W) based on his local operations and
one-way classical communication. Provided that the unsteerable state W is prepared by a dishonest
Alice, all joint probability distributions can be simulated using a LHV–LHS model. In details, given
a local hidden variable λ, Alice sends Bob (n− k)-qubit local states ρλ. The conditional output joint
probability with the unsteerable W can be simulated using {λ, ρλ} such that

P(a, b|A, B)V–S = ∑
λ

P(λ)P(a|A, λ)P(b|B, ρλ), (10)

where the local input sets A = {Mi1
1 , . . . , Mik

k } and B = {Mik+1
k+1, . . . , Min

n }; and the local output sets

a = {oi1
1 , . . . , oik

k } and b = {oik+1
k+1, . . . , oin

n }. Importantly, given some local hidden variable λ, we
have [37]

|〈Bk〉λ| ,
∣∣〈B′k

〉
λ

∣∣ ≤ 1, (11)∣∣∣〈B+
k
〉

λ

∣∣∣+ ∣∣∣〈B−k
〉

λ

∣∣∣ ≤ max{|〈Bk〉λ| ,
∣∣〈B′k

〉
λ

∣∣} ≤ 1, (12)

and 〈
B′n
〉
{λ,ρλ}

, 〈Bn〉{λ,ρλ} ≤ max
ρλ

{〈Bn−k〉ρλ
,
〈

B′n−k
〉

ρλ
}. (13)
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In the multipartite LHV–LHS model (10), we have

F(n,k) ≤ max
ρλ

√
〈Bn−k〉2ρλ

+
〈

B′n−k

〉2

ρλ
∑
λ′

P(λ′)(
∣∣∣〈B+

k
〉

λ′

∣∣∣+ ∣∣∣〈B−k
〉

λ′

∣∣∣)
≤ max

ρλ

√
〈Bn−k〉2ρλ

+
〈

B′n−k

〉2

ρλ

. (14)

Therefore, according to (8), it is sufficient that if the state W is unsteerable, it must satisfy the
steering inequality

F(n,k) ≤ Rn−k. (15)

It is noteworthy that the value 〈Bn−k〉2 +
〈

B′n−k
〉2are exploited as the test of the

separable–inseparable (n − k)-particle density operators [28], or as the witness of full (n −
k)-partite entanglement [29]. Regarding of the RHS inequality (15) as the least upper bound of√
〈Bn−k〉2LHS +

〈
B′n−k

〉2

LHS
, the necessary and sufficient condition for W to be unsteerable is

F(n′ ,k′) ≤ Rn′−k′ , (16)

for all possible k′ (≤ k) and n′ − k′ (≤ n − k) subsystems chosen in Alice and Bob’s laboratories,
respectively. In this case, Alice cannot convince Bob of her steering ability on any qubit in his hand.
In the end, the equality in (16) holds for some k′ and n′ − k′ if ρλ =

∣∣∣ψθ
n′−k′

〉 〈
ψθ

n′−k′

∣∣∣ irrespective to λ.
To verify that (16) is indeed a steering inequality, we resort to the connection between the

steerability and joint measurability in the two-level case [39,40]. In particular, it is shown that, for
any set of incompatible observables, one can find an entangled state with which resulting statistics
violates a steering inequality [40]. In the simplest case, where n = 2 and k = 1, the spin observables
M1

1 = M1
2 = σy, M0

1 = M0
2 = σx, and the Bell state

∣∣ψθ
2
〉

initially shared between Alice and Bob.
Notably, the observables M0

1 and M1
1 are presumed most incompatible [41], and the maximal value of

the task function F(2,1) in the quantum region is
√

2. Now Alice performs the joint measurement on
her half of entangled qubits, the probability distribution can be exactly simulated using the LHV–LHS
model (10). In details, we denote the unsharpened observables of Alice’s qubit m0

1 = λ0M0
1 = λ0σx and

m1
1 = λ1M1

1 = λ1σy, 0 < λ0, λ1 ≤ 1. Regarding Alice’s unsharp measurements, the condition

F(2,1) = 1
2

√〈
(m0

1 + m1
1)M0

2
〉2

+
〈
(m0

1 + m1
1)M1

2
〉2

+ 1
2

√〈
(m0

1 −m1
1)M0

2
〉2

+
〈
(m0

1 −m1
1)M1

2
〉2 ≤ 1

must be satisfied. Given the correlations
〈

M0
1 M1

2
〉
=
〈

M1
1 M0

2
〉
= sin θ,

〈
M0

1 M0
2
〉
= −

〈
M1

1 M1
2
〉
= cos θ,

we have
λ2

0 + λ2
1 ≤ 1, (17)

which is the exact criteria of joint measurability for the most incompatible observable [42]. To realize
such joint measurement, let the joint observable be [43,44]

G(i, j) =
1
4
(I2 +

−→
λ ij · −→σ ),

where
−→
λ ij = (iλ0, jλ1, 0),

∣∣∣−→λ ij

∣∣∣ ≤ 1, and i, j ∈ {−1, 1}. Obviously, we have G(i, j) ≥ 0 and ∑i,j G(i,

j) = I2, m0
1 = ∑j G(+, j)−∑j G(−, j), and m1

1 = ∑i G(i,+)−∑i G(i,−). Inversely, the condition (17)

suffices the
∣∣∣−→λ ij

∣∣∣ ≤ 1 and hence G(i, j) ≥ 0. Hence Alice can exploit the joint observable {G(i, j)}
that satisfy the steering inequality F(2,1) ≤ 1. Inversely, given (17), it is easy to verify that inequality
F(2,1) ≤ 1 holds. When a prepared state W is a fully entangled state and Alice’s joint measurement
consists of the two most incompatible observables, a straightforward calculation shows

F(n,1) ≤ Rn−1 ⇔ λ2
0 + λ2

1 ≤ 1. (18)
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That is, if m0
1 and m1

1 are not jointly measurable (λ2
0 + λ2

1 > 1) and hence incompatible, one can
always find a fully entangled state

∣∣ψθ
n
〉

such that the resulting statistics violates a steering inequality
F(n,1) ≤ Rn−1.

To explain why characterizing the steerability of two non-commuting operators is worse than
characterizing the steerability of their superposition, we consider another task function using the terms
BkB±n−k and B′kB±n−k which appeared in (2) and (4),

G(n,k) = ∑
B=Bk ,B′k

√〈
B(Bn−k + B′n−k)

〉2
+
〈

B(Bn−k − B′n−k)
〉2

, (19)

where the first and second terms are exploited to evaluate the steering effect of Bk and B′k on the
n − k qubits on which the Bell operators B+

n−k and B−n−k are performed. In the LHV–LHS model,

G(n,k) ≤
√

2 maxρλ

√
〈Bn−k〉2LHS +

〈
B′n−k

〉2

LHS
. Regarding the simplest case with n = 2 and k = 1,

Alice’s joint measurement and the steering equality G(2,1) ≤
√

2 leads to the trivial linear inequality
λ0 + λ1 ≤ 2. Eventually, it is the superposition of B1 and B′1 as well as the nonlinearity in (9) that
brings the quadratic inequality (17), and hence (18). As a result, F(n,k) rather than G(n,k) indeed reveals
the one-to-one mapping relation between the unsteerability and joint measurability of the two most
incompatible observables [45].

However, ρλ is unknown to Bob in practice. We study Bob’s post-processing to increasing the
value of the task function as follows. Let a hidden variable be a deterministic input-output set, which

denotes λ = {(M
ij
j , o

ij
j )|vλ(M

ij
j ) = o

ij
j , 1 ≤ j ≤ k, ij = 0, 1}. In the k-th round test, the untrusted Alice

prepares a hidden variable λ(k) and sends Bob ρλ(k) . Then Alice communicates Bob her local inputs
and outputs c(k) as a subset of λ(k). We denote the LHS with the hidden variable λ and its sampling
by ρΛ

λ = 1
Nλ

∑k,c(k)⊂λ
ρλ(k) and S(ρΛ

λ ), respectively, where the Nλ = ∑k,c(k)⊂λ
1. The achievable tight

upper-bound is

F(n′ ,k′)(W) ≤ max
S(ρΛ

λ )

√
〈Bn′−k′〉2S(ρΛ

λ ) +
〈

B′n′−k′

〉2

S(ρΛ
λ )
≤ Rn′−k′ , (20)

for all k′ and n′ − k′subsystems in Alice and Bob’s laboratories, respectively. As a result, even though
Bob can locally increase the task function value through post-processing, the inequality (16) must hold,
which leads to our main result.

Theorem 1. : An n-qubit state W is unsteerable if and only if Alice’s local operations, classical communication,

and Bob’s post-processing cannot make the task function F(n′ ,k′) defined in (9) larger than Rn′−k′ = 2
n′−k′−1

2 for
∀n′ ≤ n, k′ ≤ k, where k′ is the subsystem of Alice and n′ − k′ is that of Bob.

The proof can be stated as follows.

Proof. If (20) holds, one can simulate the probability distribution using LHV–LHS model with {λ,
ρΛ

λ }. Inversely, since W is unsteerable and hence |〈Bk′〉|, |〈Bk〉| ≤ 1, (20) is automatically satisfied.

Specifically, regarding the k′ systems at Alice’s side, (11) leads to
√
〈Bk′〉2λ +

〈
B′k′
〉2

λ
≤
√

2, where
one equivalently sets Kk′ = k′, Lk′ = 0, and hence the entanglement index Ek′ = 2. As a result, for the
above LHV–LHS models, the achievable entanglement index is at most (n′ − k′) since only (n′ − k′)
qubits are initially prepared. As an example, the equality En′ = n′ − k′ with Kn′ = k′ and Ln′ = 1 holds

if the local hidden state ρλ =
∣∣∣ψθ

n′−k′

〉 〈
ψθ

n′−k′

∣∣∣ and the local hidden variables o
ij
j = 1 ∀λ and j ≤ k′.

Furthermore, from the geometrical viewpoint shown in Figure 1, we have√
〈Bn′〉2 +

〈
B′n′
〉2 ≤ F

(n′ ,k′)
.
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As a result, (20), F(n′ , k′) ≤ Rn′−k′ and (5) indeed indicate that entanglement index of the n′-system
must not be larger than n′ − k′. Since there is no entanglement shared between Alice and Bob, there is
no EPR steering effect.

With straightforward calculation, the maximal value F
(n,k)

(W) in the quantum region can be
achieved by using the GHZ state

∣∣ψθ
n
〉
. That is,

F
(n,k)

(W) ≤ max
W

F
(n,k)

(W) = F
(n,k)

(ψθ
n) = Rn. (21)

By regarding the averages of observables Bell operators as two axes of a plane, we depict the
geometrical meaning of (21) in Figure 1. On this basis, we quantitatively characterize the measure of
steering for a given state W [46] as

S(W) =

{
0,

F(n,k)(W)− Rn−k
Rn − Rn−k

}
.

It is easy to verify that (i) 0 ≤ S(W) ≤ 1, (ii) S(W) = 0 if these k qubits at Alice’s hand cannot
steer the state of Bob’s qubits, and (iii) S(W) = 1 if the fully-entangled state

∣∣ψθ
n
〉

is initially prepared.
As a result, the steering criteria can be geometrically depicted in terms of the expectation values of Bell
operators. An alternative geometric extension of the Clauser–Horne inequality for three subsystems is
studied by Dutta et al. [47]. Therein, the three-qubit Bell-type and Mermin inequalities are derived by
introducing statistical separation of probabilities [47].

To reveal the connection between the steering effect and Bell nonlocality, let us define a
p-task function

F
(n,k)

p = p

√∣∣〈B+
k Bn−k

〉∣∣p + ∣∣∣〈B+
k B′n−k

〉∣∣∣p + p

√∣∣〈B−k Bn−k
〉∣∣p + ∣∣∣〈B−k B′n−k

〉∣∣∣p.

In the LHV–LHS model, since
∣∣∣〈B+

k
〉

LHV

∣∣∣ ,
∣∣∣〈B−k

〉
LHV

∣∣∣ ≤ 2 we have

F
(n,k)

∞ ≤ max
ρλ

{
|〈Bn−k〉| ,

∣∣〈B′n−k
〉∣∣} = Rn. (22)

On the other hand, F
(n,k)
∞ = max{|〈Bn−k′〉| ,

∣∣∣〈B′n−k′

〉∣∣∣} if Alice initially prepares the (n− k′)-qubit

GHZ state and then sends (n− k) of them to Bob (k′ < k). Therefore, the violation of (22) indicates that
nonlocality distributed among more than (n− k) qubits can be achieved using the EPR-steering.

As the end of the section, we compare F
(n,k)
p with another p-task function

T
(n,k)

p =
(
|〈Bn〉|p +

∣∣〈B′n
〉∣∣p) 1

p .

Some remarks are made in order. Firstly, T
(n,k)

2 can be used for the entanglement
classification [28,29], and T

(n,k)

2 ≤ F
(n,k)

2 as geometrically depicted in Figure 1. Secondly, in the LHV–LHS

model, one can verify that T
(n,k)

2 ≤ max
ρλ

√
〈Bn−k〉2ρλ

+
〈

B′n−k

〉2

ρλ

and T
(n,k)
∞ ≤ max

ρλ

{|〈Bn−k〉| ,
∣∣〈B′n−k

〉∣∣}
similar to (14) and (22), respectively. Thirdly, with straightforward calculation and numerical
calculation, we have

F
(n,k)

p (ψθ
n) = T

(n,k)

p (ψθ
n) = 2

n
2−1 {|cos θ + sin θ|p + |cos θ − sin θ|p

} 1
p , (23)

and
max

θ
F
(n,k)

p≥2(ψ
θ
n) = F

(n,k)

p≥2(ψ
0
n) = Rn, (24)
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which are independent of k and p. Finally, numerical simulation shows that max
W

F
(n,k)
p (W) = Rn ∀

p ≥ 2.

Figure 1. The geometry of F(n,k)
2 and T(n,k)

2 . Without loss of generality, let ±
〈

B±k Bn−k
〉

W and〈
B±k B′n−k

〉
W

all be positive for the steerable state W.
−→
ON = (〈Bn〉W , 〈B′n〉W),

−−→
OM = (

〈
B+

k Bn−k
〉

W ,〈
B+

k B′n−k

〉
W
), and

−−→
MN = (

〈
B−k B′n−k

〉
W

, −
〈

B−k Bn−k
〉

W). By triangle inequality, F(n,k)
2 (W) =

OM + MN ≥ ON = T(n,k)
2 (W), where the equality holds if 〈B

′
n〉W

〈Bn〉W
=
〈B+

k B′n−k〉W
〈B+

k Bn−k〉W
= −〈B

+
k Bn−k〉W
〈B−k B′n−k〉W

.

The fact that T(n,k)
2 (W) ≥ Rn−k guarantees that F(n,k)

2 (W) ≥ Rn−k and hence the steerability of W. As

for the measure, we have S(W) = OM+MN−OP
Rn−Rn−k

≥ ON−OP
Rn−Rn−k

= PN
Rn−Rn−k

.

4. Steering Criteria for Qutrit Systems

Inspired by the usefulness of recursive Bell operators for multi-qubit steering, we explore the
possibility of tackling quantum steering in a qutrit case. Recently, multi-qutrit Mermin inequalities
were proposed by Lawrence [48]. The Bell operators therein are

M(l)
n =

1
3

[
n

∏
j=1
⊗(X̂j + α2Ŷj) +

n

∏
j=1
⊗ω2l(X̂j + ωα2Ŷj) +

n

∏
j=1
⊗ωl(X̂j + ω2α2Ŷj)

]
,

where l = 0, 1, 2, α = exp(2πi/9), ω = exp(2πi/3). In addition, the Pauli matrix for the qutrit j are
X̂j = ∑2

n=0 |n + 1〉 〈n| and Ŷj = ∑2
n=0 α1−3δn,2 |n + 1〉 〈n| (δn,2 = 1 if n = 2; 0 otherwise). Here, the hat

is for single qutrit operators to distinguish them from qubit ones. Notably, the measurement outcomes
can be 1, ω, and ω2. One can revise M(l)

n as the recursive forms

M(0)
n = M(0)

k M(0)
n−k + M(1)

k M(2)
n−k + M(2)

k M(1)
n−k,

M(1)
n = M(0)

k M(1)
n−k + M(1)

k M(0)
n−k + M(2)

k M(2)
n−k,

M(2)
n = M(0)

k M(2)
n−k + M(1)

k M(1)
n−k + M(2)

k M(0)
n−k.

Similarly to the qubit case, we define a p-task function as

R(n,k)
p =

1
3

2

∑
j=0

∣∣∣∣∣ 2

∑
l=0

〈
M(j)

k M(l)
n−k

〉p
∣∣∣∣∣

1
p

.
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On the other hand, let

A(j)
m =

2

∑
l=0

ωl j M(l)
m , M(l)

m =
2

∑
l=0

ω−l j A(j)
m ,

and we define an alternative p-task function

L(n,k)
p =

1
3

2

∑
j=0

∣∣∣∣∣ 2

∑
l=0

〈
A(j)

k M(l)
n−k

〉p
∣∣∣∣∣

1
p

.

As for the LHV–LHS model, it is sufficient that for an unsteerable W,

L(n,k)
p (W) ≤ Amax

LHV(k)Mmax
n−k,p, and R(n,k)

p (W) ≤ Mmax
LHV(k)Mmax

n−k, p, (25)

where Amax
LHV(k) = 1

3 max
λ

∑2
j=0

∣∣∣〈A(j)
k

〉
LHV

∣∣∣ , Mmax
LHV(k) = 1

3 max
λ

∑2
j=0

∣∣∣〈M(j)
k

〉
LHV

∣∣∣, and Mmax
n−k, p =

max
ρλ

∣∣∣∣∑2
l=0

〈
M(l)

n−k

〉p

ρλ

∣∣∣∣ 1
p
. For lower values of n, the values of the both hands sides for p = 2 are

numerically evaluated in Table 1 and 2. The numerical simulation shows that Amax
LHV(k) and Mmax

LHV(k)
can be achieved using the LHV with the uniform outcome,

λuniform =
{
(M̂

ij
j , o

ij
j )|o

ij
j (M̂

ij
j ) = x, ∀M̂

ij
j ∈ {X̂j, Ŷj}

}
,

where x ∈ {1, ω, ω2}. Given p = 2, however, it is difficult to find Mmax
n−k, 2 since it may concern the

entanglement classification in the three-level case, which needs further exploration that is beyond our
scope. In addition, since the connection between joint measurability and unsteerability is also unclear
for qutrits, one cannot determine whether L2 outperforms R2 to serve as steering criteria. Finally, as p
goes infinity, the steering inequalities become

L(n,k)
∞ ≤ Amax

LHV(k)T
(n,k)
Q , R(n,k)

∞ ≤ Mmax
LHV(k)T

(n,k)
Q , (26)

where T(n,k)
Q = max

{l,m}

{∣∣〈ψ(n−k)
m

∣∣M(l)
n−k

∣∣ψ(n−k)
m

〉∣∣} and |ψ(n−k)
m 〉 represents the GHZ state for (n − k)

qutrits given by Lawrence [48]. Therefore, the violation of (26) indicates that nonlocality distributed
among more than (n− k) qutrits can be achieved using the EPR-steering.

Table 1. The achievable maximal values of L(n,k)
2 (with respect to the GHZ states) and Amax

LHV(k)Mmax
n−k,2

for n = 3, 4, 5, 6 and k = 1, 2, · · · , n − 1. Each entry represents the numerical values of

L(n,k)
2 /Amax

LHV(k)Mmax
n−k,2.

n\ k 1 2 3 4 5

3 1.88243/1.61752 1.85716/1.26589
4 2.97211/2.28049 3.73907/2.58199 3.32009/2.16811
5 4.85581/4.55593 4.89475/3.64027 5.77006/4.42222 6.37854/3.79766
6 9.1105/8.07617 9.35794/7.27247 8.92001/6.23477 11.5972/7.74597 12.4478/6.72884
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Table 2. The achievable maximal values of R(n,k)
2 (with respect to the GHZ states) and Mmax

LHV(k)Mmax
n−k,2

for n = 3, 4, 5, 6 and k = 1, 2, · · · , n − 1. Each entry represents the numerical values of

R(n,k)
2 /Mmax

LHV(k)Mmax
n−k,2.

n\ k 1 2 3 4 5

3 0.880746/0.860663 1.08866/0.843924
4 1.44016/1.21342 1.76149/1.72133 2.17732/1.47687
5 2.18574/2.42416 2.63165/2.42685 3.18657/3.01232 4.35465/2.78729
6 4.58661/4.29724 4.37148/4.84832 5.2633/4.24699 6.37314/5.68515 8.7093/5.08017

5. Steering Criteria of the Star-Shaped Quantum Network

We apply the result to test the steering effect in a star-shaped quantum network [49]. Therein,
as the center of the star network, Alice initially prepares the W(l) of n(l) subsystems, and then sends
the (n(l) − k(l)) subsystems of W(l) to distant end-user Bob(l), where l = 1, 2,..., L. Similarly, Bob(l)
measures the observable M0

j′ ,(l) or M1
j′ ,(l) on the j′-th qubit at hand (k(l) + 1 ≤ j′ ≤ n(l)), and Alice

sends Bob(l) the content of the input–output set c(l) = {(M
ij
j,(l), o

ij
j,(l))|1 ≤ j ≤ k(l), ij ∈ {0, 1}} via

one-way classical communication. Each Bob(l) can perform local measurements and then derive
the values √〈

Bn(l)−k(l)

〉2
+
〈

B′n(l)−k(l)

〉2
= rl ≤ Rn(l)−k(l) . (27)

Define the quantities I± = ∏L
l=1

1
rl

√〈
B±k(l)Bn(l)−k(l)

〉2
+
〈

B±k(l)B
′
n(l)−k(l)

〉2
. For any LHV–LHS

model, we have

|I+|
1
L + |I−|

1
L

= ∑
ω=+,−


L

∏
l=1

∣∣∣∣〈Bω
k(l)

〉
LHV

∣∣∣∣
rl

√〈
Bn(l)−k(l)

〉2

LHS
+
〈

B′n(l)−k(l)

〉2

LHS


1
L

= ∑
ω=+,−

{
L

∏
l=1

∣∣∣〈Bω
k(l)

〉
LHV

∣∣∣} 1
L

≤
L

∏
l=1

{∣∣∣∣〈B+
k(l)

〉
LHV

∣∣∣∣+ ∣∣∣∣〈B−k(l)

〉
LHV

∣∣∣∣} 1
L

=
L

∏
l=1


∣∣∣∣∣∣∣
〈

Bk(l)

〉
LHV

+
〈

B′k(l)

〉
LHV

2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
〈

Bk(l)

〉
LHV
−
〈

B′k(l)

〉
LHV

2

∣∣∣∣∣∣∣


1
L

≤
L

∏
l=1

{
max

(∣∣∣〈Bk(l)

〉
LHV

∣∣∣ ,
∣∣∣〈B′k(l)

〉
LHV

∣∣∣)} 1
L ≤ 1,
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where the first inequality is as a result of Mahler’s inequality [50]. On the other hand, let W(l) be an
n(l)-qubit quantum state for all l. We have

max
(
|I+|

1
L + |I−|

1
L
)

= ∑
ω=+,−

{
L

∏
l=1

1
rl

√〈
Bω

k(l)
Bn(l)−k(l)

〉2
+
〈

Bω
k(l)

B′n(l)−k(l)

〉2
} 1

L

≤
{

L

∏
l=1

∑
ω=+,−

1
rl

√〈
Bω

k(l)
Bn(l)−k(l)

〉2
+
〈

Bω
k(l)

B′n(l)−k(l)

〉2
} 1

L

=
L

∏
l=1

{
∑

ω=+,−

F(n(l),k(l))

rl

} 1
L

≤
L

∏
l=1

{
Rn(l)

rl

} 1
L

,

where, according to Mahler’s inequality, the equality of the first inequality holds if the ratio√〈
B−k(l)Bn(l)−k(l)

〉2
+
〈

B−k(l)B
′
n(l)−k(l)

〉2

√〈
B+

k(l)
Bn(l)−k(l)

〉2
+
〈

B+
k(l)

B′n(l)−k(l)

〉2
= C ∀l. (28)

In addition, if the entanglement index of n(l) qubits are larger than that of n(l) − k(l) qubits
(En(l) > En(l)−k(l) ), we have

1 <
Rn(l)

Rn(l)−k(l)
≤

Rn(l)

rl
. (29)

As a result, if the network cannot be simulated using LHV–LHS models, we have max(|I+|
1
L +

|I−|
1
L ) > 1. For example, let the state W(l) be n(l)-qubit GHZ state, then we have En(l) = n(l) ≥ 3 and

En(l)−k(l) = 2. In addition, let (28) hold and rl = Rn(l)−k(l) =
√

2 (En(l)−k(l) = 2). As a result, we have
Rn(l)

rl
=
√

2n(l)−2 ≥
√

2 > 1, and hence

max(|I+|
1
L + |I−|

1
L ) =

(
L

∏
l=1

√
2n(l)−2

) 1
L

≥ 2
1
2 > 1.

The steering effect in the quantum networks can be corrupted by the detection efficiency, the noise
in the state, the misalignment of measurement settings, and the loss. Although the full discussion on
the real-world limitations is beyond our scope, we can consider the unbiased noise in the state as a
simple example. Let the density matrix of the contaminated state W(l) be

ρ(l) = p
∣∣∣ψθ=0

n(l)

〉 〈
ψθ=0

n(l)

∣∣∣+ (1− p)I(l) ∀l,

where I(l) denotes the 2n(l) × 2n(l) identity matrix. It is easy to show that, if p(∏L
l=1

√
2n(l)−2)

1
L ≤ 1,

we have

max(|I+|
1
L + |I−|

1
L ) = p

(
L

∏
l=1

√
2n(l)−2

) 1
L

≤ 1,

which indicates the vanishing of the steering effect.
There is an evident advantage for the experimental realization of these proposed steering

inequalities. Since these steering inequalities are proposed in terms of Bell operators, the experiment
realization of steering inequalities are exactly the same as the Bell-type experiments involving these
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Bell operators. In this case, the experimental input-output data of either multi-qubit Bell–Klyshko
or multi-qutrit Mermin–Lawrence inequalities can be exploited for testing both Bell nonlocality and
quantum (un)steerability.

Finally, it is interesting to test EPR steering in the optical way. For example, the tripartite EPR
steering has been discussed by using a three-mode Gaussian state created by four-wave mixing in
Rubidium atoms using linear and nonlinear beam splitters [51]. Notably, the four-wave mixing process
can be generated using twin beams [52], and can be employed in intensity-difference squeezing
via energy-level modulations in high-gain atomic media [53]. The related experiments to realize
multi-mode noise correlation in an atomic ensemble or an atomic-like medium have been developed
in [52,53].

6. Conclusions

In conclusion, we demonstrate the usefulness of the two-task function comprising the
superposition of the Bell operators. These two-task functions can be employed to detect steerability in
the bipartite multi-qubits/qutrits scenario, and reveal the connection between joint measurability and
quantum unsteerability. On the other hand, we propose the geometrical measure in terms of a two-task
function. In this way, we shed light on deriving EPR steering inequalities by using the connection
between EPR steering, entanglement, and Bell nonlocality. Furthermore, such task functions can be
further exploited in detecting steerability in the star-shaped quantum networks. Finally, it is interesting
to further explore EPR steering in the multi-level case, where the multilevel entanglement classification
should play an essential role but relatively little is known about it.
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