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Abstract: This study conducted an exergy analysis of advanced adsorption cooling cycles. The possible
exergy losses were divided into internal losses and external losses, and the exergy losses of each
process in three advanced cycles: a mass recovery cycle, heat recovery cycle and combined heat and
mass recovery cycle were calculated. A transient two-dimensional numerical model was used to
solve the heat and mass transfer kinetics. The exergy destruction of each component and process
in a finned tube type, silica gel/water working paired-adsorption chiller was estimated. The results
showed that external loss was significantly reduced at the expense of internal loss. The mass recovery
cycle reduced the total loss to 60.95 kJ/kg, which is −2.76% lower than the basic cycle. In the heat
recovery cycle, exergy efficiency was significantly enhanced to 23.20%. The optimum value was
0.1248 at a heat recovery time of 60 s. The combined heat and mass recovery cycle resulted in an
11.30% enhancement in exergy efficiency, compared to the heat recovery cycle. The enhancement
was much clearer when compared to the basic cycle, with 37.12%. The observed dependency on heat
recovery time and heating temperature was similar to that observed for individual mass recovery
and heat recovery cycles.

Keywords: adsorption chiller; mass recovery; heat recovery; exergy efficiency; exergy loss

1. Introduction

Adsorption cooling systems (ACS) are considered a promising solution for the shortcomings of
vapor compression refrigerators. ACS can be driven by low-grade heat sources (60–90 ◦C) such as
solar energy, industrial waste heat, or exhaust heat from engines. They can also utilize eco-friendly
refrigerants like water, methanol or ethanol. However, widespread application of ACS has been limited
by its currently low thermal performance and bulky size.

In basic operating mode, the system suffers from a low coefficient of performance (COP) and low
specific cooling power (SCP). To enhance performance, a number of advanced operating cycles have
been developed, including a heat recovery cycle [1–3], a mass recovery cycle [4–7], and a combined
heat and mass recovery cycle [8–10].

In our previous studies [11,12], the relative contribution of each recovery cycle for a range of heat
source temperatures and cycle times was closely examined. The results showed that the mass recovery
enhanced both COP and SCP by up to 24% and 37.5% at 60 ◦C, respectively. The enhancements in
COP and SCP were 5.0% and 16.0% at a hot water temperature of 90 ◦C. The mass recovery was
more significant at a low heating temperature than at a high heating temperature. The heat recovery
increased COP by 12.56%, but reduced SCP by 10.84% at 60 ◦C, while a heat source of 90 ◦C increased
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COP by 11.83% and reduced SCP by 5.96%. The heat recovery process enhanced the COP but penalized
the SCP, especially at low heating temperatures and short cycle times.

The energy analyses were based on the first law of thermodynamics [3,4,6,12], but the entropy
or exergy analyses were based on the second law of thermodynamics. Meunier et al. [13,14] studied
the effect of thermal coupling entropy production and other internal irreversibility on the COP.
They introduced the concepts of external and internal thermal coupling entropy productions; the former
is the entropy production between the adsorber and the heat reservoir, and the latter is due to the
heat recovery phases. Pons et al. [1] introduced an entropic mean temperatures model for the heat
recovery and thermal regeneration adsorption cycles with internal mass recovery. The entropic
diagram was developed to examine the thermodynamic differences in the two cycle types. However,
these approaches did not give any quantitative or qualitative assessment of the exergy losses occurring
in the various components of the system [15].

An exergy analysis supplies the details of energy degradation for each process and component.
The primary aim of an exergy analysis is to provide the causes and true magnitudes of exergy
losses [16]. Until now, exergy analyses have mainly been conducted to investigate the basic adsorption
cooling cycle [17–20], and rarely for advanced cycles. Moreover, the existing exergy analyses of
advanced cycles have been based on the rough lumped model. Baker [21] introduced an energy
and exergy model to evaluate the theoretical limit of the ideal thermal regeneration adsorption cycle.
The performance of zeolite-water and silica gel-water pairs was examined over a range of maximum bed
temperatures. The zeolite-water system showed a larger potential to enhance COP, by implementing
thermal regeneration.

The heat recovery and mass recovery cycles are considered to be effective and simple methods for
improving the thermal performance of ACS. However, there has been no study on the exergy analysis
of the advanced cycles, especially based on a rigorous analysis of the sorption bed. Note that our recent
research on the basic cycle showed that the rigorous results of the CFD model in sorption beds were
different from those of the conventional lumped model, by approximately 15.95%, 73.8%, and 16.33%
of the COP, SCP and exergy efficiency, respectively [20].

This study aims to investigate the cycle performance with mass recovery, heat recovery and the
combined heat and mass recovery cycles, by exergy analysis, and compare them with those of the
basic cycle to further illustrate their advantages and disadvantages. The sorption beds were rigorously
modeled and the effects of heating temperature and heat recovery times were also examined.

2. Numerical Analysis

For a continuous cooling supply, multiple beds, usually in the form of two-bed systems,
are commonly employed in ACS. The system consists of two adsorbers, one condenser, one evaporator,
and connecting valves, as shown in Figure 1. Figure 2 shows the schematics of a transient
two-dimensional numerical model used to solve the heat and mass transfer kinetics of a finned tube
type, silica gel/water working paired-adsorption chiller. The parameter values and typical operating
conditions are shown in Table 1. The details of the assumptions, governing equations, boundary
conditions, numerical approach and their validation are available in our previous work [12,20,22].
Thus, this study shortly describes the necessary hypotheses and governing equations for the
mathematical model.

Table 1. Parameter values and working conditions.

Parameter Symbol Values

Fin Pitch Zo 3 mm
Fin Height Lo 10 mm

Fin Thickness δ 0.4 mm
Inner Diameter of Metal Tube Di 10 mm
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Table 1. Cont.

Parameter Symbol Values

Outer Diameter of Metal Tube Do 12 mm
Particle Diameter dp 200 µm

Evaporator Temperature Teva 15 ◦C
Condenser Temperature Tcon 30 ◦C

Cooling Temperature TL 30 ◦C
Heating Temperature TH 60 ◦C~90 ◦C

Average Fluid Velocity uf 1 m/s
Density of Adsorbent ρb 761 kg/m3

Specific Heat of Adsorbent Cp.b 920 J/kgK
Thermal Conductivity of Adsorbent kb 0.198 W/mK

Heat of Adsorption ∆H 2.76 × 106 J/kg
Porosity of the Particle εp 0.43

Porosity of the Bed εb 0.36
Cycle Time tcycle 840 s

Mass Recovery Time tmrc 4 s
Heat Recovery Time thrc ≤ 90 s
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2.1. Assumptions

The mathematical modeling was established based on the following assumptions:

• The adsorbent particles are all spherical with uniform size and porosity.
• The refrigerant vapor is an ideal gas while the adsorbed phase is a liquid.
• The thermo-physical properties of materials are constant except for the density of the refrigerant gas.
• The adsorbed and vapor phases are in local thermal equilibrium.
• The flow in the adsorption bed is axisymmetric.
• There is no heat loss through the chamber wall to the environment.
• The condenser and evaporator are idealised with a constant pressure and temperature during

all processes.
• The thermochemical, kinematic and potential exergy are neglected.
• Neglecting the heat losses in the ducts and valves.
• The refrigerant is not to be sub-cooled in the condenser and not to be super-heated in the evaporator.
• The exergy destroyed in the metallic parts of the condenser/evaporator and in the secondary heat

transfer fluids are negligible.
• The process in the expansion valve is considered to be isenthalpic.

2.2. Energy Analysis

The adsorption equilibrium for Type-RD silica gel/water working pair can be expressed by
Equations (1)–(3):

q∗ = A(Ts)

(
P
P0

)B(Ts)

(1)

A(Ts) = A0 + A1Ts + A2T2
s + A3T3

s (2)

B(Ts) = B0 + B1Ts + B2T2
s + B3T3

s (3)

The numerical values of A0–A3 and B0–B3 were obtained from the experimental data reported by
Khan et al. [23].

Energy balance for the adsorption bed, finned tube and heat transfer fluid are shown in
Equations (4)–(6):

ρcp
∂Ts

∂t
+∇ ·

(
ρvcpv

→
uvTs

)
= ∇ · (ks∇Ts) + ρs∆H

∂q
∂t

(4)

ρmcpm
∂Tm

∂t
= ∇ · (km∇Tm) (5)

ρ f cp f
∂T f

∂t
+

∂
∂Z

(
ρ f cp, f u f T f

)
=

∂
∂Z

(
k f
∂T f

∂Z

)
+

4
Di

h
(
T f ,R=Ri − T f

)
(6)

2.3. Exergy Analysis

Exergy analysis is to determine the amount of exergy destroyed in each component and process,
the total exergy destroyed and the exergetic efficiency of the system. Meunier et al. [13] introduced
the concepts of external and internal thermal coupling entropy production. Three sources of internal
entropy production were identified: (i) desuperheating of the desorbed vapor from the adsorption
equilibrium temperature Tbed to the condenser temperature Tcon; (ii) throttling of the compensated
water from the condenser pressure Pcon to the evaporator pressure Peva; and (iii) superheating of
the vapor from the evaporator temperature Teva to the Tbed. Similarly, in the present work, we used
the external loss ED,ext, defined as the exergy loss due to the thermal coupling between adsorbers
and cooling/heating water, and the internal loss ED,int, defined as the exergy loss during the heat
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and/or mass recovery phase. The other exergy losses ED,other occur in the condenser, expansion valve
and evaporator.

The exergy balance for the desorption bed can be expressed by Equations (7)–(11):

.
ED,bed =

∑(
1−

T0

TH

) .
Qbed +

∑
in

.
mψ−

∑
out

.
mψ−

d
dt
(U − T0S) (7)

.
Qbed =

∫
Vm

ρmcpm
∂Tm

∂t
dVm +

∫
Vs

ρs
(
cps + qcpa

)∂Ts

∂t
dVs +

∫
Vs

ρs
∂q
∂t

hv(Ts)dVs +

∫
Vs

ρs∆H
∂q
∂t

dVs (8)

∑
in

.
mψ−

∑
out

.
mψ =

∫
Vs

ρs
∂q
∂t

(hv(Ts) − T0sv(Ts))dVs (9)

dU
dt

=

∫
Vm

ρmcpm
∂Tm

∂t
dVm +

∫
Vs

ρs
(
cps + qcpa

)∂Ts

∂t
dVs +

∫
Vs

ρs
∂q
∂t

uv(Ts)dVs +

∫
Vs

ρs∆H
∂q
∂t

dVs (10)

dS
dt =

∫
Vm

ρmcpm
∂ ln(Tm)

∂t dVm +
∫

Vs

ρs
(
cps + qcpa

)
∂ ln(Ts)
∂t dVs +

∫
Vs

ρs
∂q
∂t sv(Ts)dVs +

∫
Vs

ρs
∆H
Ts

∂q
∂t dVs (11)

The exergy balance for the adsorption bed can be expressed by Equations (12)–(16):

.
ED,bed =

∑(
1−

T0

TL

) .
Qbed +

∑
in

.
mψ−

∑
out

.
mψ−

d
dt
(U − T0S) (12)

.
Qbed =

∫
Vm

ρmcpm
∂Tm
∂t dVm +

∫
Vs

ρs
(
cps + qcpa

)
∂Ts
∂t dVs

+
∫

Vs

ρs
∂q
∂t hv(Ts)dVs +

∫
Vs

ρs
(
∆H + cpv[Ts − Teva]

)∂q
∂t dVs

(13)

∑
in

.
mψ−

∑
out

.
mψ =

∫
Vs

ρs
∂q
∂t

(hv(Teva) − T0sv(Teva))dVs (14)

dU
dt =

∫
Vm

ρmcpm
∂Tm
∂t dVm +

∫
Vs

ρs
(
cps + qcpa

)
∂Ts
∂t dVs

+
∫

Vs

ρs
∂q
∂t uv(Ts)dVs +

∫
Vs

ρs
(
∆H + cpv[Ts − Teva]

)∂q
∂t dVs

(15)

dS
dt =

∫
Vm

ρmcm
∂ ln Tm
∂t dVm +

∫
Vs

ρs
(
cps + qcpa

)
∂ ln Ts
∂t dVs

+
∫

Vs

ρs
∂q
∂t sv(Ts)dVs +

∫
Vs

ρs
[

∆H
Ts

+ cpv ln
(

Ts
Teva

)]∂q
∂t dVs

(16)

The exergy balance for the condenser can be expressed by Equations (17)–(19):

.
ED,con =

∑(
1−

T0

Tcon

) .
Qcon +

∑
in

.
mψ−

∑
out

.
mψ (17)

.
Qcon =

∫
Vs

ρs
∂q
∂t

(
cpv[Ts − Tcon] + L(Tcon)

)
dVs (18)

∑
in

.
mψ−

∑
out

.
mψ =

∫
Vs

ρs
∂q
∂t

([hv(Ts) − hl(Tcon)] − T0[sv(Ts) − sl(Tcon)])dVs (19)
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The exergy balance for the evaporator can be expressed by Equations (20)–(22):

.
ED,eva =

∑(
1−

T0

Teva

) .
Qeva +

∑
in

.
mψ−

∑
out

.
mψ (20)

.
Qeva =

∫
Vs

ρs
∂q
∂t

(
cpl[Teva − Tcon] + L(Teva)

)
dVs (21)

∑
in

.
mψ−

∑
out

.
mψ =

∫
Vs

ρs
∂q
∂t

([hl(Tcon) − hv(Teva)] − T0[sl(Teva) − sv(Teva)])dVs (22)

The exergy balance for the expansion valve can be obtained by Equation (23):

.
ED,val =

∑
in

.
mψ−

∑
out

.
mψ =

∫
Vs

(
ρs
∂q
∂t

T0[sl(Tcon) − sl(Teva)]

)
dVs (23)

The exergy balance for the overall system can be expressed by Equation (24):

ED = ED,bed + ED,con + ED,val + ED,eva (24)

where ED,bed is the summation of exergy destruction in the adsorption bed

ED,bed = ED,mrc + ED,hrc + ED,preh + ED,heat + ED,prec + ED,cool = ED,int + ED,ext (25)

ED,int in Equation (25) denotes the exergy loss during the heat and/or mass recovery phases

ED,int = ED,mrc + ED,hrc (26)

and ED,ext denotes the exergy loss during the heating the cooling phases by external heat sources

ED,ext = ED,preh + ED,heat + ED,prec + ED,cool (27)

The input exergy supplied by heating water can be obtained using Equation (28):

Ein = E(Qin) = E
(
Qpreh

)
+ E(Qheat) (28)

2.4. Performance Indices

The cycle exergetic efficiency can be expressed as Equation (29) [17]:

ηe = 1−
ED

Ein
(29)

3. Results and Discussion

Firstly, an energy analysis with the governing equations subject to the given boundary conditions
was conducted using STAR-CCM + v9.04, a commercial CFD program, and additional user supplied
codes. The grid and time step dependence were thoroughly tested. The computation time was
approximately 24 h for a typical model running on an Intel® Xeon® CPU E3-1275 v3 @3.50GHz.

Secondly, based on the information obtained from the energy analysis, an exergy analysis was
performed using MATLAB code to estimate the exergy destruction in each process and component,
and then the exergy efficiency of the system was evaluated.
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3.1. Effect of Recovery Strategy

The results of the exergy analysis for the typical working conditions in Table 1 are given in Figure 3
and Table 2. Exergy losses in each process for the different adsorption cooling cycles including the
basic cycle, mass recovery cycle, heat recovery cycle, and the combined heat and mass recovery cycle,
were compared.
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Table 2. Exergy balance for different adsorption cooling cycles.

Cycle thrc
(s)

tmrc
(s)

Specific Exergy
(kJ/kg)

ηe
(−)

eD,int eD,ext eD,other eD eeva

Basic Cycle 0 0 0.00 48.28 14.40 62.68 7.06 0.1013
Mass Recovery Cycle 0 4 0.31 44.57 16.06 60.95 8.33 0.1203
Heat Recovery Cycle 60 0 9.87 24.09 12.35 46.31 6.60 0.1248

Combined Heat and Mass
Recovery Cycle 60 4 6.23 26.88 15.09 48.19 7.77 0.1389

3.1.1. Basic Cycle

Figure 3 shows that all of the exergy losses in the basic cycle belong to the external losses because
the adsorber is totally heated up from the coldest state (or cooled down from the hottest state) by
heating (or cooling) water supplied to the system. Due to the temperature difference between the
adsorber and external heat source, the exergy loss of the adsorber is the largest accounting for nearly
77% of the total exergy losses of the system. Therefore, the exergy efficiency of the basic cycle is the
lowest, at 0.1013, compared to the other advanced cycles. This is in good agreement with our previous
findings [20].

3.1.2. Mass Recovery Cycle

During the mass recovery cycle, the desorbed hot vapor moves directly from the hot bed to the
cold bed. It smooths out the temperature difference between the heat transfer fluid (HTF) and the
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adsorber, and leads to shorter pre-heating and pre-cooling processes, and a larger amount of circulating
refrigerant. Thus, smaller external loss is expected.

Usually the mass recovery time is very short, here 4s; thus, the amount of the internal loss,
0.31 kJ/kg, is very small compared to the external loss of 44.57 kJ/kg. The numerical results show that
the mass recovery cycle reduces the external loss to 44.57 kJ/kg, but increases eD,other to 16.06 kJ/kg,
which corresponds to −7.68% and +11.53%, respectively, compared to the basic cycle.

Overall, the total loss decreases to 60.95 kJ/kg (−2.76%). The reason is that the mass recovery
results in a larger amount of water vapor to be desorbed/adsorbed during the desorption/adsorption
process. Therefore, the useful output exergy, eeva, is enhanced by 18% (from 7.06 kJ/kg to 8.33 kJ/kg),
and the exergy efficiency, ηe, is improved to 0.1203.

The internal exergy losses in the hot and cold adsorbers are different. Because the internal
loss equals the exergy of the outflow vapor, the internal loss in the hot adsorber is relatively small
(9.2 × 10−3 kJ/kg or 0.07% of total loss). On the other hand, the internal loss in the cold adsorber comes
from the inflow exergy, and is much higher (58.5 × 10−3 kJ/kg or 0.44% of total loss) than that of the hot
adsorber. This observation is in accord with [1].

3.1.3. Heat Recovery Cycle

During the heat recovery phase, the external loss (eD,ext = 24.09 kJ/kg) is reduced to half of the
basic cycle (48.28 kJ/kg). The internal loss, eD,int = 9.87 kJ/kg, is about half of the external loss, and the
total loss, eD = 46.31 kJ/kg, equals one-third of the basic cycle. As a consequence, the ηe is significantly
enhanced, to 23.20%. Note that the internal loss in the heat recovery cycle relates to the amount of
recovered heat, thus it is much higher than that of the mass recovery cycle.

The internal loss in the hot adsorber (15.76%) during the heat recovery phase is about three times
higher than in the cold adsorber (5.55%). This is because the drop in temperature in the hot adsorber is
larger than the increase in temperature in the cold adsorber in the basic cycle for the same operating
conditions of pressure and temperature. The internal loss during the heat recovery phase significantly
reduces the external exergy loss in the pre-heating (21.30% → 9.42%) and pre-cooling (28.48% →
11.56%) phases, because the pre-heating/cooling time is shortened by introducing the heat recovery.

3.1.4. Combined Heat and Mass Recovery Cycle

The combined heat and mass recovery cycle exploits the merits of both former advanced cycles.
The exergy losses are shown in Table 2, compared to the basic cycle and the former advanced cycles.
The external loss (26.88 kJ/kg) and the other exergy losses (15.09 kJ/kg) are slightly higher than those
of the heat recovery cycle, but the internal loss (6.23 kJ/kg) decreased to two-thirds that of the heat
recovery cycle. Thus, the overall total loss (48.19 kJ/kg) is slightly higher than the heat recovery cycle.
Because the useful exergy is remarkably improved (17.8%, from 6.60 to 7.77 kJ/kg), the ηe = 0.1389 is
enhanced up to 11.30% compared to the heat recovery cycle (ηe = 0.1248). The enhancement is much
clearer when compared to the basic cycle (ηe = 0.1013) with 37.12%.

As in the mass recovery cycle, the internal loss caused by the mass recovery phase in the cold
adsorber (0.55% of total loss) is almost five times higher than that of the hot adsorber (0.1%). In contrast,
the internal loss due to the heat recovery phase in the hot adsorber (10.61%) is about six times that of
the cold adsorber. The external loss during the pre-heating/cooling periods decreased considerably,
thanks to the very short duration of these phases, with 4.15% and 6.67% of exergy loss for the
pre-heating phase and the pre-cooling phase, respectively. The heating/cooling processes are the
dominant processes in the external loss, accounting for 25.19% and 19.76%, respectively. Because the
mass recovery results in a larger amount of cyclic water vapor, the other internal exergy losses including
condensation, throttling and evaporation were also increased.
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3.2. Effect of Heating Temperature

3.2.1. Mass Recovery Cycle

Figure 4a shows the exergy losses and exergy performance of the mass recovery cycle at different
heating temperatures. The dependency on the heating temperature appears proportional to the external
loss, but reversely proportional to the internal loss due to the reduction in the amount of water vapor.
Because the desorption process is faster at high heating temperatures, the amount of water vapor
desorbed/adsorbed during the mass recovery phase decreases as the heating temperature increases.
Higher internal loss and lower external loss are expected for the larger amount of recovered vapor.
Because the major exergy loss comes from the external loss, the total exergy loss increases, and thus ηe

deceases, as the temperature increases. That is the reason why the mass recovery is less influential at
low heating temperature, as reported in our previous work [12].
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3.2.2. Heat Recovery Cycle

The influence of the heating temperature on the exergy losses and performance of the heat recovery
cycle at a fixed heat recovery time of thrc = 60 is examined in Figure 4b. Both the internal and external
exergy losses increased as the heating temperature increased. For instance, the internal, external and
total exergy losses increased by almost four times when the heating temperature increased from 60 ◦C
to 90 ◦C.

The increase in internal loss comes from the larger amount of heat recovered at the higher heating
temperature. Meanwhile, the increase in external loss comes from the greater cycling mass of refrigerant
vapor. At a high heating temperature, the amount of water vapor, which would be desorbed during the
desorption process and then be re-adsorbed during the adsorption process, is larger than that at a low
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heating temperature, resulting in the bigger mass of refrigerant circulation in a cycle. The greater the
cycling mass of refrigerant, the more input heat energy needs to be supplied. Accordingly, the external
loss increases and the total loss climbs, which contributes to a decrease in ηe.

3.2.3. Combined Heat and Mass Recovery Cycle

Figure 4c shows the system performance at different heating temperatures. The mass recovery
time and heat recovery time were fixed at 4 s and 60 s. The internal exergy losses of the combined
heat and mass recovery cycle are the summation of the internal loss from mass recovery and the loss
from the heat recovery phase. The internal loss of the mass recovery phase decreased with the higher
heating temperature, while the internal loss of the heat recovery phase showed the opposite direction.
The reason was explained in Sections 3.2.1 and 3.2.2. However, the magnitude of the internal loss in the
mass recovery phase was much smaller than that in the heat recovery phase. Consequently, the total
internal loss increased with increasing heating temperature, as shown in Figure 4d. For example,
the internal loss decreased from eD,int = 0.32 kJ/kg to eD,int = 0.3 kJ/kg, whereas the external loss
increased from 2 kJ/kg at TH = 60 ◦C to 8.43 kJ/kg at TH = 90 ◦C, respectively. Thus, the ηe sharply
decreased by 31.71%.

3.3. Effect of Heat Recovery Time

3.3.1. Heat Recovery Cycle

Figure 5a shows the variation in the exergy loss and ηe along with heat recovery time. As the
recovery time increases, the internal loss increases, which leads to a reduction in the external loss and
the total loss. The external loss is reduced to a half after around thrc = 60 s. Note that the extension of
the heat recovery time shortens the effective adsorption/desorption periods, which results in a decrease
in useful exergy. Thus, the ηe increases to a peak of 0.1248 at thrc = 60 s, and then decreases as the heat
recovery time increases. This observation on optimum heat recovery time is consistent with our earlier
results based on energy analysis [12].
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3.3.2. Combined Heat and Mass Recovery Cycle

Figure 5b shows the exergy losses and performance of the combined heat and mass recovery cycle
at different heat recovery times. Due to the short mass recovery time, the internal loss is mainly caused
by the heat recovery phase. The longer the heat recovery time, the larger the amount of recovered heat
and the higher the observed internal loss is. However, the external loss and the total loss decrease
as the recovery time increases. Similar to the heat recovery cycle, the ηe reached an optimal value at
thrc = 60 s.
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4. Conclusions

This study investigated cycle performance with mass recovery, heat recovery and combined
heat and mass recovery cycles using exergy analysis. The well-established numerical analysis of a
finned-tube type adsorption chiller was extended to an exergy analysis. The type, location, magnitude
and relation between the possible exergy losses occurring in each type of cycle were analyzed.
The sorption beds were rigorously modeled and the effect of heating temperature and heat recovery
time were also closely examined. The following results were obtained.

1. Mass recovery cycle: The shorter pre-heating and pre-cooling phases, and the larger amount of
circulating refrigerant, reduced the external exergy losses to 44.57 kJ/kg, but increased eD,other to
16.06 kJ/kg, which corresponds to −7.68% and +11.53%, respectively, compared to the basic cycle.
Overall, the total exergy losses decreased to 60.95 kJ/kg (−2.76%). As the temperature increased,
the total exergy loss increased and thus, ηe deceased. This explains why the mass recovery is less
influential at low heating temperatures.

2. Heat recovery cycle: The external loss (eD,ext = 24.09 kJ/kg) was reduced to half of the basic cycle
(48.28 kJ/kg) and the internal loss, eD,int = 9.87 kJ/kg, was about half of the external loss. The total
exergy losses, eD = 46.31 kJ/kg, were equal to one-third of the basic cycle. As a consequence, the ηe

was significantly enhanced, to 23.20%. The ηe showed an optimum value of 0.1248 at thrc = 60 s,
and both the internal and external exergy losses increased as the heating temperature increased.

3. Combined heat and mass recovery cycle: The increase in external exergy losses was compensated
by the decrease in internal exergy losses, and thus, the total loss was slightly higher than the heat
recovery cycle. However, the useful exergy had a remarkable improvement (17.8%, from 6.60 to
7.77 kJ/kg), which resulted in 11.30% enhancement of ηe = 0.1389 compared to the heat recovery
cycle (ηe = 0.1248). The enhancement is much clearer when compared to the basic.

4. cycle (ηe = 0.1013) with 37.12%. The dependency on heat recovery time and heating temperature
was similar to the observation of the individual mass recovery and heat recovery cycles.
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Abbreviations

Nomenclature
cp Specific heat (J/kg K)
dp Particle diameter (µm)
D Diameter (mm)
E Exergy (J)
e Specific exergy (kJ/kg)
∆H Heat of adsorption (J/kg)
h Heat transfer coefficient (W/m2 K)
k Thermal conductivity (W/m K)
Lo Length (mm)
ṁ Mass flow rate (kg/s)
P Pressure (Pa)
Q Heat (J)
q Water uptake (kg/kg)
S Entropy (J/K)
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T Temperature (K)
U Internal energy (J)
V Volume (m3)
t Time (s)
u Velocity (m/s)
Zo Fin pitch (mm)
Greek symbols
δ Fin thickness (mm)
ε Porosity (-)
η Exergy efficiency (-)
ρ Density (kg/m3)
ψ Mass exergy (J)
Subscripts
a Adsorbed vapor
bed Adsorbent bed
con Condenser
cool Cooling process
cycle Cycle
D Destruction
ext External
eva Evaporator
H Heating fluid
heat Heating
hrc Heat recovery
i Inner tube diameter
in Inlet
int Internal
L Cooling fluid
l Liquid phase
m Metallic metal
mrc Mass recovery
o Outer tube diameter
other Other
out Outlet
prec Pre-cooling
preh Pre-heating
s Solid adsorbent
v Vapor
val Valve
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