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Abstract: In the present work, we study a mesoscopic system consisting of a double quantum dot in
which both quantum dots or artificial atoms are electrostatically coupled. Each dot is additionally
tunnel coupled to two electronic reservoirs and driven far from equilibrium by external voltage
differences. Our objective is to find configurations of these biases such that the current through
one of the dots vanishes. In this situation, the validity of the fluctuation–dissipation theorem and
Onsager’s reciprocity relations has been established. In our analysis, we employ a master equation
formalism for a minimum model of four charge states, and limit ourselves to the sequential tunneling
regime. We numerically study those configurations far from equilibrium for which we obtain a
stalling current. In this scenario, we explicitly verify the fluctuation–dissipation theorem, as well
as Onsager’s reciprocity relations, which are originally formulated for systems in which quantum
transport takes place in the linear regime.
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1. Introduction

The two paradigms of statistical mechanics for systems that are close to equilibrium are: (i) the
Onsager–Casimir reciprocity relations [1]; and (ii) the fluctuation–dissipation theorem (FDT) [2–4].
Both relations are not only inherent to classical systems but are also applicable to the quantum regime.
The Onsager–Casimir reciprocity relations state that the Onsager matrix that relates physical fluxes and
their conjugate forces is symmetric. For example, considering as forces the electrostatic and thermal
gradients, and their associated currents being the electrical and heat fluxes, these relations set an
identity between the thermoelectrical conductance (electrical response to a thermal gradient) and the
electrothermal conductance (response of the heat current to an electrical bias). On the other hand,
the FDT establishes that statistical fluctuations occurring in a system at equilibrium behave similarly
to the dissipation that takes place under the action of an external perturbation. Major examples of
manifestations of the FDT are found in Einstein’s treatment of Brownian motion where the diffusion
constant is found to be proportional to the mobility [5] or the Johnson–Nyquist formula for electronic
white noise [6]. In the context of quantum transport through electronic nanodevices, the FDT allows us
to relate the dissipative response of one current with respect to a variation of its affinity or conjugate
force with its spontaneous fluctuations. This property of equilibrium systems is a very important
topic when we are interested in controlling dissipation due to currents induced through quantum
conductors by external forces.

As mentioned above, the range of validity of the FDT is limited to the linear response
regime, i.e., for sufficiently small perturbations. Going beyond this regime requires generalizing
this formulation to non-equilibrium conditions. This has been done by introducing additional
correlations involving the activity, a magnitude related to the transition rates and the excess of
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entropy production that is modified antisymmetrically by the external potential that drives the system
out of equilibrium [7–10]. In this view, these extensions to the FDT are indeed fluctuation–dissipation
relations (FDR) that establish the frequency at which a system produces entropy to the environment
between forward and backward processes. The interest of the FDR has been highlighted in the field of
quantum transport [1,11–13].

However, here we adopt a different perspective, reported in the work of B. Altaner, M. Polettini,
and M. Esposito [14], in which the concept of stalling currents is introduced in the context of stochastic
thermodynamics. A current that traverses a system can be nullified because of the cancellation of a
set of distinct internal processes, and is then called a stalling current. Under these conditions, if the
perturbative force solely affects the microscopic transitions that contribute to this current, the FDT is
restored [14,15]. In addition, we test numerically that Onsager reciprocity relations are additionally
satisfied at stalling conditions. We speculate that this property is attained due to the lack of entropy
production at stalling conditions forced by the tight coupling between the charge and heat currents
(see below). The conclusion is that all contributing elemental transitions being internally equilibrated
is equivalent to them being microscopically reversible. One interesting application to the stalling
configuration is that, even though correlations are usually difficult to access experimentally, the fact
that the FDT is applicable makes it rather easy to obtain such correlations by means of a response
function instead.

Our purpose in this work is to implement these conclusions in a nanodevice consisting of two
interacting conductors. Such setup was previously investigated by R. Sánchez et al. [16] to analyze the
drag effect. The device consists of a parallel double quantum dot system in which the quantum dots
interact electrostatically via a mutual capacitance. Besides, each quantum dot is tunnel-connected to
two electronic reservoirs. A drag current is encountered in one of the dots, which is unbiased, due to
the charge fluctuations provoked by the electrical current driven through the other dot. The detection
of this drag current has been demonstrated experimentally [17] showing that high-order tunneling
events such as cotunneling have a significant contribution. Besides, a drag current control has been
proposed by attaching to the dots different materials with nontrivial energy-dispersion relations [18].
This system has additionally been proposed for the implementation of a Maxwell demon [19], in which
one of the dots (the demon) acquires information from the other one, allowing a current to flow
opposite to the applied bias voltage in the other dot.

Our goal in this article is to explore the transport properties in an out-of-equilibrium configuration
that drives the system into an effective equilibrium in which both the Onsager relations and the FDT
are recovered. For this purpose, we compute the electrical and heat currents through each quantum
dot. By a numerical search of stalling currents in one of the dots, we check whether or not Onsager
relations and the FDT are satisfied. We consider different situations. Firstly, we consider the case where
both the electrical and heat flows are cancelled simultaneously under non-equilibrium configurations.
This can be achieved only in the so-called strong coupling regime. For this case, we demonstrate
that the system indeed behaves as at equilibrium. We also analyze the scenario where only one of
the currents vanishes (either the charge or the heat flow), while the other one is kept finite. Finally,
we show that the absence of stalling currents prevents the fulfillment of the Onsager relations and the
FDT as expected. To conclude, we go beyond the FDT and additionally check the FDRs for the third
cumulant in the presence of stalling currents.

2. Theoretical Model

2.1. Description of the System and Underlying Framework

We consider the case of two conductors that are mutually connected via the Coulomb interaction.
Each conductor consists of a quantum dot with a single level active for transport. We omit spin
indices due to spin degeneracy. Besides, we consider a large on-site Coulomb interaction that prevents
the double occupancy in each dot. Each quantum dot is tunnel-coupled to two electronic reservoirs
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that can be biased with electrostatic and thermal gradients. Each tunneling barrier is modeled by
capacitors denoted by Ci with i = 1, 2, 3, 4. As mentioned above, the two quantum dots interact
electrostatically through a capacitor C. A sketch for this system is depicted in Figure 1b. Under these
circumstances, we describe the system using four possible charge states |0〉 = |0u0d〉, |u〉 = |1u0d〉,
|d〉 = |0u1d〉, and |2〉 = |1u1d〉, where nund denotes the charge state with nu electrons in the upper dot
and nd electrons in the lower dot. For simplicity, we consider an isothermal configuration in which all
reservoirs are held at a common temperature T. We also keep different bias voltages Vi applied to the
four terminals.

We are interested in the charge and heat transport in the sequential tunneling regime, in which
the tunneling rate (denoted by Γ) satisfies h̄Γ � kBT. In this regime, transport of electrons along
each quantum dot occurs in a sequence of one electron transfer event at each time. Electrons can hop
into a quantum dot, and then relax before they jump again. This restriction eliminates the transitions
|0(2)〉 → |2(0)〉 and |u(d)〉 → |d(u)〉. Additionally, we consider that there is no particle transfer from
one dot to another by tunneling. The only interaction between the dots is then due to their mutual
influence caused by the electrostatic interactions.

Figure 1. (a) Double quantum dot capacitively coupled to four terminals held at potentials Vi and
temperatures Ti, for i = 1, 2, 3, 4. The transition rates Γ±i and γ±i for each barrier are described in the
main text. (b) Electrostatic sketch showing the capacitors and voltages involved in the description of
the energy levels of the quantum dots.

The theoretical framework employed to describe the quantum transport in our system is called
stochastic thermodynamics [14,20–22]. Quite generally, we can consider a setup with an arbitrary number
of states n ∈ {1, 2, ..., N} and picture each state as a node in a connected network. We draw edges
e connecting states between which a transition may occur, and require these to be possible in both
directions. However, transitions along ±e are not required to happen at the same rate or with the same
probability. Note that two nodes may be connected with several edges if there are various physical
mechanisms through which the system can transition between the associated states. The evolution of
the system is modeled as a Markov jump process, i.e., the probability that the system jumps from one
state to another is independent of its previous history. This evolution can also be visualized as a random
walk on the network. A physical model is defined by prescribing the forward and backward transition
rates w±e, which evidently may be functions of the physical parameters involved. The fluctuating
current along an edge e, je(t) = ∑k δ(t− tk)(δ+e,ek − δ−e,ek ), is a stochastic variable that peaks if the
system transitions along the directed edge ek at time tk. Physical currents, i.e., currents associated
to the transport of physical quantities such as charge or heat, are weighted currents Jα = ∑e dα

e je,
where dα

+e = −dα
−e specifies the amount of a physical variable α exchanged with an external reservoir

along a transition edge e.
When applying the previous theoretical treatment to our particular system, we consider that the

tunneling rates depend on the energy of the system. Specifically, we consider the value of Γi for the
tunneling of electrons between a reservoir i and a quantum dot whenever the other dot is empty, and γi
when the other dot is occupied. Then, the transition rates (previously called w±e) are thus dependent
on the dot charge states. The transition rates are defined according to Fermi’s golden rule as
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Γ−i = Γi f (µ`,0 − qVi) (1)

Γ+
i = Γi (1− f (µ`,0 − qVi)) (2)

γ−i = γi f (µ`,1 − qVi) (3)

γ+
i = γi (1− f (µ`,1 − qVi)) (4)

where f (x) =
(

1 + ex/kBT
)−1

is the Fermi–Dirac distribution function, the− superscript stands for the
tunneling from the lead to the dot, and + for the reverse process. The transition rates are schematically
represented in a network diagram in Figure 2. In our arrangement, we take the up dot (` = u) connected
to left and right reservoirs with i = {1, 2}, and the down dot (` = d) to reservoirs with i = {3, 4}.
Note that the numerical subindex in the previous transition rates thus indicates the reservoir involved
in the transition, as shown in Figure 1a. The chemical potential for the dot `, i.e., µ`,0 (µ`,1), corresponds
to the situation in which the other dot is empty (occupied).

Figure 2. Scheme for the transition rates between the two dot states.

To determine the effective chemical potentials of the dots, we must develop a model that takes
into account how their energy levels are influenced by electrostatic interactions. When interactions
are properly included as in our description, all currents are gauge invariant, as they depend only
on voltage differences. Hereafter, we shorten the notation and define Vij ≡ Vi − Vj. Under these
considerations, the dot levels become

εu,n → µu,n = εu + U (1, 0)−U (0, 0) + ECδ1n (5)

εd,n → µd,n = εd + U (0, 1)−U (0, 0) + ECδ1n (6)

where εu and εd are the bare energy levels, and n = 0 (1) corresponds to the case where other dot
is empty (occupied). Here, EC = 2q2C/

(
CΣuCΣd − C2) is the charging energy with CΣd(u) = C1(3) +

C2(4) + C. The chemical potential µu(d),n is defined as the change in the electrostatic energy when the
charge number Nu(d) changes by one when the dot d(u) is either empty (n = 0) or occupied by one

electron (n = 1). The electrostatic energy is computed from U(Nu, Nd) = ∑i
∫ qNi

0 dQ′i φi(Q′i) where φi
is the internal potential in each quantum dot obtained by means of elementary electrostatic relations.
Then, the arguments of the Fermi functions appearing in the tunneling rates read [16]:

µu,n − qV1 = εu +
1

CΣuCΣd − C2

[
q2

2
CΣd + q (CΣdC2V21 + CC3V31 + CC4V41)

]
+ ECδ1n (7)
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µu,n − qV2 = εu +
1

CΣuCΣd − C2

[
q2

2
CΣd + q (CΣdC1V12 + CC3V32 + CC4V42)

]
+ ECδ1n (8)

µd,n − qV3 = εd +
1

CΣuCΣd − C2

[
q2

2
CΣu + q (CΣuC4V43 + CC1V13 + CC2V23)

]
+ ECδ1n (9)

µd,n − qV4 = εd +
1

CΣuCΣd − C2

[
q2

2
CΣu + q (CΣuC3V34 + CC1V14 + CC2V24)

]
+ ECδ1n (10)

that now depend only on voltage differences. The four µu,n − V1(2), and µd,n − V3(4) are the
electrochemical potentials. We take V12, V13 and V34 as the only independent biases, since the rest of
voltage differences can be expressed as linear combinations of these values.

As discussed above, we apply the Markov approximation in order to determine the dynamics
of the probabilities of finding the system in one of the four states. Specifically, we employ the master
equation formalism, where the time evolution of the system is governed by a master equation that
gives the probability distribution of the considered stochastic variables in terms of the transition rates
between the different states. Defining Γ±u(d) = Γ±1(3) + Γ±2(4), the following relations are found:


ṗ0

ṗu

ṗd
ṗ2

 =


−Γ−u − Γ−d Γ+

u Γ+
d 0

Γ−u −Γ+
u − γ−d 0 γ+

d
Γ−d 0 −γ−u − Γ+

d γ+
u

0 γ−d γ−u −γ+
u − γ+

d




p0

pu

pd
p2

 (11)

As we are interested in the steady state, we set all ṗi = 0. Considering the normalization condition
∑i pi = 1, we obtain:

p0 =
1
α

[
Γ+

d γ+
u
(
Γ+

u + γ−d
)
+ Γ+

u γ+
d
(
Γ+

d + γ−u
)]

(12)

pu =
1
α

[
Γ−u Γ+

d
(
γ+

u + γ+
d
)
+ γ−u γ+

d
(
Γ−u + Γ−d

)]
(13)

pd =
1
α

[
Γ+

u Γ−d
(
γ+

u + γ+
d
)
+ γ+

u γ−d
(
Γ−u + Γ−d

)]
(14)

p2 =
1
α

[
γ−u γ−d

(
Γ−u + Γ−d

)
+ Γ−u Γ+

d γ−d + Γ+
u Γ−d γ−u

]
(15)

with

α = Γ−u
[
Γ+

d
(
γ+

u + γ+
d
)
+ γ−d

(
γu + Γ+

d
)]

+ Γ+
u Γ+

d
(
γ+

u + γ+
d
)
+ Γdγ−d γ+

u + Γuγ+
d γ−u + (16)

+ γ−d
[
Γ+

u
(
γu + γ+

d
)
+ γ−u γd

]
and Γu(d) = Γ+

u(d) + Γ−u(d) (similar for γu(d)).
We now compute the electrical current I1 that flows between the first lead and the upper dot,

which, we from now on call drag current for historical reasons (note that since generally V12 6= 0 it is
not a current arising solely from the drag effect). This current is obtained by weighting the transition
probabilities with the electron charge q. The result is

I1 = q
(
Γ−1 p0 − Γ+

1 pu + γ−1 pd − γ+
1 p2

)
(17)

Because of electric charge conservation, we immediately know I2 = −I1 = I for the current between
the second terminal and the up dot (we assign a + sign whenever the current flows from a lead into a
dot, and a − sign otherwise). We can also compute the heat current by weighting the transitions with
the amount of transferred effective energy (the electrochemical potential),

J1 = µ̃u,0
(
Γ−1 p0 − Γ+

1 pu
)
+ µ̃u,1

(
γ−1 pd − γ+

1 p2
)

(18)
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where µ̃u,n = µu,n − qV1. Similar expressions are obtained for the rest of the Ji. Energy conservation
leads to J1 + J2 + J3 + J4 = I1V21 + I3V43. These currents were investigated by Sánchez et al. [16]
when the up dot is at equilibrium with V1 = V2; a nonzero drag current I1 then appears when Γ1γ2 6=
γ1Γ2. This means that the current in the lower terminals (drive system) drives the upper dot towards a
non-equilibrium situation by the appearance of a drag current. The drag phenomenon can be clearly
understood from the following Joule relation found for this setup

J1 + J2 + Jc = −I1V12 (19)

J3 + J4 − Jc = −I3V34

where
Jc =

EC
α
(γ+

u γ−d Γ−u Γ+
d − γ−u γ+

d Γ+
u Γ−d ) (20)

is the heat flow between the drag and the drive system. This expression generalizes the relation found
in Reference [23] for a three-terminal double quantum dot. In such a system, the drag conductor is
connected to two reservoirs, whereas the drive dot is coupled to a single contact. Therefore, the drive
subsystem does not support any charge current. Under these considerations, the drive dot carries a
heat flow J (with a similar form to Equation (20), which is proportional to the drag charge current
when Γ2 = γ1 = 0, i.e. in the so-called strong coupling regime. Here, Equation (19) demonstrates
the existence of a heat flow Jc between the drag and drive subsystems. This energy flow appears
in addition to the heat flows J1, J2 through the drag conductor and the heat currents J3, J4 in the
drive subsystem, even when they are held at common temperature and no particle transfer exists
between them.

Returning to our purpose, which is to find a route to an effective equilibrium state, we address
the issue of whether the opposite phenomenon to the drag is possible, i.e., if we can achieve a
non-equilibrium configuration with V1 6= V2 for which the drag effect causes the stalling of the upper
currents. Under this novel situation, we check whether our system reaches an “effective linear response
regime” by testing the microreversibility property through the Onsager relations and the fulfilment
of the FDT. To this end, we focus on the up dot and consider three stalling configurations: (i) when
both the electrical and the heat flow vanish, i.e., I1 = 0 and J1 = 0, which we call the globally stalled
scenario; (ii) when the charge current is nullified, I1 = 0, but there is a finite heat flow J1 6= 0; and (iii)
when there is a finite electrical current I1 6= 0 but no heat flow, J1 = 0. These situations correspond
to the locally charge-stalled and heat-stalled cases, respectively. The simplest manner to achieve the
globally stalled case is tuning the system to the strong coupling configuration by setting γ1 = Γ2 = 0.
Under this situation, electrons can only tunnel in and out of the top-left reservoir if the lower dot is
empty, and of the top-right reservoir if the lower dot is occupied.

2.2. Detailed Balance and Behavior at Equilibrium

Before presenting our results, we carefully revise the behavior of systems near thermodynamic
equilibrium. In this situation, all existing currents in a system tend to zero on average. This behavior is
called global detailed balance. According to statistical mechanics, systems subject to these conditions
exhibit the property that the correlations of the spontaneous fluctuations and the dissipative response
to an external perturbation obey the same rules, which is primarily known as Onsager’s regression
hypothesis [14]. This important statement is the heart of the fluctuation–dissipation theorem (FDT).
If we consider an arbitrary physical current Jα (such as a heat or charge current) and its affinity or
conjugate force hα (which in these cases would correspond to gradients in temperature or electrical
potential, respectively), the theorem can be expressed as

∂hα
Jα (xeq) = Dα,α (xeq) (21)
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where Dα,α is a generalized diffusion constant proportional to 〈Jα Jα〉. The vector x contains all the
parameters the current may depend on, and satisfies Jα (xeq) = 0 for all currents in the system;
their conjugate forces are evidently also required to vanish. The previous equation can be generalized
in such a way that it expresses the FDT for the combination of two currents and their conjugate
forces by changing one index α for a different one and symmetrizing both sides of the expression
(see complementary material of Reference [14]).

Another major result in thermodynamics close to equilibrium is found in Onsager’s reciprocal
relations (RRs), which actually follow from the FDT if the system enjoys the property of being
time-reversible [15]. In the following, we restrict ourselves to relations between heat and charge
currents, following Onsager’s original article [1]. For a system where transport of these quantities
exists, the mechanisms are usually not independent, but interfere with each other leading to the well
known thermoelectric effects. If we consider a system at equilibrium, small fluctuations or external
perturbations may allow for the transport of small quantities of charge and heat while the system is
returning to its original state. Onsager established that, in these situations, the responses of a current
due to a variation of the other current’s conjugate force are equal, i.e. the heat current responds in the
same way to a variation of the electrical potential as the charge current to a temperature fluctuation.
This result is best visualized by writing the currents in matrix form. For a simple system with a single
heat and charge current, we have:(

Jcharge
Jheat

)
=

(
L11 L12

L21 L22

)(
δ (∆V)

δ (∆T/T)

)
(22)

where L11 and L22 are the electrical and thermal conductances, and L12 = ∂∆T/T Jcharge and L21 =

∂∆V Jheat represent the electrothermal and thermoelectrical coefficients that arise from the interference
of the two transport mechanisms. Onsager’s statement is then equivalent to the requirement that
the conductance matrix be symmetric, L12 = L12. In addition to these relations, the scattering theory
formalism ensures that both the thermal and the electrical conductances are semipositive.

Despite these theorems being major cornerstones in our understanding of the behavior of systems
obeying global detailed balance, most complex systems live out of equilibrium. Accordingly, similar
relations have been sought for systems where detailed balance is explicitly broken, since their finding
would allow us to characterize and study out-of-equilibrium systems in a similar manner as when
detailed balance is satisfied.

2.3. Local Detailed Balance and Equilibrium-Like Relations

A central assumption in stochastic thermodynamics far from equilibrium, when global detailed
balance is not satisfied, is local detailed balance (LDB). It relates the forward and backward transition
rates w into and out of a state A by means of a mechanism ν and reads [24]

wν
A→B

wν
B→A

= e−βν∆ε (23)

where βν is the inverse temperature of the reservoir involved in the transition and ∆ε is the difference
between the energies of states A and B. It can be easily checked that the rates in Equations (1)–(4)
indeed satisfy the LDB condition.

In Reference [14], it was reported that, if LDB is satisfied in a system driven arbitrarily far from
equilibrium, its response to a perturbation or a spontaneous fluctuation may obey a relation similar to
the equilibrium FDT if certain additional conditions are fulfilled. More precisely, it has been established
that a current Jα in such a system obeys Equation (21) with xeq replaced by xst, where xst corresponds to
a configuration of the parameters of the current such that Jα

(
xst) = 0, i.e., the considered current stalls.

This is valid if the force hα couples exclusively to those transitions that contribute to the conjugate
current Jα. It is important to notice the difference between this statement and the first FDT valid
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only near equilibrium, since we now only require a given current to stall internally. This may be a
consequence of the appropriate tuning of the rest of the currents in the system, which are no longer
required to vanish, and can in fact assume arbitrary magnitudes.

Similarly, Onsager’s reciprocal relations have also been extended to non-equilibrium situations,
under the condition of a marginal time-reversibility [25]. Again, it is required that the currents stall in
order for the RRs to hold far from equilibrium.

3. Results and Discussion

In this section, we present the main results of our work. We verify the RRs and the FDT for a
complete understanding of the impact of stalling currents in coupled conductors.

Roots of the Drag Current and Equilibrium-Like Behavior

The aim of our study is to verify the generalized non-equilibrium reciprocity relations and the
fluctuation–dissipation relations. As discussed above, they require that the involved currents be at
stall in order to hold arbitrarily far from equilibrium. We exclusively focus on situations where the
stalling currents are those between the upper dot and the first lead, i.e., the ones in the drag system.
Since I1 = −I2, it is enough for our purposes to seek for roots of I1. We also only look for roots
of J1, even though J1 6= J2. For all the out-of-equilibrium calculations, we consider the isothermal
case T = Ti, with i = 1, . . . , 4. Since we are only interested in the responses of the currents to small
temperature fluctuations in one of the leads (with the rest held constant), we must formally treat the
temperatures in each lead as independent of each other for computational means. However, in the
end, all derivatives are evaluated at temperature T.

The electric current I1 [Equation (17)] is a highly nonlinear function of the biases V12, V13 and V34.
Consequently, the solutions to I1 = 0 must be found by means of numerical analysis in order to verify
Onsager’s relations and the FDT (further justifications below). To this purpose, we set Γi = γi = Γ
except for γ1 = 0.1Γ, kBT = 5h̄Γ, q2/Ci = 20h̄Γ, q2/C = 50h̄Γ and εu = εd = 0. Furthermore,
we consider natural units where h̄ = −q = kB = Γ = 1. Unless otherwise mentioned, these parameters
are used in the rest of this work.

We remark that our analysis is purely numerical since the solutions for I1 = 0 require large values
of V12 at a given set of voltages V13 and V34. This fact prevents us from employing a perturbative
scheme in terms of the dc voltages. The charge current through the upper dot is composed of the
current directly induced by the bias V12 and the contribution due to the charge fluctuations caused
by the transport in the lower dot. The latter contribution is precisely the drag effect, which is much
less significant to the creation of a charge flow through the up dot than the effect of a voltage directly
applied between the upper terminals. The need for a numerical analysis of this system is hereby
justified. To find the roots of the currents for a given set of parameters, we implemented a bisection
algorithm (see Appendix A).

Since there is no magnetic field present in our system, its dynamical evolution is time-reversible.
Accordingly, microreversibility ensures that the RRs should be satisfied for stalling currents far from
equilibrium, as discussed in Reference [15]. In this section, we analyze both the case when the charge
and heat currents stall at the same time, as well as the scenario when they do not necessarily vanish
simultaneously for the same voltage configuration. The Onsager matrix for our two dot system with
four leads should be of dimension 8× 8 with elements denoted by Lij,mn. In the absence of a magnetic
field, Onsager’s relations imply Lij,mn = Lji,mn. Furthermore, charge conservation laws imply relations
such as I2 = −I1 and therefore more elements of the Onsager matrix are related. At the stalling
configuration, we thus check for the fulfilment of the particular relation L12,11 = L21,11, with

L12,11 ≡ L12 =
∂I1

∂T1
, L21,11 ≡ L21 =

1
T1

∂J1

∂V1
(24)
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As we can see, I1 = Icharge and J1 = Jheat in terms of the example in Equation (22). Here,
we consider as conjugate forces the absolute potentials and temperatures. This is justified since
the thermodynamic variables of the quantum dots do not show up in the currents, and therefore
differentiating them with respect to the gradients Ωi −Ωdot yields the same result as differentiating
with respect to Ωi (where Ω represents either a voltage or a temperature). A summary of our first results
is presented in Figure 3. We show the coefficients for a given V12 as a function of V13. It is understood
that the value of V34 at each point corresponds to the one where stalling has been numerically found.
We consider four cases: (i) the globally stalled configuration depicted in Figure 3a; (ii) the locally
charge-stalled case shown in Figure 3b; (iii) the locally heat-stalled scenario in Figure 3c; and (iv) a
configuration where none of the currents vanish, as shown in Figure 3d. Firstly, we notice that the
RRs are satisfied at the configurations where the current I1 stalls [cases shown in Figure 3a,b] with
J1 being either zero or not. On the other hand, considering the stalling points of J1 [see Figure 3c],
in general, we do not observe an equality between L12 and L21. Even so, there are some exceptions
(not shown here) in which the RR are satisfied despite having I1 6= 0 and J1 = 0. For these cases,
however, we checked that they do not follow the FDT.
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Figure 3. Onsager coefficients L12 and L21 versus the V13 bias voltage at the indicated V12 biases:
(a) strong coupling configuration (Γ2 = γ1 = 0) with I1 = 0 and J1 = 0; (b) I1 = 0 and J1 6= 0; (c) I1 6= 0
and J1 = 0; and (d) I1 6= 0, and J1 6= 0. Γi = γi = Γ except for γ1 = 0.1Γ, kBT = 5h̄Γ, q2/Ci = 20h̄Γ,
q2/C = 50h̄Γ and εu = εd = 0. Furthermore, we consider natural units where h̄ = −q = kB = Γ = 1.

We now move on to study the validity of the fluctuation–dissipation theorem. In this case, we only
consider the FDT for the charge currents. Firstly, we give explicit expressions for the relations between
the transport coefficients, i.e., the FDRs. They have been established for the non-equilibrium case.
Here, it is instructive to first consider the FDT near equilibrium. We consider the following voltage
expansion of the currents around the equilibrium point Vi = 0:

Iα = ∑
β

Geq
α,βVβ + ∑

β,γ
Geq

α,βγVβVγ +O
(

V2
)

(25)

where the nth order conductances Geq
µ,ν1...νn =

(
∂n Iµ/∂Vν1 ...Vνn

)
Vi=0 are related to nth order FDRs.

For instance, at second-order equilibrium FDRs lead to the FDT
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Seq
αβ = kBT

(
Geq

α,β + Geq
β,α

)
(26)

The non-equilibrium FDT is then established to have the same form replacing the equilibrium
condition by the stalling condition.

For our particular device, we investigated the non-equilibrium FDT for two cases. We tested the
FDT only for the upper dot charge current, i.e., I1 = −I2. The results are shown in Figure 4, where we
check the FDT for the drag current, i.e.,

S11 = 2kBTG1,1 (27)

as well as the FDT involving the cross-correlations between the drag current (I1) and the drive current
(I3) contributions, i.e.,

S13 = kBT (G1,3 + G3,1) (28)

where in both cases the noise Sαβ was computed by applying the Full Counting Statistics (FCS)
formalism described in Appendix B. We observe that only the former relation for the drag current is
satisfied (Figure 4a,b) since I1 vanishes but I3 does not. The FDT involving cross-correlations between
I1 and I2 also holds since both of the currents stall (not included). These results are independent of
whether the heat current vanishes (see Figure 4a for J1 = 0, i.e., the strong coupling regime) or not (see
Figure 4b with J1 6= 0). In the two remaining cases (Figure 4c,d), the fact that the drive current I3 does
not vanish prevents the fulfilment of the FDT for the cross-correlations S13.

To make a complete description of the transport under stalling conditions we now discuss
a remarkable result involving the third cumulants of the current. In this case, we talk about
fluctuation–dissipation relations instead of the FDT. As mentioned in the Introduction, the FDRs
were originally formulated by adding to the transition rates and the excess of entropy production
the external potential that drives the system out of equilibrium [8]. In that sense, it is possible to
establish relations between the transport coefficients such as nonlinear conductances, non-equilibrium
noises, and the third cumulant. In all these cases, the transport coefficients are computed at the
non-equilibrium configuration. In particular, López et al. [26] found that the following FDR is satisfied
under equilibrium conditions:

Cαβγ = (kBT)2 (Gα,βγ + Gβ,γα + Gγ,αβ

)
(29)

where Cαβγ =
〈

Iα Iβ Iγ

〉
are the third-order cumulants. We ignored the indices referring to the spin

degree of freedom appearing in the original paper as in our system we have spin degeneracy due to
the absence of a magnetic field. Here, we checked for the fulfilment of the previous relation at stalling
conditions far from equilibrium, where all the nonlinear transport coefficients Gα,βγ are computed
under non-equilibrium conditions. Note that this can be rewritten as

Cαβγ = 3 (kBT)2 G(α,βγ) (30)

where we understand G(α,βγ) as the symmetrization with respect to the three indices, G(α,βγ) =
(1/3!)

(
Gα,βγ + Gα,γβ + Gβ,γα + Gβ,αγ + Gγ,αβ + Gγ,βα

)
.

We explored the fulfilment of Equation (29) when stalling currents are present in the system,
with Gαβγ again computed with help of FCS (see Appendix B). Figure 5 represents the third cumulant
fluctuation relations. The case in which I1 = 0 is shown in Figure 5a when J1 = 0 and in Figure 5b
when J1 6= 0. In these two scenarios, the FDRs are fulfilled. However, when the cumulant relation
involves currents from both the drive (either I3 or I4) and the drag (either I1 or I2) subsystems, then the
corresponding FDR is no longer satisfied. Finally, for completeness, our last result is shown in Figure
6, where the FDT and third-order cumulant relations are displayed for cases where the system is not in
a stalling configuration. As can be seen, none of these relations hold, as expected.
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Figure 4. Fluctuation–dissipation theorem Sαβ = 2kBTG(α,β) for: (a) the strong coupling regime for the
drag current, I1 = 0 and J1 = 0; (b) the locally charge-stalled configuration, I1 = 0 and J1 6= 0; and
(c,d) the drag and drive currents with I1 = 0 and J1 = 0, and I1 = 0 and J1 6= 0, respectively. The rest
of the parameters are those of Figure 3.
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Figure 5. Third-order fluctuation–dissipation relations Cαβγ = 3 (kBT)2 G(α,βγ) for: (a) the strong
coupling regime for the drag current I1 = 0 and J1 = 0; (b) the locally charge-stalled configuration
I1 = 0 and J1 6= 0; and (c,d) the drag and drive currents for I1 = 0 and J1 = 0, and I1 = 0 and J1 6= 0,
respectively. The rest of the parameters are those of Figure 3.
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Figure 6. Fluctuation–dissipation theorem in a non-stalled configuration I1 6= 0 and J1 6= 0 for: (a) the
drag current; and (b) the drag and drive currents. Fluctuation–dissipation relations in a non-stalled
configuration I1 6= 0 and J1 6= 0 for: (c) the drag current; and (d) the drag and drive currents. The rest
of the parameters are those of Figure 3.

4. Conclusions

We provide evidence for the validity of the fluctuation–dissipation theorem and Onsager’s
reciprocal relations far from equilibrium at stalling configurations where I1 = 0. Additionally,
we successfully tested the fluctuation relations for the third cumulant in which all the transport
coefficients are calculated at stalling but far from equilibrium. The positive results are good news,
as they confirm that there are indeed some situations in which a system driven far from equilibrium
enjoys near-equilibrium properties, and can therefore be analyzed by means of the well-known
theoretical models of equilibrium thermodynamics.

A possible extension to this work is to investigate the behavior of stalling currents and the validity
of the non-equilibrium relations with transport coefficients at stalling configurations in cases where the
system exhibits purely quantum effects, such as quantum transport under the preservation of phase
coherence when higher-order tunneling effects are included.
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Appendix A. Bisection Method

To find the roots of the drag current at a certain point of parameter space, we make extensive use
of the bisection algorithm. Firstly, we fix the value of the biases V12 and V13. We are now interested in
finding V34 such that I1 (V12, V13, V34) = 0. Let f (x) = I1 (V12, V13, x). We iteratively seek two points a
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and b such that f (a) f (b) < 0. Since I1 is continuous, which implies there is a root lying in the interval
(a, b). To find this root with a tolerance ε, once we have localised such points, where ε represents the
largest value for the width of the interval centered at the point that we ultimately accept as a root,
we proceed as follows:

1. We define c = (a + b)/2.
2. If f (c) = 0 or (b− a)/2 < ε, we accept c as a root and stop.
3. Otherwise if f (a) f (c) < 0, we redefine b = c and return to Step 1. If not, we redefine a = c and

return to Step 1.

Despite the fact that the width of the interval decreases only linearly with this method,
thus making it rather slow, it is always ensured to converge if there is a root lying inside the original
interval. Furthermore, for a highly nonlinear function, which may present a behavior that is difficult to
picture, such as the drag current, this method is far superior to non-fixed interval algorithms such as
the Newton method.

Appendix B. Full Counting Statistics and Computation of Cumulants

Despite this method being extensively discussed in References [27,28], a good understanding of
it has been crucial for this work. However, several different approaches are found in the literature,
and therefore we consider it adequate to clarify the precise path we have taken. The derivation that
follows closely follows the one found in the additional material of Reference [26].

The central quantity we are involved with is P ({n1, n2, n3, n4}; t) ≡ P ({n}; t), the probability
that nj electrons have been transferred through the terminal j. The associated cumulant generating
function (CGF) F ({χ}; t) follows from

exp [F ({χ}; t)] = ∑
{n}

P ({n}; t) exp

(
i ∑

j
χjnj

)
(A1)

From the CGF, we can obtain the desired cumulants by taking partial derivatives with respect to
the counting fields χj at χj = 0:

Cpqrs = ∂
p
iχ1

∂
q
iχ2

∂r
iχ3

∂s
iχ4
F ({χ}; t)

∣∣∣∣
χ=0

(A2)

Then, the current cumulants in the long-time limit are simply given by

〈
Ip
1 Iq

2 Ir
3 Is

4

〉
= (−q)p+q+r+s dCpqrs

dt

∣∣∣∣∣
t→∞

(A3)

However, in general, the expression for the CGF is difficult to obtain and handle, and must be
computed recursively. We first introduce the operator L(χ) as the Fourier transform of the entries of
our matrix L(0) ≡ L satisfying ρ̇ = Lρ. When only sequential tunneling is considered, it is obtained
by adding counting fields to the off-diagonal entries of L, with a plus (minus) sign when the transition
corresponds to an electron entering (leaving) the corresponding lead (we skip the details). For our
matrix (Equation (11)), it assumes the form

L(χ) =


−Γ−u − Γ−d Γ+

1 eiχ1 + Γ+
2 eiχ2 Γ+

3 eiχ3 + Γ+
4 eiχ4 0

Γ−1 e−iχ1 + Γ−2 e−iχ2 −Γ+
u − γ−d 0 γ+

3 eiχ3 + γ+
4 eiχ4

Γ−3 e−iχ3 + Γ−4 e−iχ4 0 −γ−u − Γ+
d γ+

1 eiχ1 + γ+
2 eiχ2

0 γ−3 e−iχ3 + γ−4 e−iχ4 γ−1 e−iχ1 + γ−2 e−iχ2 −γ+
u − γ+

d

 (A4)
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In the long-time limit, the CGF can be written as

F ({χ}; t) = λ0(χ)t (A5)

where λ0(χ) is the minimum eigenvalue of L(χ) [27]. If we are able to compute it, then the current
correlations easily follow from Equation (A3) as

〈
Ip
1 Iq

2 Ir
3 Is

4

〉
= (−q)p+q+r+s ∂

p
iχ1

∂
q
iχ2

∂r
iχ3

∂s
iχ4

λ0(χ)

∣∣∣∣
χ=0

(A6)

To calculate λ0(χ), we have employed Flidnt’s method, which is discussed now. First, we write
L(χ) as

L(χ) = L+ L̃(χ) (A7)

where L = L(0) and L̃(χ) = L(χ) − L. Next, we define operators P = |0〉〈0| and Q = 1− P ,
where |0〉 = (p0, pu, pd, p2)

T and 〈0| = (1, 1, 1, 1) are the left and right null eigenvectors of L. Clearly,
PL = LP = 0 and QL = LQ = L. To determine the CGF from Equation (A5), we must solve

L(χ)|0(χ)〉 =
[
L+ L̃(χ)

]
|0(χ)〉 = λ0(χ)|0(χ)〉 (A8)

By choosing 〈0| 0(χ)〉 = 1, it follows that

〈0|λ0(χ)−L|0(χ)〉 = λ0(χ) = 〈0|L̃(χ)|0(χ)〉 (A9)

and using Q on |0(χ)〉 we also find

|0(χ)〉 = |0〉+Q|0(χ)〉 (A10)

From Equation (A8), using that L and Q commute and Q2 = Q, we obtain

Q|0(χ)〉 = Q [λ0(χ)−L]−1QL̃(χ)|0(χ)〉 (A11)

We now define
R [λ0(χ)] = Q [L− λ0(χ)]

−1Q (A12)

and substitute Equation (A11) into Equation (A10) to find

|0(χ)〉 = |0〉 −R [λ0(χ)] L̃(χ)|0(χ)〉 (A13)

so that finally
|0(χ)〉 =

{
1 +R [λ0(χ)] L̃(χ)

}−1 |0〉 (A14)

and therefore using Equation (A9) we arrive at

λ0(χ) = 〈0| L̃(χ)
{

1 +R [λ0(χ)] L̃(χ)
}−1 |0〉 (A15)

We now Taylor expand the previous expression. In our case of four counting fields, L̃(χ) is
expanded as

L̃(χ) = L̃(1,0,0,0)(iχ1) + L̃(0,1,0,0)(iχ2) + L̃(0,0,1,0)(iχ3) + L̃(0,0,0,1)(iχ4)+

+
1
2!

[
L̃(2,0,0,0)(iχ1)

2 + L̃(0,2,0,0)(iχ2)
2 + L̃(0,0,2,0)(iχ3)

2 + L̃(0,0,0,2)(iχ4)
2+

+ 2L̃(1,1,0,0)(iχ1)(iχ2) + 2L̃(1,0,1,0)(iχ1)(iχ3) + 2L̃(1,0,0,1)(iχ1)(iχ4)+

+ 2L̃(0,1,1,0)(iχ2)(iχ3) + 2L̃(0,1,0,1)(iχ2)(iχ4) + 2L̃(0,0,1,1)(iχ3)(iχ4)
]
+O

(
χ3
)

(A16)
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where we use L̃(0) = 0 as follows from the definition. Similarly we obtain for R [λ0(χ)]

(withR(0) ≡ R)

R [λ0(χ)] = R+R(1,0,0,0)(iχ1) +R(0,1,0,0)(iχ2) +R(0,0,1,0)(iχ3) +R(0,0,0,1)(iχ4) +O
(

χ2
)

(A17)

where

L̃(p,q,r,s) = ∂
p
iχ1

∂
q
iχ2

∂r
iχ3

∂s
iχ4
L̃(χ)

∣∣∣∣
χ=0

, R(p,q,r,s) = ∂
p
iχ1

∂
q
iχ2

∂r
iχ3

∂s
iχ4
R [λ0(χ)]

∣∣∣∣
χ=0

(A18)

From the definition in Equation (A1), it follows thatF ({0}; t) = 0, so that λ0(0) = 0, and therefore
R = QL−1Q. This operator satisfies LR = RL,RLR = R, and LRL = L and is therefore called the
Drazin pseudoinverse. It can be shown that for a matrix of rank 4 it can be computed as

R = (a3)
−2 LB2

2 (A19)

with the rules

L0 = 1 a0 = 1 B0 = I4 (A20)

L1 = LB0 a1 = −Tr(L1)/1 B1 = L1 + a1 I4 (A21)

L2 = LB1 a2 = −Tr(L2)/2 B1 = L2 + a2 I4 (A22)

L3 = LB2 a3 = −Tr(L3)/3 (A23)

Furthermore, it is possible to prove that the first derivatives of R, which are required for the
computation of the third-order cumulants, satisfy

R(1,0,0,0) = R2 〈0| L̃(1,0,0,0)|0〉 (A24)

R(0,1,0,0) = R2 〈0| L̃(0,1,0,0)|0〉 (A25)

R(0,0,1,0) = R2 〈0| L̃(0,0,1,0)|0〉 (A26)

R(0,0,0,1) = R2 〈0| L̃(0,0,0,1)|0〉 (A27)

Finally, we find λ0(χ) in the form of a power series,

λ0(χ) = 〈0| L̃(χ)
[
1−RL̃(χ) + (RL̃(χ))2 − ...

]
|0〉 (A28)

or, explicitly,

λ0(χ) = 〈0|
{
L̃(1,0,0,0)(iχ1) + L̃(0,1,0,0)(iχ2) + L̃(0,0,1,0)(iχ3) + L̃(0,0,0,1)(iχ4)+

+
1
2!

[
L̃(2,0,0,0)(iχ1)

2 + L̃(0,2,0,0)(iχ2)
2 + L̃(0,0,2,0)(iχ3)

2 + L̃(0,0,0,2)(iχ4)
2+

+ 2L̃(1,1,0,0)(iχ1)(iχ2) + 2L̃(1,0,1,0)(iχ1)(iχ3) + 2L̃(1,0,0,1)(iχ1)(iχ4)+

+ 2L̃(0,1,1,0)(iχ2)(iχ3) + 2L̃(0,1,0,1)(iχ2)(iχ4) + 2L̃(0,0,1,1)(iχ3)(iχ4)−

− 2L̃(1,0,0,0)RL̃(1,0,0,0)(iχ1)
2 − 2L̃(1,0,0,0)RL̃(0,1,0,0)(iχ1)(iχ2)−

− 2L̃(1,0,0,0)RL̃(0,0,1,0)(iχ1)(iχ3)− 2L̃(1,0,0,0)RL̃(0,0,0,1)(iχ1)(iχ4)−

− 2L̃(0,1,0,0)RL̃(1,0,0,0)(iχ2)(iχ1)− 2L̃(0,1,0,0)RL̃(0,1,0,0)(iχ2)
2−

− 2L̃(0,1,0,0)RL̃(0,0,1,0)(iχ2)(iχ3)− 2L̃(0,1,0,0)RL̃(0,0,0,1)(iχ2)(iχ4)−

− 2L̃(0,0,1,0)RL̃(1,0,0,0)(iχ3)(iχ1)− 2L̃(0,0,1,0)RL̃(0,1,0,0)(iχ3)(iχ2)−

− 2L̃(0,0,1,0)RL̃(0,0,1,0)(iχ3)
2 − 2L̃(0,0,1,0)RL̃(0,0,0,1)(iχ3)(iχ4)−
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− 2L̃(0,0,0,1)RL̃(1,0,0,0)(iχ4)(iχ1)− 2L̃(0,0,0,1)RL̃(0,1,0,0)(iχ4)(iχ2)−

− 2L̃(0,0,0,1)RL̃(0,0,1,0)(iχ4)(iχ3)− 2L̃(0,0,0,1)RL̃(0,0,0,1)(iχ4)
2
]
+O

(
χ3
)}
|0〉 (A29)

We can now apply Equation (A2) to compute all cumulants recursively. To first order, we get
(except for a factor of t)

C1000 = 〈0| L̃(1,0,0,0)|0〉 (A30)

C0100 = 〈0| L̃(0,1,0,0)|0〉 (A31)

C0010 = 〈0| L̃(0,0,1,0)|0〉 (A32)

C0001 = 〈0| L̃(0,0,0,1)|0〉 (A33)

To second order, we obtain

C2000 = 〈0| L̃(2,0,0,0) − 2L̃(1,0,0,0)RL̃(1,0,0,0)|0〉 (A34)

C0200 = 〈0| L̃(0,2,0,0) − 2L̃(0,1,0,0)RL̃(0,1,0,0)|0〉 (A35)

C0020 = 〈0| L̃(0,0,2,0) − 2L̃(0,0,1,0)RL̃(0,0,1,0)|0〉 (A36)

C0002 = 〈0| L̃(0,0,0,2) − 2L̃(0,0,0,1)RL̃(0,0,0,1)|0〉 (A37)

C1100 = 〈0| L̃(1,1,0,0) − L̃(1,0,0,0)RL̃(0,1,0,0) − L̃(0,1,0,0)RL̃(1,0,0,0)|0〉 (A38)

C1010 = 〈0| L̃(1,0,1,0) − L̃(1,0,0,0)RL̃(0,0,1,0) − L̃(0,0,1,0)RL̃(1,0,0,0)|0〉 (A39)

C1001 = 〈0| L̃(1,0,0,1) − L̃(1,0,0,0)RL̃(0,0,0,1) − L̃(0,0,0,1)RL̃(1,0,0,0)|0〉 (A40)

C0110 = 〈0| L̃(0,1,1,0) − L̃(0,1,0,0)RL̃(0,0,1,0) − L̃(0,0,1,0)RL̃(0,1,0,0)|0〉 (A41)

C0101 = 〈0| L̃(0,1,0,1) − L̃(0,1,0,0)RL̃(0,0,0,1) − L̃(0,0,0,1)RL̃(0,1,0,0)|0〉 (A42)

C0011 = 〈0| L̃(0,0,1,1) − L̃(0,0,1,0)RL̃(0,0,0,1) − L̃(0,0,0,1)RL̃(0,0,1,0)|0〉 (A43)

and the same procedure is applied to higher-order cumulants. The expressions become rather
cumbersome, but the recipe is clear and easy to use with some algebra.
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