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Abstract: Fatigue in any material is a result of continuous irreversible degradation process.
Traditionally, fatigue life is predicted by extrapolating experimentally curve fitted empirical models.
In the current study, unified mechanics theory is used to predict life of Ti-6Al-4V under monotonic
tensile, compressive and cyclic load conditions. The unified mechanics theory is used to derive
a constitutive model for fatigue life prediction using a three-dimensional computational model.
The proposed analytical and computational models have been used to predict the low cycle fatigue
life of Ti-6Al-4V alloys. It is shown that the unified mechanics theory can be used to predict fatigue
life of Ti-6Al-4V alloys by using simple predictive models that are based on fundamental equation of
the material, which is based on thermodynamics associated with degradation of materials.

Keywords: entropy; fatigue; damage mechanics; unified mechanics; thermodynamics; Ti-6Al-4V;
physics of failure

1. Introduction

Titanium alloys are popular for their superior mechanical properties, such as high yield strength,
long fatigue life, toughness, low density, as well as corrosion resistance. About 80% of the global
production of titanium alloys are used by aerospace industries [1]. One of the widely used titanium
alloys is Ti-6Al-4V [2] which has a dual-phase crystal structure, namely, hexagonal close packed (HCP)
and body centered cubic (BCC) structures. In the composition of Ti-6Al-4V alloy, titanium is the matrix
material. Aluminium plays the role of stabilizing the HCP structure and vanadium preserve the BCC
structure [3]. Many applications of Ti-6Al-4V alloys, such as aero engines, are subjected to cyclic
loading [4]. Hence, it is essential to predict the fatigue life of such structural components, when they are
subjected to varying amplitudes of cyclic loading during their service period. It is not always feasible
to conduct fatigue experiments corresponding to all service conditions. Hence, predictive models
based on fundamental physics of materials are helpful in predicting the fatigue life of structures.

A number of studies have been published to investigate the fatigue life of metals. Most of
the damage prediction models are based on statistical test data analysis or on experimental curve
fit [5–11]. Low cycle fatigue life prediction in Ti-6Al-4V alloys are generally done, based on stress [12],
strain [5,6,13–16] or hysteresis loss [17]. Most of them are empirical curve-fit models [7,9,13,18–22]
or mechanism based phenomenological models [23–25] such as fatigue crack initiation models [16].
A detailed review of such models, applied to metals, can be seen in the review article by Santecchia
et al. [26]. A model, based on combined Newtonian mechanics and thermodynamics, instead of
material-specific and loading-specific, can capture the mechanisms of fatigue damage without the need
for curve fitting process.
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If the system is less complicated and we want a quick solution we can opt for a one-dimensional
model based on certain assumptions. However, validity of the model depends upon the accuracy of
the assumptions made while formulation of one-dimensional analytical model. The interpretation
of the results using one-dimensional model is also easy as it can be simple in its form and usage.
A number of one-dimensional empirical curve-fit fatigue life prediction models can be seen in the
literature [5–8,11,12,14–17]. Nevertheless, a physics-based one-dimensional model, which can be
easily used to predict the fatigue life of Ti-6Al-4V, under appropriate assumptions, is still not found
in the literature. If the system is very complicated to arrive at suitable one-dimensional fatigue life
prediction model, we look for another appropriate and convenient method. It is known that, a three
dimensional computational model can be incorporated with appropriate material nonlinearities (such
as plastic flow), to account for the experimental observations [10,22] and to limit the assumptions in
developing the model. However, a large number of cyclic loading simulation in a three dimensional
numerical model is computationally very expensive [10]. Hence, it is very useful to have an appropriate
physics-based procedure, in conjunction with three-dimensional numerical results, to account for
all the nonlinearities associated with the computational model, even as we maintain the simplistic
predictive capability of a one-dimensional model. Therefore, the present study is focused on both
one-dimensional and three-dimensional, thermodynamics-based modeling of the deformation of
standard test specimen to predict the fatigue life of Ti-6Al-4V.

Thermodynamics is a field of science that is developed to study change in the state of matter.
The historical development of thermodynamics from its classical form to modern-age form has
been reviewed by Haddad et al. [27,28]. Between 1872 and 1875, Boltzmann gave a mathematical
expression to second law of thermodynamics for quantification of order/disorder in terms of a measure
called entropy. In 1998, Basaran and Yan [29] introduced the unified mechanics theory, which unifies
Newtonian mechanics with thermodynamics. In unified mechanics theory [29], in addition to nodal
displacements, the entropy generation rate is also necessary to relate microstructural changes in the
material with spatial and temporal coordinates. This concept [29] has been successfully implemented
for a wide range of materials and has been experimentally and mathematically validated and reported in
literature [18–20,25,30–65]. The entropy generation rate of any material under any external disturbances
like mechanical, thermal, electrical, chemical, radiation, and corrosion can be calculated from principles
of physics, using the fundamental equation, with no need for curve fitting phenomenological models
or polynomials fit to experimental test data.

In the present study, unified mechanics theory is used to estimate the fatigue damage in Ti-6Al-4V,
analytically with a one -dimensional (1-D) model as well as numerically with a three-dimensional (3-D)
model, and this damage estimation procedure has been used to predict fatigue life under different
loading conditions. Fundamental details of the unified mechanics theory-based fatigue life prediction
are summarized in Section 2. The principles described in Section 2, are then applied to Ti-6Al-4V,
by considering the plasticity as the dominant energy dissipation mechanism.

In order to establish the validity of the proposed model in cyclic loading, comparison of simulation
with experimental results, under both the tensile and compressive loading are necessary. In Section 3,
the details of implementation and validation of the proposed model, for both compressive and tensile
monotonic loading is presented. After the validation of the proposed model, we introduce two different
procedures, to estimate the low cycle fatigue life of Ti-6Al-4V alloys in Section 4. Finally, the observations
from the presented work are discussed in Section 5, based on the observations made on the principles,
procedure and results from the current study for the fatigue life prediction of Ti-6Al-4V alloys.

2. Unified Mechanics Theory-Based Life Prediction Model

2.1. Unified Mechanics Theory

Unified mechanics theory is just unification of Newton’s universal laws of motion and laws
of thermodynamics.
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2.1.1. Second Law of Unified Mechanics Theory

Initial momentum of a mass, m, subjected to external force, F is defined by Newton’s second
universal law of motion. However, Newton’s laws do not account for energy loss after the initial
momentum. Energy loss takes place according to the first and second laws of thermodynamics. As a
result, a marriage of laws of second law of Newton and laws of thermodynamic is given by:

F =
dP
dt

=
d(mv)

dt
(1−Φ) (1)

where, P represents the momentum and v represents the velocity. Assuming a constant mass system,

F = m
d[v(1−Φ)]

dt
(2)

where, Φ is the Thermodynamic State Index (TSI), which is normalized non-dimensional form of
the second law of thermodynamics. TSI (Φ) starts at zero and reaches one when the system reaches
maximum entropy and minimum entropy generation rate. The value of TSI (Φ) is calculated from the
fundamental equation of the material, which accounts for all entropy generation mechanisms in the
system under the given load towards a pre-defined failure. The fundamental equation must satisfy
the conservation of energy, the first law of thermodynamics at every step. Therefore, TSI (Φ) just
introduces laws of thermodynamics in to the laws of Newton.

2.1.2. Third Law of Unified Mechanics Theory

All forces between two objects exist in equal magnitude and opposite direction (Action–Reaction).
However, resulting deformation, according to Hook’s law, in two objects will change over time because
of degradation. The resulting equation can be given by:

F12 = F21[1−Φ] (3)

where, the subscripts 12 and 21 represents the action and reaction, respectively. Based on Hooke’s law,
the reaction, F21 can be given by the following:

F12 =
dU21

du21
=

[
d
[

1
2 k21[1−Φ] u2

21

]]
du21

(4)

where, U21 is the strain energy of the reactionary member, k21 is the stiffness of the reactionary member,
u21 is the displacement in the reactionary member. If we assume that for the increment of displacement,
du21 derivative of TSI with respect to du21 is smaller than derivative of displacement u12 by an order of
magnitude as the differential in displacement du21 goes to zero in the limiting case, we can write the
following simple relation:

F12 = k21[1−Φ] u21 (5)

In unified mechanics theory, it has been shown that the degradation of the stiffness follows
the laws of thermodynamics [8,18,20,22,27,29–33,35–54,56–59,66–69]. Combining laws of Newton
and thermodynamics requires the modification of Newtonian space-time coordinate system. A new
thermodynamic axis must be added to be able to define the thermodynamic state of a point. As a
result, the motion of any particle can be defined only in a five-dimensional space that has five linearly
independent axes. None of these axes can represent the information of other axes. Hence, entropy
generation can be mapped onto a non-dimensional coordinate called Thermodynamics State Index
(TSI) which is necessary to locate the thermodynamic state of the particle. Coordinates of a point can be
defined by Newton’s laws of motion in the space-time coordinate system. However, thermodynamic
state coordinate cannot be defined by space-time coordinate system.
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Figure 1 shows the coordinate system in unified mechanics theory. Let us assume there is a
5-year-old boy and 100-year-old man. Using the space-time Cartesian coordinate system, their location
can be defined by x, y, z coordinates and age on the time axis. However, this does not give any
information about their thermodynamic state. Let us assume that a 5-year-old boy has stage 4 cancer
is expected to die in a few days and a 100-year-old is expected to die in few days. This information
cannot be represented in x, y, z-time- space coordinate system as shown in Figure 1. However, on TSI
axis, 5-year-old boy and 100-year-old will have the same thermodynamic state index coordinate at
Φ = 0.999.Entropy 2019, 21, x 4 of 19 
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Another example can be given for Newton’s second law. If a soccer ball is given an initial
acceleration with a force of F, it will move but eventually will come to a stop. Depending on the
path it follows, it will come to a stop. Again, the initial acceleration of the ball is governed by the
second law of Newton and slowing down process is governed by the laws of thermodynamics, which
is represented by (1−Φ) term. Detailed derivation of TSI can be seen in the literature [29]. We provide
a simple summary in the following section.

2.1.3. Thermodynamic State Index (TSI) for Damage in Low Cycle Fatigue of Materials

Entropy and Helmholtz free energy are related by the thermodynamic principles [66] as follows:

Ψ = e− Ts (6)

where Ψ represents the specific Helmholtz free energy, and e, T, s are the specific internal energy,
temperature and specific entropy, respectively. Specific entropy is also related to the disorder parameter
through Boltzmann’s equation [29,30] as follows:

s = kB ln (W) (7)

Total entropy for a volume can be given by:

S =
NAkB ln(W)

ms
(8)

where, NA, kB, ms are the Avogadro number, Boltzmann’s constant and molar mass, respectively and
W represent the disorder parameter [29,30,38,39,66]. Relation between the number of microstate,
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probability of microstates and disorder parameter is discussed extensively in the literature [70–72].
Using Equation (8), the TSI is given by:

Φ = Φc

(
1− exp

(
−∆s

ms

R

))
(9)

where, Φc, is a user defined parameter, representing the predefined failure criterion. R is gas constant.
∆s is a measure of the total change in entropy at a point. Unified mechanics theory states that when
a system undergoes thermodynamic change from state A to state B, the remaining useful life can
be defined by a factor in each stage of its life, called thermodynamic state index (TSI), Φ ∈ [0,1].
The ultimate failure is represented by a value of TSI equal to 1. Since, the value of ∆s is to be evaluated
on the basis of mechanisms of dissipation processes involved in a thermodynamic process, the value of
Φc will be governed by a user-defined ultimate failure criterion.

2.2. Analytical Approach for the Prediction of Damage and Fatigue Life

From Equation (9), the TSI is governed by the change in entropy towards a predefined
failure. All the dissipation processes that are related to failure lead to increase in entropy.
Therefore, an appropriate measure of dissipation is needed to estimate the life of a process. In Ti-6Al-4V
alloys, we consider only the mechanical process of dissipation, under monotonic as well as cyclic
loading conditions. Hence the plastic dissipation is considered to be the dominant mechanism in the
mechanical loading conditions. Entropy generation in plastic dissipation process can be calculated
from a mechanical loading experiment in the following way:

∆s =
1
ρT

∫ t2

t1

σ : dεp (10)

where, ρ, is the mass density of the material, σ and εp are the stress and plastic strain, respectively.
T represents the temperature. Integral limits t1 and t2 represents the time bounds of the mechanical
loading process, over which we quantify the change in entropy. For one dimensional case, the total
plastic strain, εp(t) is calculated as follows:

εp(t) = εtotal(t) −
σy0

E
(11)

where, εtotal(t) is the total strain at the time of loading, t. σy0 and E are the yield stress and Young’s
modulus, respectively. In the case of monotonic loading, the plastic dissipation is calculated from the
engineering stress-strain graphs. In order to accomplish this, the plot is divided into elastic and plastic
regime of loading. The area under the plastic region is computed by trapezoidal integration rule,
and the cumulative entropy is evaluated in each stage. This accumulated entropy is used to predict the
TSI at each and every strain level. A schematic representation of computing the incremental plastic
dissipation is given in Figure 2. Accumulated entropy at n-th strain increment is computed from the
Equation (10) as follows:

∆sn =
1
ρT

i=n∑
i=1

σi : ∆εp
i (12)

Using Equations (9), (11) and (12), one dimensional approximation of damage measure is calculated
under the assumptions that the damage is uniform within the cross section of the dog-bone test sample,
and there are no other geometric or boundary effects in the sample. It is also assumed that the heat
generation entropy production is small when compared with the entropy generation due to plastic
deformation. In case of low cycle fatigue loading, the plastic dissipation is calculated as the area
under the stress-strain hysteresis loop. Each cyclic hysteresis loop of engineering stress-strain graph,
which represents the incremental dissipation. Hence, the accumulated entropy can be calculated
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by summation of incremental entropy. For a strain-controlled experiment, the accumulated entropy
is a function of stress. Since the stress level at a given stage of cyclic loading is governed by the
thermodynamic state index (TSI), Φ of the material, the TSI can be used to calculate the incremental
dissipation from any known stage of loading, as follows:

Π
p
i+1 = (1−Φi)Π

p
i (13)

where, Πp
i and Πp

i+1 represents the hysteresis area at i-th and (i+1)-th cyclic loading, respectively andΦ
represents the TSI. Hence, the entropy change at any loading stage can be calculated from the initial
loading hysteresis area as follows:

∆sn =
1
ρT

i=n∑
i=1

Π
p
i (14)

Φi+1 = Φc

[
1− exp

(
−∆si

ms

R

)]
(15)
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It is important to point out that the entire thermodynamic response of the material point is mapped
onto the TSI axes. Under no circumstances, the material point can exist outside the domain of [0,1].
The above approach has limitations that the one-dimensional approximation should be valid when the
prediction is compared with experimental observations. To account for all the boundary and geometric
effects related to stiffness, instabilities due to buckling, local cracking, stress concentrations, geometric
nonlinearities, etc., we have developed a three-dimensional computational model. The detailed
derivation is given in Section 2.3 below.

2.3. Computational 3-D Model for the Prediction of Damage

2.3.1. Derivation of the Computational Model

In this section, a three-dimensional model is derived, based on the unified mechanics theory.
Entropy balance equation [4,20,29,30], can be written as follows:

dS
dt
≥ −

div Jq

T
+

1
T
σ : D−

ρ

T
dWe

dt
+
ρr

T
(16)

The following equation, as written in indicial notation, is known as Clausius-Duhem
inequality [67,73,74]:

7 =
1
T
σi jDi j −

ρ

T
dWe

dt
−

1
T2 JqiT,i +

ρr

T
≥ 0 (17)
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where, i and j are the indices, representing the spatial coordinates. 7 is the specific entropy generation
rate. σ denotes the stress tensor and T,i represents the spatial derivative of temperature, namely,
the gradient of temperature. Jq and r, represents the heat flux transfer and internal heat generation,
respectively. For small strain problems, rate of deformation tensor D is equal to strain rate tensor

.
ε.

According to Hooke’s law, stress is related to the strain through a constitutive tensor as follows:

σi j = Ci jklε
e
kl (18)

where, Ci jkl is the fourth order tangential constitutive tensor at the given stage of loading. εe
kl is the

elastic part of strain tensor. Based on assumption of the additive decomposition of strain tensor [67],
we can write the following equation for small strain problems:

εtotal
i j = εe

i j + ε
p
ij (19)

where, εtotal
i j is the component of total strain tensor. For a given material point, based on unified

mechanics theory one can write the following modified version of Equation (18), as follows:

σi j = (1−Φ)C0
i jklε

e
kl (20)

where the tangential constitutive tensor Ci jkl is related to the virgin state of the same, C0
i jkl (undamaged

state) through TSI,Φ. For linear isotropic materials, undamaged constitutive tensor C0
i jkl can be written

as follows:
C0

i jkl = λδi jδkl + µ(δikδ jl + δilδ jk) (21)

where, λ and µ are the Lame’s parameters and δi j is the identity tensor. The following inverse relations
can also be written for a linear elastic isotropic material:

εe
i j =

1 + ν
E

σi j −
ν
E
σkkδi j (22)

where, E and ν are the elastic modulus and Poisson’s ratio, respectively. The rate form of the
Equation (19), can be written as follows,

.
ε

total
i j =

.
ε

e
i j +

.
ε

p
ij (23)

From incremental theory of plasticity, one can write the evolution equation for the fluxes, using
the continuity of dissipation potential function, F p (yield surface) [67] as follows:

.
ε

p
ij =

.
Γ
∂F p

∂σi j
(24)

Effective stress at a point can be defined as follows:

σ′i j =
1

1−Φ
σi j (25)

where, σ′i j is the component of effective stress tensor. Noting that ∆s is the only function that depends
on time, the time rate of change of TSI can be obtained by differentiating Equation (9), yielding:

.
Φ =

ms

R
Φc

.
∆s

(
exp

(
−∆s

ms

R

))
(26)

Assuming that the process is isothermal for each small load increment and all the dissipation
mechanisms other than plastic deformation are negligibly small for the strain-controlled monotonic,
quasi-static loading and low cycle fatigue loading in Ti-6Al-4V, we can write the entropy evolution as
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given in Equation (10). Hence the rate form of the entropy evolution from Equation (10) can be written
as follows:

.
∆s =

1
ρT
σi j

.
ε

p
ij (27)

With the above assumption in the absence of kinematic hardening, we consider the following
additive decomposition form of the Helmholtz free energy function as:

Ψ(εe, h;Φ) = ΨE(εe;Φ) +Ψ I(h) (28)

where, ΨE is the elastic strain energy and Ψ I is the free energy from isotropic hardening process. In the
Equation (28), the hardening flux parameter h evolves with plastic strain. From the Equations (26) and
(27), the plastic strain is a function of TSI.

Using Equations (20), (21) and (28), we get the following form of free energy:

Ψ(εe, h;Φ) =
1
2
(1−Φ)(λεe

kkε
e
mm + 2µεe

i jε
e
i j) + (1−Φ)

1
r

Khr+1 (29)

We have assumed a power law model for isotropic hardening. Here, K and r are the material
parameters which are to be found from the succeeding parts of the formulation and experimental data.
The conjugate force is derived from Equation (29) as follows [75]:

σ = ρ
∂
∂εeΨ (30)

σi j = (1−Φ)(λεe
kkδi j + 2µεe

i j) (31)

The yield function for Ti-6Al-4V can be given by:

F
p(σ, H;Φ) = σ′eq −

(
σyo + H

)
(32)

where, σ′eq is the Von-Mises equivalent stress. σyo represents the initial yield stress and H represents the
hardening stress. Von-Mises equivalent stress is given by the following equation:

σ′eq =

√
3
2

S′i jS
′

i j (33)

where, the effective deviatoric stress tensor S′i j, is given by the following equation,

S′i j = σ′i j −
σ′kk
3
δi j (34)

Hence, from Equations (24) and (32), we get the following relation for plastic strain rate tensor,
.
ε

p
ij,:

.
ε

p
ij =

.
Γ
∂σ′eq

∂σi j
(35)

Further simplification can be done on Equation (35) using the Equations (33) and (34). We get the
following form for plastic strain rate tensor, based on normality rule of incremental theory of plasticity:

.
ε

p
ij =

.
Γ

 1
(1−Φ)

3
2

S′i j

σ′eq

 (36)
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where,
.
Γ is the consistency parameter. By taking the norm of Equation (36) and by doing some algebra,

we get the following equation to quantify the parameter,
.
Γ:

.
ε

p
eq =

√
2
3

.
ε

p
ij

.
ε

p
ij =

.
Γ

1
(1−Φ)

(37)

Equation (37) is an important observation that the field variable, h, representing the isotropic
hardening process, is related to the plastic deformation. Hence, we get the following form for

.
h and

.
ε

p
ij:

.
h =

.
ε

p
eq(1−Φ) (38)

.
ε

p
ij =

.
ε

p
eq

3
2

S′i j

σ′eq

 (39)

From Equation (39), it can be observed that the magnitude of plastic strain is given by the

equivalent plastic strain, εp
eq, and the direction of plastic loading is given by the term,

[
3
2

S′i j
σ′eq

]
.

2.3.2. Algorithm for the Computational Model

In this section, let us consider that all the variables having a superscript, ‘n’ represents values that
are updated based on the previous loading and those variables with superscript, ‘n+1’ denotes the
values corresponding to the current state of loading. All the variables having subscript, ‘tr’ represents
the trial values. For simplicity in representation, indicial representation of the tensorial quantities
are avoided.

Total strain at any increment is given by:

εtotaln+1
= εtotaln + ∆εtotal (40)

Using Equation (19):
εen+1

tr = εtotaln+1
− εpn

(41)

Using Equation (20):
σn+1

tr = (1−Φn)C0εen+1
tr (42)

σn+1 = (1−Φn+1)C0
(
εtotaln+1

− εpn+1
)

(43)

Let:
w = (1−Φ) (44)

then:
σn+1 = wn+1C0(εtotaln+1

− εpn
− ∆εp) (45)

Using Equations (25), (36), (40), (41), and (44) in Equation (45), we get the following:

σ′
n+1 =

1
wnσ

n+1
tr −

1
wn+1

C0∆Γ

3
2

S
′n+1

σ′eq

 (46)

Let:

p′ =
σ′kk
3

(47)
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Therefore, from Equations (34), (46) and (47), we can write the following expression:

S
′n+1

+
1

wn ptr I−
1
3

C0 ∆Γ
wn+1

3
2

S
′n+1

σ′eq
n+1

 = 1
wnσ

n+1
tr −

1
wn+1

C0∆Γ

3
2

S
′n+1

σ′eq
n+1

 (48)

Using Equation (21) in (48), we get the simplified form for the iteration equation in indicial
notation, as follows:

σ′eq
n+12

δikδ jl +
1

wn+1
C0

i jkl∆Γ

3
2

1
σ′eq

n+1



δikδ jl +

1
wn+1

C0
i jkl∆Γ

3
2

1
σ′eq

n+1


 =

σtr
eq

n+12

wn2 (49)

Algorithmically derived Equation (49) can be solved by an iteration procedure to find the value
of ∆Γ, simultaneously with the update of w. A Newton-Raphson iteration scheme is employed in
the integration scheme of the present study to solve the yield function given in Equation (32).
Successively, the entropy is updated using Equation (27) and the damage is calculated using
Equation (15).

3. Validation of the Computational Model for Monotonic Loading

Prior to the simulation of fully reversed cyclic loading, it is important to check the validity of the
model under tensile as well as compressive loading. The computation models described in Section 2.3,
is implemented in commercial finite element package, ABAQUS. User material subroutine is written
to update the stresses according to the strain increments that are supplied to the subroutine as input.
In order to validate the model for tensile as well as compressive loading cases in Ti-6Al-4V, we have
used the experimental data, reported by Biswas et al. [2] and Carrion et al. [76].

3.1. Validation of the Numerical Model for Monotonic Tensile Loading

The true stress-strain graph reported in the literature [76] for Ti-6Al-4V alloy, is used for the
comparison between experimental data and the numerical predictions of monotonic tensile loading.
Mill Annealed hot rolled bars were used [76] in the study. The material parameters are taken from
the literature [76], so as to match with the material used for the comparison. Details of the model
parameters are given in Table 1. Using the common assumption that the gauge section of a dog bone
sample experiences uniform strain, we consider 5 mm length in the computational model. Hence, it can
reduce the computational cost as well. Diameter of the specimen is kept the same, like that of the
experimentally reported sample by Carrion et al. [76], which is 6.35 mm in diameter. In ABAQUS, linear
brick elements, C3D8R are used to mesh the numerical model. One end of the sample is defined with
zero displacement (fixed) boundary condition and the other end is subjected to controlled displacement
loading in the axial direction. After a mesh convergence analysis, an optimum seed size of 0.9 mm is
fixed for all the simulations. A schematic representation of the computational geometry is shown in
Figure 3.

Table 1. Material parameters used in the numerical model for tensile loading in Ti-6Al-4V alloy.

Material Parameter Value Unit

Young’s modulus, E 106 GPa
Poisson’s ratio, ν 0.31

Density, ρ 4540 kg/m3

Critical TSI,Φc 1
Hardening parameter,K 968.00 MPa
Hardening exponent, r 0.64

Yield strength, σy0
992.00 MPa

Molar mass, ms 0.047867 kg/mol
Reference temperature, T 298 K
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It can be observed from the Figure 4 that the true stress-strain graph, predicted for monotonic
tensile loading in Ti-6Al-4V alloy, matches well with the experimental observations reported by Carrion
et al. [76]. A smooth transition can be seen at point A, shown in Figure 4. This transition from elastic
to plastic region can be due to the dislocation motion in the microstructure. Further, dislocation
multiplication and interaction with each other and inclusions can be the possible reason behind
strain hardening of the bulk material. Hence, the validation of the model under tensile loading can
be considered as a basis for tensile loading in any kind of geometry or boundary conditions in the
numerical investigation.Entropy 2019, 21, x 11 of 19 
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Figure 4. Comparison between monotonic tensile stress-strain graphs obtained from the test data [76]
and numerical model.

A comparative plot between the numerical results for damage obtained from three-dimensional
model and analytical results based on one dimensional approximation, as described in Section 2.2,
is shown in Figure 5. It is observed that the level of matching between computational and experimental
results for monotonic tensile loading is closer in the case of prediction of damage, based on the
analytical approach and numerical analysis.



Entropy 2020, 22, 24 12 of 20

Entropy 2019, 21, x 11 of 19 

 

Table 1. Material parameters used in the numerical model for tensile loading in Ti-6Al-4V alloy. 

Material Parameter Value Unit 

Young’s modulus, E 106 GPa 

Poisson’s ratio, ν 0.31  

Density, 𝜌 4540 kg/m3 

Critical TSI, 𝜱𝒄 1  

Hardening parameter, 𝑲 968.00 MPa 

Hardening exponent, 𝒓 0.64  

Yield strength, 𝝈𝒚𝟎
 992.00 MPa 

Molar mass, 𝒎𝒔 0.047867 kg/mol 

Reference temperature, T 298 K 

 

Figure 4. Comparison between monotonic tensile stress-strain graphs obtained from the test data [76] 

and numerical model. 

. 

Figure 5. Comparison between the damage (TSI) prediction for monotonic tensile loading. 

3.2. Validation of the 3-D numerical model for monotonic compressive loading 

Validation of the 3-D numerical model is done under compressive loading as well. Experimental 

result for a monotonic compression test, reported in the literature [2] is used to validate the proposed 

0.00 0.01 0.02 0.03

0.00E+000

5.00E+008

1.00E+009

0.007 0.008 0.009 0.010 0.011 0.012

9.00E+008
9.20E+008
9.40E+008
9.60E+008
9.80E+008
1.00E+009
1.02E+009
1.04E+009
1.06E+009

T
ru

e
 S

tr
e
ss

 (
P

a
)

Strain

 Test data

 Numerical simulation

A

Enlarged view of A

T
ru

e
 S

tr
e
s
s
 (

P
a
)

Strain

Figure 5. Comparison between the damage (TSI) prediction for monotonic tensile loading.

3.2. Validation of the 3-D Numerical Model for Monotonic Compressive Loading

Validation of the 3-D numerical model is done under compressive loading as well.
Experimental result for a monotonic compression test, reported in the literature [2] is used to
validate the proposed numerical model. The computational model parameters are taken from the
literature [2], so as to match with the material used for the comparison. Even though the reported
experimental results [2,76] are for Ti-6Al-4V alloys, it is noted that the materials are different in terms
of their mechanical properties. Details of the model parameters used for the numerical simulation
of monotonic compression test are listed in Table 2. We have considered the same dimensions in the
numerical model, as that of the experimental samples [2]. Since, true stress-strain data is given in the
literature [2], analytical procedure to compute TSI, requires an additional step. This method is adopted
from well-known damage rule based on area reduction [77]. In the current study, damage parameter is
represented by the TSI. Hence, the current area is related to the original area of undamaged section
through the factor, TSI as follows:

A = (1−Φ)A0 (50)

where, A and A0 represents the current area and initial area. The engineering stress and true stress are
related by the principle of static equilibrium as follows,

σ′A = σA0 (51)

where, σ′ and σ represents the true stress and engineering stress respectively. Hence, in order to
quantify the entropy, we have estimated the engineering yield stress data as follows:

σy
i+1 = σy′

i+1(1−Φi) (52)

where, σy
i+1 and σy′

i+1 represents the computed engineering stress and true stress at (i+1)-th strain,
respectively. Φi is calculated based on the i-th strain data. Hence, in an incremental way, the TSI
is computed using analytical procedure given in Section 2.2. Computation model in ABAQUS is
discretized with linear brick finite elements C3D8R. One of the ends of the computational model
is constrained from all the translations and the other end is subjected to displacement controlled
compressive loading in the axial direction. A mesh convergence analysis is conducted and an optimum
seed size of 0.9 mm is adopted in the simulations. A schematic representation of the computational
geometry is shown in Figure 6.
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Table 2. Material parameters used in the numerical model for compressive loading in Ti-6Al-4V alloy.

Material Parameter Value Unit

Young’s modulus, E 118 GPa
Poisson’s ratio, ν 0.31

Density, ρ 4540 kg/m3

Critical TSI,Φc 1
Hardening parameter, K 550.00 MPa
Hardening exponent, r 0.65

Yield strength, σy0
1047.00 MPa

Molar mass, ms 0.047867 kg/mol
Reference temperature, T 298 KEntropy 2019, 21, x 13 of 19 
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Figure 6. Schematics of numerical model for displacement controlled monotonic compressive. loading
in ABAQUS.

Numerical results for monotonic compressive loading in Ti-6Al-4V alloy, shown in Figure 7,
are found to be matching well with the reported experimental results [2]. Hence, the proposed model
is taken as a basis to simulate compressive loading cases in the succeeding numerical investigations.
Using the experimental [2] stress-strain graph, we have analytically calculated the TSI at every
incremental plastic strain, based on the procedure stated in Section 2.2. As shown in Figure 8, both the
analytical and numerical predictions for TSI matches very well.Entropy 2019, 21, x 13 of 19 
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4. Model Predictions for Low Cycle Fatigue Life

Carrion et al. [76] tested Ti-6Al-4V samples under tensile loading condition at a strain rate of
the order of 10−3 s−1 at room temperature. Similar quasi-static loading condition is established in
our numerical loading by controlling the step time of the numerical model in ABAQUS. The material
model used in developing the 3-Dimensional numerical model is independent of the strain rate and
the temperature and hence the strain rate hardening behavior and temperature effects, including the
thermal dissipation are not considered in our study. Unified mechanics theory-based approach for
damage calculation, described in Section 2, is used to predict the low cycle fatigue life of Ti-6Al-4V
alloys. Details of the one-dimensional analytical model as well as the three-dimensional numerical
model to predict fatigue life or Ti-6Al-4V are given in Section 4.1 below.

4.1. Analytical Approach for Fatigue Life Prediction

Experimental results [76] for the stabilized hysteresis loop is assumed to be closer to the first
cycle hysteresis loop. Unified mechanics theory is used to evaluate the damage evolution under cyclic
loading and the results are plotted in Figure 9.
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Figure 9. Analytical prediction of damage for different strain amplitudes of cyclic loading.

Low cycle fatigue life of the Ti-6Al-4V sample is predicted by fixing the TSI at failure as 0.98.
This is necessary, as to prevent computational instabilities at the verge of failure that are not recorded
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by experimental results, are to be taken into account when we compare the mathematical model
predictions with the experimental results. A MATLAB script is written to compute the fatigue life,
from the stabilized hysteresis loop. The results are shown in comparison with the test data [76] and the
corresponding numerical predictions at similar amplitudes, as shown in Figure 10.
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Figure 10. Low cycle fatigue life (Nf) prediction at different strain amplitudes of cyclic loading in
comparison with the test data [76].

4.2. Computational Procedure for Fatigue Life Prediction

It is not feasible to conduct a large number of cyclic loading in the numerical model to predict
fatigue life, especially when the amplitude of strain is very small because in ABAQUS this process
would take weeks. In this section, we propose an alternate way of fatigue life prediction of Ti-6Al-4V
alloys at different strain amplitudes, using a combined numerical-experimental procedure. If the
hysteresis loop for a given strain amplitude is found out from the experiment, the same test is simulated
by using the proposed model. Computational results after the first cycle of loading are used to find the
scaling factor for incremental entropy in the computational model. The scaling factor is calculated as
the ratio between the experimental hysteresis loop area for the stabilized loop and the numerically
computed dissipation for the first cycle of loading. Then the computational model is used to evaluate
the dissipation at different strain amplitudes of loading for a single cycle of loading. This hysteresis
loop is used to predict the fatigue life at the given amplitude of strain, as per the procedure detailed in
Section 2.3.

To compare the numerical predictions for fatigue life with experimental results [76], the same
material data, as listed in Table 1, are used. It is assumed that the experimental results are free from
any boundary effects or instabilities. Hence, the numerical analysis is done on the sample, with
dimensions and boundary conditions as shown in Figure 3. Hysteresis loops at 1.2% strain amplitude
for 50 cycles of loading are plotted in Figure 11a. A comparative hysteresis plot for first cycle and 50th
cycle of loading is shown in Figure 11b. It can be observed from Figure 11a,b, that the hysteresis loop
area decreases with cyclic loading. This reduction in hysteresis loop area is due to the reduction in
strength of the material with the evolution of TSI. The fatigue life can be predicted by extrapolating
the numerical results on TSI axis vs number of cycles. A comparison plot between test data and
simulations for low cycle fatigue life prediction at different strain amplitudes is shown in Figure 10.
In Figure 10, the average values of fatigue life test data [76] are plotted for stain amplitudes of 0.8%,
1.0% and 1.2% and compared with the analytical predictions. Fatigue life test data for other amplitudes
of strain are not reported in the literature [76]. Results from the numerical approach, for the strain
amplitudes 1.0% and 1.2% are also plotted and the model prediction is extended to a strain amplitude
of 2.4%. Response at 0.8% strain amplitude was not computed with 3-D model because 0.8% strain
amplitude is within the elastic region of loading.
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Figure 11. Numerical results on engineering stress-strain hysteresis loops for 1.2% strain amplitude of
cyclic loading. (a) hysteresis loops at 1.2% strain amplitude for 50 cycles of loading; (b) comparative
hysteresis plot for first cycle and 50th cycle of loading.

In Figure 10, it is clear that the one-dimensional analytical approach is underestimating the fatigue
life by 1600 cycles at a total strain amplitude of 0.8%, while this discrepancy is less scattered in the test
data [76]. This discrepancy in fatigue life prediction using one-dimensional model could be due to the
unaccounted three-dimensional confinement effects in material response.

5. Conclusions

The work presented here is based on the unified mechanics theory, where the laws of Newtonian
mechanics are combined with laws of thermodynamics, directly. The bridging factor in unified
mechanics theory is the definition of thermodynamic state index, given in the Equation (9).
The definition of damage proposed in the literature [29], is applied in the case of monotonic as well as low
cycle fatigue loading conditions in Ti-6Al-4V alloys. Based on the principles of continuum mechanics,
we have presented a numerical model, which account for the damage in case of plastic loading in
Ti-6Al-4V. It is observed from the three-dimensional numerical and one-dimensional analytical results
of the damage model prediction that, they match very well with the experimental observations in the
case of monotonic tensile loading, as shown in Figures 4 and 5. In Figure 4, we have considered the
stress-strain graph given in the literature [76] for validation and the corresponding damage prediction
(value of TSI is around 0.1) is limited to a strain level of about 3%. Linear extrapolation of the damage
curves plotted in Figure 5, can lead to wrong prediction of failure strain (to around 20% in the current
study). Entropy at each time increment is dependent on the stress level. Hence, the accuracy of life
prediction will be dependent on the constitutive model, used to predict the yielding of the material,
in a three-dimensional numerical study.

The monotonic compressive stress-strain graph is matching well with the experimental results
reported in the literature, as shown in Figure 7. The path traced by the damage prediction from
one-dimensional analytical procedure and three-dimensional numerical procedure, as shown in
Figure 8, also matches very well. In the case of compressive loading conditions, the results can
be affected by the confining effects. The difference in nature of path traced by damage curves in
compressive and tensile loading conditions could be due to the difference in confining effects in
compressive loading, when compared with tensile loading. Similar observations for alloys can be
seen in the literature [78,79]. Current study may be extended in future, for the detailed experimental
and numerical investigations on such confining effects, under compressive loading. Since the current
focus of the investigation is to introduce an efficient way of predicting the fatigue life of Ti-6Al-4V
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using computational tools in conjunction with the experiment, we have limited our study to fatigue
life prediction.

Thermodynamics of life of any system, as postulated by the unified mechanics theory, is brought in
to application level, for the case of low cycle fatigue life prediction in Ti-6Al-4V. From the comparative
study on fatigue life prediction, as shown in Figure 10, the proposed procedures, described in
Section 4, are found to be very efficient. Only one cycle experimental data is sufficient to predict
the low cycle fatigue in Ti-6Al-4V alloys. Hence, the procedure stated in Section 4, will be useful for
practical applications.
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