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Abstract: A pathogen can infect multiple hosts. For example, zoonotic diseases like rabies often
colonize both humans and animals. Meanwhile, a single host can sometimes be infected with many
pathogens, such as malaria and meningitis. Therefore, we studied two susceptible classes S1(t) and
S2(t), each of which can be infected when interacting with two different infectious groups I1(t) and
I2(t). The stochastic models were formulated through the continuous time Markov chain (CTMC)
along with their deterministic analogues. The statistics for the developed model were studied using
the multi-type branching process. Since each epidemic class was assumed to transmit only its own
type of pathogen, two reproduction numbers were obtained, in addition to the probability-generating
functions of offspring. Thus, these, together with the mean number of infections, were used to
estimate the probability of extinction. The initial population of infectious classes can influence their
probability of extinction. Understanding the disease extinctions and outbreaks could result in rapid
intervention by the management for effective control measures.

Keywords: branching process; continuous time Markov chain; epidemic extinction; Gillespie
algorithm; basic reproduction number; stochastic differential equation

1. Introduction

Animal diseases such as rabies and hantavirus can be transmitted to humans. The pathogens
involved therein cause zoonotic epidemics [1]. Since two or more hosts are included in the process,
the spread of diseases is sometimes called a multi-host epidemic [2]. For example, rabies is commonly
transmitted by domestic dogs [3], and wild rodents play a key role in transmitting hantavirus to
humans. Meanwhile, the co-infection of two different pathogens in a single host is common [4]. This
can be seen when a host is simultaneously infected by HIV and malaria [5] or by cholera and typhoid [6],
for example. Even though many mathematical models describing the dynamics of this process were
previously studied [7–9], models involving co-transmission and co-infection in multiple hosts are
lacking. The probabilities of disease extinction associated with such models are not well-studied.
Therefore, this study is concerned with extending the idea of the co-infection of two pathogens to
two-host communities such as the zoonotic diseases described above.

In epidemiological studies, in order to capture the infection dynamics of a pathogen spreading
into a given host community, two approaches—stochastic and deterministic techniques—are mostly
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used. As reported in [10–12], both of these have their advantages and disadvantages. Though
in most scenarios the two techniques are used to analyze a similar problem, their formulations
differ. The stochastic models are often derived through continuous time Markov chains (CTMCs);
for example, some well-known results obtained by this technique have been used to investigate
a variety of problems, such as host–vector malaria in susceptible–infective–susceptible (SIS) and
susceptible–infective–recovered (SIR) epidemic models [13]. Meanwhile, the deterministic models
formulated through ordinary differential equations (ODEs) can be good at approximating the
overall epidemic dynamics when the population size is large [14]; however, when the population
is small, stochastic models can be more appropriate to capture the randomness associated with
the system [15]. The epidemic extinction can be estimated even if the population is growing
exponentially [16]. The differences between stochastic and deterministic models are sometimes
determined numerically [17]. When these two models were compared, the stochastic model was
able to show that the time until epidemic extinction was longer [18]. Stochastic models have been
reported to address some important epidemic questions through parameter estimation on the available
data [19].

Another important class of stochastic model is the branching process. For example, a multi-type
branching process can be applied to a wide range of epidemic models since it can approximate
the CTMC models when answering epidemic questions. Exact solutions to problems of interest
are not always available; therefore, asymptotic results derived through the branching process
can serve as an alternative means [20]. This can be seen when the asymptotic formulae for the
epidemic extinction [21,22], duration of epidemic outbreak [23], and the mean number of infectious
individuals [24] were obtained by approximating the CTMC with the multi-type branching process.

A result, the epidemic outbreak is linked with the basic reproduction number [13]. This is
an important ratio in epidemiological studies. The management’s intervention, as well as control
measures, are concerned with how the epidemic can be minimized within the shortest possible time
from the outbreak. This can be achieved when the basic reproduction number is successfully reduced
to a threshold value less than one [12]. An epidemic outbreak model incorporating this ratio was
used to investigate the stochastic patches, through which the movement of infectious individuals from
higher-risk areas to those with lower-risk can serve as another effective control strategy [17]. Similarly,
using the basic reproduction number, a stochastic model of two spreading pathogens was studied,
through which the effects of key parameters responsible for spreading resistant bacteria in hospitals
were determined [25]. The threshold for predicting epidemic extinctions in a single infectious class

is
(

1
R0

)x0
, where R0 is the basic reproduction number, and x0 is the initial population count of the

class [23]. However, this asymptotic result cannot hold for multiple infectious classes [12].
Furthermore, discrete models such as difference equations, which are often used in modeling

species with non-overlapping generations (e.g., insects) [26], are not used in this work since the
pathogens herein are assumed to be infecting both humans and animals. Therefore, the stochastic
models are used to investigate the co-infection of two infectious classes due to their robustness in
computing disease extinction. This can be achieved by approximating the multi-type branching
process through the transition probabilities. The stochastic model used in this study is of SIS type.
The environmental fluctuations of this model were reported to suppress the disease outbreak [27–29],
determine the coexistence of two infectious diseases [30], and estimate the length of the epidemic
disease outbreak [31]. In an attempt to estimate the probability of extinction of two infectious classes
co-infecting two-host communities, we (1) derived the deterministic system of ODEs using the
transition probabilities of the CTMC models, (2) determined the epidemic extinction and the mean
number of infections using asymptotic formulae derived through the multi-type branching process
technique, and (3) compared the stochastic models and their deterministic counterparts through
numerical simulations.



Entropy 2020, 22, 54 3 of 12

2. Materials and Methods

2.1. Continuous Time Markov Chain Model

Suppose that I1(t) and I2(t) are population sizes of two infectious classes infecting two susceptible
host communities S1(t) and S2(t). This can be written as the continuous time Markov chain [32],
{S1(t), I1(t), S2(t), I2(t); t ≥ 0}, where t is the continuous parameter of the process. Assuming the
probability of the population count of the four classes, taking n1, n2, n3, n4 is

p(n1, n2, n3, n4; t) = p
(
S1(t) = n1, I1(t) = n2, S2(t) = n3, I2(t) = n4; t

)
, (1)

whereby n1 = n2 = n3 = n4 = 0, 1, 2, 3, .... Writing the schematic reactions of the given system allows
us to derive the deterministic models through the transition probabilities of the CTMC.

1. The rate at which the two infectious classes, I1(t) and I2(t), can be recovered are Φ1 and Φ2

respectively,

I1(t)
Φ1−→ ∅ and I2(t)

Φ2−→ ∅.
2. The two susceptible classes, S1(t) and S2(t), can move to infectious classes, I1(t) and I2(t), at the

disease transmission rates β11, β12, β21, and β22, such that

S1(t) + I1(t)
β11−→ 2I1(t),

S1(t) + I2(t)
β12−→ 2I2(t),

S2(t) + I1(t)
β21−→ 2I1(t),

S2(t) + I2(t)
β11−→ 2I2(t).

Taking the infinitesimal time δt, we list the events happening in the interval (t, t + δt), together with
their corresponding transition rates [33] (see Table 1).

Table 1. Assumptions of the S1 I1S2 I2 continuous time Markov chain (CTMC) model.

Event Transition Between t and t + δt Probability

(i) Mortality of I1(t) (n1, n2 + 1, n3, n4)→ (n1, n2, n3, n4) Φ1(n2 + 1)δt + 0(δt)2

(ii) Mortality of I2(t) (n1, n2, n3, n4 + 1)→ (n1, n2, n3, n4) Φ2(n4 + 1)δt + 0(δt)2

(iii) I1(t) infects S1(t) (n1 + 1, n2 − 1, n3, n4)→ (n1, n2, n3, n4) β11(n1 + 1)(n2 − 1)δt + 0(δt)2

(iv) I2(t) infects S1(t) (n1 + 1, n2, n3, n4 − 1)→ (n1, n2, n3, n4) β12(n1 + 1)(n4 − 1)δt + 0(δt)2

(v) I1(t) infects S2(t) (n1, n2 − 1, n3 + 1, n4)→ (n1, n2, n3, n4) β21(n2 − 1)(n3 + 1)δt + 0(δt)2

(vi) I2(t) infects S2(t) (n1, n2, n3 + 1, n4 − 1)→ (n1, n2, n3, n4) β22(n3 + 1)(n4 − 1)δt + 0(δt)2

Substituting the probabilities given in Table 1, we get the following master equation known as the
Kolmogorov forward differential equation:

dp(n1, n2, n3, n4; t)
dt

= −p(n1, n2, n3, n4; t)
(
Φ1n2 + Φ2n4 + β11n1n2 + β12n1n4 + β21n2n3 + β22n3n4

)
+ p(n1, n2 + 1, n3, n4; t)Φ1(n2 + 1)

+ p(n1, n2, n3, n4 + 1; t)Φ2(n4 + 1)

+ p(n1 + 1, n2 − 1, n3, n4; t)β11(n1 + 1)(n2 − 1)

+ p(n1 + 1, n2, n3, n4 − 1; t)β12(n1 + 1)(n4 − 1)

+ p(n1, n2 − 1, n3 + 1, n4; t)β21(n2 − 1)(n3 + 1)

+ p(n1, n2, n3 + 1, n4 − 1; t)β22(n3 + 1)(n4 − 1).

(2)
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The master Equation (2) can be simplified with the aid of the following probability-generating function:

F(x1, x2, x3, x4; t) =
∞

∑
n1

∞

∑
n2

∞

∑
n3

∞

∑
n4

p(n1, n2, n3, n4; t)xn1
1 xn2

1 xn3
3 xn4

4 . (3)

Taking the derivative of Equation (3) with respect to t and substituting Equation (2) into the result
obtained, we get the following partial differential equation,

∂F(x1, x2, x3, x4; t)
∂t

= Φ1(1− x2)
∂F(x1, x2, x3, x4; t)

∂x2

+ Φ2(1− x4)
∂F(x1, x2, x3, x4; t)

∂x4

+
(

β11x2(x2 − x1)
)∂2F(x1, x2, x3, x4; t)

∂x1∂x2

+
(

β12x4(x4 − x1)
)∂2F(x1, x2, x3, x4; t)

∂x1∂x4

+
(

β21x2(x2 − x3)
)∂2F(x1, x2, x3, x4; t)

∂x2∂x3

+
(

β22x4(x4 − x3)
)∂2F(x1, x2, x3, x4; t)

∂x3∂x4
.

(4)

Using the moment-generating function M(Θ1, Θ2, Θ3, Θ4; t) = F(eΘ1 , eΘ2 , eΘ3 , eΘ4) [34], Equation (4)
can be written as follows:

∂M(Θ1, Θ2, Θ3, Θ4; t)
∂t

=
(
Φ1e−Θ2 −Φ1

)∂M(θ1, Θ2, Θ3, Θ4; t)
∂Θ2

+
(
Φ2e−Θ4 −Φ2

)∂M(θ1, Θ2, Θ3, Θ4; t)
∂Θ4

+
(

β11e−Θ1 eΘ2 − β11
)∂2M(Θ1, Θ2, Θ3, Θ4; t)

∂Θ1∂Θ2

+
(

β12e−Θ1 eΘ4 − β12
)∂2M(Θ1, Θ2, Θ3, Θ4; t)

∂Θ1∂Θ4

+
(

β21e−Θ3 eΘ2 − β21
)∂2M(Θ1, Θ2, Θ3, Θ4; t)

∂Θ2∂Θ3

+
(

β22e−Θ3 eΘ4 − β22
)∂2M(Θ1, Θ2, Θ3, Θ4; t)

∂Θ3∂Θ4
.

(5)

Given that ∂r M(0;t)
∂t = E(Xr

i ), we obtain ∂M(Θ1,Θ2,Θ3,Θ4;t)
∂Θi

∣∣∣∣
Θi=0

from (5), for i = 1, 2, 3, 4, and r = 1, 2.

This gives the following equations:

dE(X1(t))
dt

= −β11 E(X1(t)X2(t))− β12 E(x1(t)X4(t))

dE(X2(t))
dt

= −Φ1 E(X2(t)) + β11 E(X1(t)X2(t)) + β21 E(x2(t)X3(t))

dE(X3(t))
dt

= −β21 E(X2(t)X3(t))− β22 E(X3(t)X4(t))

dE(X4(t))
dt

= −Φ2 E(X4(t)) + β12 E(X2(t)X4(t)) + β22 E(X3(t)X4(t)).
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The heuristic approach allows us to write these equations as follows:

dS1(t)
dt

= −
(

β11 I1(t) + β12 I2(t)
)

S1(t)

dI1(t)
dt

=
(

β11S1(t) + β21S2(t)
)

I1(t)−Φ1 I1(t)

dS2(t)
dt

= −
(

β21 I1(t) + β22 I2(t)
)

S2(t)

dI2(t)
dt

=
(

β12S1(t) + β22S2(t)
)

I2(t)−Φ2 I2(t).

(6)

The compartmental differential Equations (6) describe the dynamics of two infectious classes I1(t) and
I2(t) mixing with two susceptible groups S1(t) and S2(t). The birth and immigration of individuals
are not captured by the model.

If the recovery rates, Φ1 and Φ2, are not considered in the process, we obtain the following master
equation:

dp(n1, n2, n3, n4; t)
dt

= −p(n1, n2, n3, n4; t)
(

β11n1n2 + β12n1n4 + β21n2n3 + β22n3n4
)

+ p(n1 + 1, n2 − 1, n3, n4; t)β11(n1 + 1)(n2 − 1)

+ p(n1 + 1, n2, n3, n4 − 1; t)β12(n1 + 1)(n4 − 1)

+ p(n1, n2 − 1, n3 + 1, n4; t)β21(n2 − 1)(n3 + 1)

+ p(n1, n2, n3 + 1, n4 − 1; t)β22(n3 + 1)(n4 − 1).

(7)

Applying similar techniques to Equation (7), we get the following system of ordinary differential
equations:

dS1(t)
dt

= −
(

β11 I1(t) + β12 I2(t)
)

S1(t)

dI1(t)
dt

=
(

β11S1(t) + β21S2(t)
)

I1(t)

dS2(t)
dt

= −
(

β21 I1(t) + β22 I2(t)
)

S2(t)

dI2(t)
dt

=
(

β12S1(t) + β22S2(t)
)

I2(t).

(8)

Thus, Equations (8) describe the dynamics of two infectious classes excluding the recovery terms in
the disease compartments.

2.2. Basic Reproduction Number

As introduced earlier, the basic reproduction number is an important threshold for measuring
how diseases are spreading in communities. When determining the basic reproduction number of
the derived model (6), we used the matrix ρ(K) = FV−1, which is referred to as the next-generation
matrix. While F represents the matrix of infection rates, V is that of the transfer rates in the disease
compartments. These can be analytically obtained by linearizing the system of ordinary differential
equations near the disease free-equilibrium [21,35] as follows:

F =

 β11 + β21 0

0 β12 + β22


and
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V =

 Φ1 0

0 Φ2

 .

The spectral radius of the next-generation matrix ρ(K) gives the following results [4,36]:

R01 =
β11 + β21

Φ1
(9)

and
R01 =

β12 + β22

Φ2
. (10)

Therefore, the basic reproduction number associated with the system can be written as

R0 = max{R01, R02}. (11)

2.3. Multi-Type Branching Process

To examine the probability of epidemic extinction for the system of ODE Equations (6), we
employed the multi-type branching process. An important theorem for determining such probabilities
along with other statistics is stated as follows.

Theorem 1. Suppose that the function G(s1, s2, ..., sh) = (g1(s1, s2, ..., sh), ..., gn(s1, s2, ..., sh)), with
non-linear variables s1, s2, ..., sn, is the probability-generating function of offspring, whose mean number
is represented by matrix M. If the dominant eigenvalue of M λ ≤ 1, then

limn→∞Prob{Z(n) = 0|Z(0) = δj} = 1,

whereby j = 1, 2, ..., h. A unique vector w = w1, w2, ...wh can exist only if λ > 1 for 0 < wj < 1, j = 1, 2, ..., h
such that

limn→∞Prob{Z(n) = 0|Z(0) = δj} = wj,

whereby wj represents the fixed point generated by gh(w1, w2, ...wn), and δj is a Kronecker delta.

This theorem guarantees that we can determine the fixed points of equations of offspring as
well as their mean numbers through the multi-step branching process. This process could be used
to approximate our CTMC model. We assumed that Ω(t) = (Ω1(t), Ω2(t), Ω3(t), Ω4(t)) represents
the four classes of discrete random variables (S1(t), I1(t), S2(t), I2(t)). Two classes of interest, through
which the epidemic extinction and outbreak can be estimated, are Ω2(t) and Ω4(t).

The probability of the epidemic extinction for the two classes I1(t) and I2(t) can be computed by
taking the probability-generating function of the two random variables Ω2(t) and Ω4(t),

g1(s1, s2) =
β11s2

1 + β21s2
1 + Φ1

β11 + β21 + Φ1
, (12)

g2(s1, s2) =
β12s2

2 + β22s2
2 + Φ2

β12 + β22 + Φ2
. (13)

Considering the transition rates for the CTMC model in Table 1, we notice that the individual of type 1
can only give birth to its own type. This is similar to the individual of type 2.



Entropy 2020, 22, 54 7 of 12

The mean number of infections can be determined using the formula [24]:

M =
∂g1,2(s1, s2)

∂sj

∣∣∣∣
s1=1,s2=1,j=1,2

as

M =


2(β11 + β21)

β11 + β21 + Φ1
0

2(β12 + β22)

β12 + β22 + Φ2
0

 .

The probability of epidemic extinction for the system of ODEs (6) can be obtained since matrix M
is consistent with the basic reproduction number R0 (11). For the sub-critical case, the probability can
be investigated by applying the jury condition [37], which states that the spectral radius of matrix M,
ρ(M) < 1 if and only if

trace(M) < 1 + det(M) < 2.

It is clear from matrix M,

trace(M) =
2(β11 + β21)

(β11 + β21 + Φ1)
> 0,

and det(M) = 0 < 1. Thus, the jury condition holds for matrix M, and this also satisfies the first part
of Theorem 1.

Since matrix M is reducible, the epidemic extinction in the super-critical case can be determined
by considering the two basic reproduction numbers R01 and R02. Solving for g1(s1, s2) = s1 and

g2(s1, s2) = s2 in (12),(13), we get s1 = s2 = 1, s1 =
Φ1

β11 + β21
, and s2 =

Φ2

β12 + β22
. While the

epidemic transmission and its recovery rates for I1(t) are β11 + β21 and Φ1, respectively, those of
I2(t) can be written as β12 + β22 and Φ2, respectively. Thus, the fixed points (w1, w2) ∈ (0, 1)2 for the

probability-generating functions of the offspring, and the two non-zero entries M1 =
2(β11 + β21)

β11 + β21 + Φ1

and M2 =
2(β12 + β22)

β12 + β22 + Φ2
of matrix M can be used as follows:

The epidemic extinction in the super-critical case can be determined if R01 > 1, ρ(M1) > 1,
the fixed point is

w1 =
( 1

R01

)
. (14)

Similarly, if R02 > 1, ρ(M2) > 1, we apply the fixed point

w2 =
( 1

R02

)
. (15)

These satisfy the second part of Theorem 1. Since each infectious class transmits only its own type
of pathogen, the determination of inverses for the two basic reproduction numbers (Equations (14),
(15)) allows us to write the probabilities of extinction for the two infectious classes separately. Thus,
for I1(0) = x0, we obtained the following [16,23]:

P01 =

{
wx0

1 R01 > 1
1 R01 < 1.

Meanwhile, the epidemic extinction of the second class for I2(0) = y0 can be written as

P02 =

{
wy0

2 R02 > 1
1 R02 < 1.
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A minor outbreak or epidemic extinction occurs if R01 < 1, R02 < 1, whereas a major outbreak
can exist only if R01 > 1, R02 > 1 [13].

3. Results

Numerical Examples

Since it can be difficult to analytically solve the transition probabilities from the forward
Kolmogorov Equations (2) and (7), the Gillespie realizations conveniently give their numerical
approximations. This can be achieved by drawing two pseudo-random numbers between zero and
one from the uniform distribution. While the first random number allows jumps to the next states,
the second is the inter-event time representing the time elapsing between events in the process [38].
Each stochastic realization is obtained with the successive number of these steps.

The stochastic model was found to agree with its deterministic counterpart. Using arbitrary
parameters, the disease transmission rates, β11 = β21 = β22 = 0.02, β12 = 0.01, the infectious recovery
rates Φ1 = Φ2 = 0.2, the initial number of susceptible individuals S1(0) = 100, S2(0) = 90, and
the initial number of infectious classes, I1(0) = 2, I2(0) = 3, one Gillespie realization from each
class approximately converges with their deterministic analogues (see Figure 1a,c). Though any
other suitable values can be used to test the dynamics of the two infectious classes, the infection
rates β11, β12, β21, andβ22 were held constant to allow us to examine the changes in I1(t) and I2(t)
when varying the initial conditions of the two host communities. Thus, reducing the population of
susceptible individuals affects the number of each infectious class (Figure 1). Removing the recovery
terms in disease compartments (Equations (8)), we observed the disease persistence in the system (see
Figure 1b,c).
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Figure 1. One stochastic realisation approximates the deterministic models for β11 = 0.02, β12 = 0.01,
β21 = 0.02, β22 = 0.02, given (a) the sample paths of Equations (6) with Φ1 = Φ2 = 0.2, S1(0) = 100,
I1(0) = 2, S2(0) = 90, and I2(0) = 3; (b) the sample paths of Equations (8) with the initial conditions
S1(0) = 100, I1(0) = 2, S2(0) = 90, and I2(0) = 3; (c) the sample paths of Equations (6) for Φ1 = Φ2 =

0.2, S1(0) = 50, I1(0) = 2, S2(0) = 45, and I2(0) = 3; and (d) the sample paths of Equations (8) with
the initial conditions S1(0) = 50, I1(0) = 2, S2(0) = 45, and I2(0) = 3.
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To examine the behavior of the stochastic realizations after a long period of time, the distribution
of the process can serve as an alternative solution. Using the parameters described above, β11 = β21 =

β22 = 0.02, β12 = 0.01 Φ1 = Φ2 = 0.2, S1(0) = 100, S2(0) = 90, I1(0) = 2, I2(0) = 3, one can see that
at t = 20, the population of infectious individuals is nearly extinct (Figure 2). This indicates that both
Figures 1 and 2 capture the dynamics of the co-infection models, Equations (6) and (8).
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Figure 2. Solutions of the compartments, (a) S1(t), (b) S2(t), (c) I1(t), (d) I2(t), of the epidemic model (6)
at t = 20 based on 1000 stochastic realisations. The parameters used for determining the distributions
are β11 = 0.02, β12 = 0.01, β21 = 0.02, β22 = 0.02, Φ1 = Φ2 = 0.2, S1(0) = 100, I1(0) = 2, S2(0) = 90,
and I2(0) = 3.

To determine the probability of extinction of each infectious class, we employed both the
asymptotic formulae P01 and P02, as well as the CTMC simulations. Though not all the entries
of Table 2 were the same for both P01, P02 and CTMC simulations (Approx 1 and Approx 2), they reveal
that the extinction of each infectious class depended on its initial population size, when their numbers
were small [21]. This is because the probability of disease extinction decreases with the increase in the
initial population size of each of the two infectious classes (see Table 2).
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Table 2. The probabilities of extinction P01 and P02 of two infectious classes I1(t) and I2(t), while
Approx 1 and 2 are their respective numerical estimations using CTMC for β11 = β12 = β21 = β22 =

0.2, Φ1 = Φ2 = 0.3 based on 106 sample paths.

I1(0) I2(0) P01 Approx 1 P02 Approx 2

1 1 0.7500 0.4997 0.7500 0.5003
2 1 0.5625 0.3333 0.7500 0.6667
1 2 0.7500 0.6664 0.5625 0.3336
2 2 0.5625 0.5001 0.5625 0.4999
3 2 0.4219 0.3995 0.5625 0.6004
2 3 0.5625 0.6000 0.4219 0.4000
3 3 0.5000 0.5000 0.4219 0.4219

4. Discussion

In this study, the probability of epidemic extinction of two infectious classes co-infecting two-host
communities was estimated. The basic reproduction number, a threshold for determining epidemic
extinction, can be applied to a single infectious class to study problems related to probabilities of
extinctions and outbreaks [23]. However, when many infectious classes are to be studied, their
probabilities of extinction can be estimated through the matrix of mean number of infections obtained
from the multi-type branching process [16]. When determining this result in this work, we reported a
reducible matrix. Therefore, no single explicit formula could be used to estimate the extinctions of the
two infectious classes related to our formulation (Equation (6)).

Furthermore, since the transition probabilities for our CTMC model (Table 1) were used when
formulating the probability-generating functions of the offspring for the multi-type branching process,
our study reported the emergence of two basic reproduction numbers, R01 and R02, for the two
infectious classes I1(t) and I2(t), respectively. This is consistent with what has been obtained using the
next-generation matrix in this study and others [4,12,36]. Using the two basic reproduction numbers
and CTMC simulations, the epidemic extinctions of two infectious classes which infect two-host
communities was estimated. Our results show that the CTMC simulations could nearly approximate
the asymptotic results involving reproduction numbers when many sample paths were used (i.e.,
106). This is similar to what was reported in [16]. Our results equally show that the extinction of each
infectious class depended on the initial number of individuals therein (Table 2).

The Gillespie realizations were reported to approximate the deterministic model (see Figure 1).
This is similar to what has been reported in many epidemiological studies comparing stochastic and
deterministic models, such as [11,18]. When comparing the solutions of models (6) and (8), our results
showed that the disease persistence could be suppressed by introducing recovery terms in the disease
compartments.

5. Conclusions

The formulation and analyses of the stochastic models of two infectious classes co-infecting
two different susceptible groups can give additional information on how pathogens spread in
host communities. Estimation of the disease extinction through the multi-type branching process
supplements our results obtained by the deterministic model, such as the basic reproduction number.

Specifically, the stochastic formulation of SIS models provides essential information on the
extinctions of two pathogens spreading in two host communities. The transition rates of the CTMC not
only produce the deterministic system of ODEs through the master equations, but also approximate
those (transition rates) of the multi-type branching process. This provides information about the
disease extinction using a small number of initial population sizes of the infectious classes. Both the
stochastic SIS simulations and the solutions of ODEs suggest that removing the recovery terms in the
disease compartments can lead to the persistence of diseases.
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31. Economou, A.; Gómez-Corral, A.; López-Garcĺa, M. A stochastic SIS epidemic model with heterogeneous
contacts. Physica A 2015, 421, 78–97. [CrossRef]

32. Grimmett, G.; Grimmett, G.R.; Stirzaker, D. Probability and Random Processes; Oxford University Press: Oxford,
UK, 2001; pp. 213–296.

33. Nåsell, I. Stochastic models of some endemic infections. Math. Biosci. 2002, 179, 1–19. [CrossRef]
34. Bailey, N.T. The Elements of Stochastic Processes with Applications to the Natural Sciences; John Wiley & Sons:

Chichester, UK, 1990; Volume 25, pp. 84–105.
35. Van den Driessche, P.; Watmough, J. Further Notes on the Basic Reproduction Number. In Mathematical

Epidemiology; Springer: Berlin/Heidelberger, Germany, 2008; pp. 159–178.
36. Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef]
37. Allen, L.J. Introduction to Mathematical Biology; Prentice Hall: Upper Saddle River, NJ, USA, 2007; pp. 37–70.
38. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mbs.2013.02.006
http://dx.doi.org/10.1007/s00285-018-1210-5
http://dx.doi.org/10.1016/j.idm.2018.03.002
http://www.ncbi.nlm.nih.gov/pubmed/30839911
http://dx.doi.org/10.1002/mma.5652
http://dx.doi.org/10.1016/j.physa.2017.05.083
http://dx.doi.org/10.1186/s13662-017-1289-9
http://dx.doi.org/10.1016/j.physa.2016.12.074
http://dx.doi.org/10.1016/j.physa.2014.10.054
http://dx.doi.org/10.1016/S0025-5564(02)00098-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1021/j100540a008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Continuous Time Markov Chain Model
	Basic Reproduction Number
	Multi-Type Branching Process

	Results
	Discussion
	Conclusions
	References

