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Abstract: The problem of controlling a spreading process in a two-layer multiplex networks in such
a way that the extinction state becomes a global attractor is addressed. The problem is formulated
in terms of a Markov-chain based susceptible-infected-susceptible (SIS) dynamics in a complex
multilayer network. The stabilization of the extinction state for the nonlinear discrete-time model by
means of appropriate adaptation of system parameters like transition rates within layers and between
layers is analyzed using a dominant linear dynamics yielding global stability results. An answer
is provided for the central question about the essential changes in the step from a single to a
multilayer network with respect to stability criteria and the number of nodes that need to be controlled.
The results derived rigorously using mathematical analysis are verified using statical evaluations
about the number of nodes to be controlled and by simulation studies that illustrate the stability
property of the multilayer network induced by appropriate control action.

Keywords: multilayer complex networks; stability; spreading control

1. Introduction

Multiplex networks are a collection of coupled networks placed in different layers with each
layer having the same set of nodes but not necessarily the same topology. Layer interactions are
given via counterpart nodes of each network layer. Multilayer networks build key elements in the
structure of many modern technological systems including social cyber and computer networks as
well as in fundamental natural systems determining the functioning of gene regulation and brain
dynamics [1–6]. A central advantage in comparison to single-layer networks is that each node can
have different states in the different networks. This enables them e.g., to analyze the spreading of
information or computational viruses among different social or cyber networks [7], thus enabling
the identification, understanding and possibly the manipulation of the corresponding mechanisms
associated to each layer and between layers.

Spreading processes in complex networks have attracted recent attention for the purpose of
analyzing the intertwined dynamics of epidemics [8–13] or information transmission in [14–18].
The control of such problems has to address fundamental questions as (i) which parameters of the
system are amenable to manipulation and (ii) which nodes must be actively controlled. The latter
question goes in particular in hand with the aim to develop control strategies with minimum need
of implementation costs. In multilayer networks the additional question arises if nodes need to be
controlled in all layers or just in some of them or maybe only in one single layer, as long as the nodes
to be controlled are defined accordingly.

The question of network control has been addressed on one side using classical control theory
methods as controllability analysis [19–26] including statistic evaluations of the number of nodes to
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be controlled in networks of certain structures [11,27–33]. Given that nonlinear system controllability
analysis is much more involved than for linear systems [34] controllability studies are typically
focussing on linear models or the linearization about some equilibrium point. Only a few recent
studies explicitly considered nonlinear controllability and control design approaches in complex
networks [25,26]. It should be mentioned that even though network controllability ensures that
a desired state can be reached or stabilized, it does not necessarily guide the way for the design
of a decentralized control but typically leads to centralized control strategies. On the other hand,
the control of networks has been explicitly addressed using stabilization and stability analysis leading
the way to the choice of nodes to be controlled with implicit decentralized parametric control
strategies [35–38]. In particular, the approach followed in [36–38] yields global stability assessments
by means of the derivation of a global dominant linear dynamics. Furthermore, optimization based
approaches for parameter adaptation and node or link removal have been widely discussed, as has
been summarized in [39].

In the present study the control of a spreading process in a complex multilayer network
is addressed on the basis of the classical Markov-based susceptible-infected-susceptible (SIS)
dynamics [40–44] in a multilayer version that has been adapted from [7] in such a way that the
unit polytope is an invariant set for the dynamics. Following the global stability analysis and
parametric control design studies for SIS processes in homogenous and inhomogeneous single-layer
complex networks [36,38] and extensions of it including quarantine [37,45] a decentralized parametric
control strategy is developed providing sufficient conditions for global stability of the extinction
state without altering the topology of the networks as is suggested in other studies related to
adaptive networks [39,46]. Instead of involving computationally expensive optimization procedures,
simple analytic measures are provided which can be quickly determined for a given network
topology and parameter set. Accordingly, the present result provides (i) a solution to the problem of
designing decentralized spreading control strategies with global stability assessment and without huge
computational effort, which to the knowledge of the authors is still an open question, and (ii) presents
an extension of the approaches in [36–38] to the case of two-layer multiplex networks. It turns
out that the step from a single layer to a two-layer network allows to clearly identify some of the
main challenges when considering multiplex networks. In particular, having in mind the nonlinear
dynamics in each network and its non-trivial interplay between networks it is clear from the theory of
input-to-state stability [47,48] that it is not sufficient that both nonlinear systems are asymptotically
stable for their own but the specific interconnection needs to satisfy some additional, small-gain-like
criteria. A sufficient criterion ensuring the asymptotic stability of the complete multiplex networks and
its differentiation to the stability criteria for each network on its own is a central result that is derived.
Based on this criterion it is highlighted how the number of nodes that need to be controlled changes
when the interconnection of two networks is considered. Besides a rigorous mathematical derivation
of the results some statistical analysis is provided to show the expected variation in the number of
nodes that need to be controlled for some illustrative setups.

The paper is organized as follows: In Section 2 the problem formulation is stated, in Section 3 the
system analysis is presented along with the main mathematical results of this work. Control design,
a statistical analysis of the number of nodes to be controlled, and simulations to corroborate our results
are presented in Sections 4 and 5, respectively. Finally, conclusions are presented in Section 6.

2. Problem Formulation

Consider a two layer network of any topology with adjacency matrices given by A and B.
Each network has the same set of N nodes, and the adjacency matrix associated to network A is
defined as A = [aij], where aij = aji = 1 if nodes i and j are connected and zero otherwise (that means,
we consider non-directed graphs), the adjacency matrix associated to network B is defined in the same
way as B = [bij]. Any node i in network A is connected with node i in the network B, as it is shown in
Figure 1.
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Network B

Network A

Figure 1. Networks A and B of arbitrary topology with each node i in network A being connected with
its equivalent node i in network B.

Using a slightly modified version of the model defined in [7,8], the underlying process for every
node in both layers of the network is modeled as a discrete time SIS Markov process. A node i can
be in state I (infected) with probability pAi(t) (or pBi(t)) at time t ∈ N0, or in state S (susceptible)
with probability 1− pAi(t) (or 1− pBi(t)). The probabilities pAi(t) and pBi(t) then correspond to the
solutions of the following dynamical system:

pAi(t + 1) = (1− µAi)pAi(t) + (1− qAi(t))(1− pAi(t)),

pBi(t + 1) = (1− µBi)pBi(t) + (1− qBi(t))(1− pBi(t)),

pki(0) = pki0, k = {A, B}, i = 1, 2, . . . , N.

(1)

In the preceding Equations µki is the recovery probability of node i in the network k ∈ {A, B}, qki(t) is
the probability that node i in network k is not infected by some neighbor in network A or B, which is
given by

qAi = ϕAi(PA, PB) :=
N

∏
j=1

(1− βAiaij pAj)(1− γAi pBi),

qBi = ϕBi(PA, PB) :=
N

∏
j=1

(1− βBibij pBj)(1− γBi pAi),

(2)

with Pk = [pk1, . . . , pkN ]
T for k = A, B. The parameters βAi and βBi represent the transmission

probabilities of the node i in each layer-network, and γAi and γBi are the transmission probabilities of
a node i from B to A and from A to B, respectively.

Note that in Equations (1) and (2)

0 ≤ pki(t), µki, qki(t), γki, βki, pki0 ≤ 1, k = {A, B}, i = 1, 2, . . . , N.

Additionally, in order to propose a control mechanism, we consider that each node has a manipulable
variable uki(t) (k ∈ {A, B}), which is amenable for control. In the present study, we consider that the
amenable variables are taken from the set {γAi, βAi, γBi, βBi; i = 1, . . . , N}.

The problem addressed in the following consists in determining the m ≤ N nodes whose
interaction parameters γki, βki have to be adapted in order to ensure the global exponential stability of
the extinction state, i.e., such that for all pki0 ∈ [0, 1] there are constants mki ≥ 1, α ∈ (0, 1) such that

pki(t) ≤ mkiα
t pki0. (3)
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3. System Analysis

The fixed points p∗ki, k = {A, B}, i = 1, . . . , N associated with the dynamics (1) for some constant
values µki, γ∗ki, and β∗ki are determined by substituting pki(t + 1) = pki(t) = p∗ki into (1). After some
algebra it follows that

p∗ki =
1− q∗ki

µki + 1− q∗ki
, k = {A, B}, i = 1, . . . , N, q∗ki = ϕki(P∗A, P∗B) (4)

with ϕki defined in (2) and P∗k = [p∗k1, . . . , p∗kN ]
T . Note that p∗ki = 0 for all k = {A, B}, i = 1, . . . , N

is a fixed point given that this condition implies that qki = 1. This fixed point is referred to as
extinction state.

Given that model (1) represents the evolution of probabilities it is important to ensure that
all solutions for pki are contained in the unit hypercube P = [0, 1]2N . This is established in the
following Lemma.

Lemma 1. The set P = [0, 1]2N is a positively invariant set for the dynamics (1).

Proof. Let pki(t) ∈ [0, 1], k = {A, B}, i = 1, . . . , N. From (1) it follows that

pki(t + 1) = (1− µki)pki(t) + (1− qki(t))(1− pki(t)) ≤ pki(t) + (1− pki(t)) = 1

and

pki(t + 1) ≥ (1− µki)pki(t) ≥ 0.

Next, sufficient conditions for the (global in P) exponential stability of the extinction state
(PA, PB)

T = (0, 0)T are presented in the following Theorem.

Theorem 1. Consider the dynamics (1) on a two-layer network with adjacency matrices A and B. The extinction
state (PA, PB) = (0, 0) is globally exponentially stable in the hypercube P if

σ(H) < 1, (5)

where σ(·) is the spectral radius, and the matrix H is defined as follows

H =

[
I−MA + BAA GA

GB I−MB + BBB

]
,

where Mk = diag(µki), Bk = diag(βki), Gk = diag(γki) (k ∈ {A, B}), and I is the identity matrix.

Proof. The exponential stability is assessed through the determination of a linear dominant dynamics,
whose stability features imply the desired result similar to the development in [36,37,45].
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Note that for all pki ∈ [0, 1], k = {A, B}, i = 1, . . . , N it holds that

qAi =
N

∏
j=1

(1− βAiaij pAj)(1− γAi pBi)

≥
(

1−∑
j

βAiaij pAj

)
(1− γAi pBi)

= 1−∑
j

βAiaij pAj − γAi pBi + ∑
j

βAiaij pAjγAi pBi

where in the second step the Weierstrass product inequality [49] has been employed. It follows that

1− qAi ≤∑
j

βAiaij pAj + γAi pBi −∑
j

βAiaij pAjγAi pBi

≤∑
j

βAiaij pAj + γAi pBi.

Equivalently it holds that

1− qBi ≤
N

∑
j=1

βBibij pBj + γBi pAi.

Substitution of these inequalities into Equations (1) and taking into account that 0 ≤ 1− pki ≤ 1 holds
true it follows that

pAi(t + 1) ≤ (1− µAi)pAi(t) +
N

∑
j=1

βAiaij pAj(t) + γAi pBi(t),

pBi(t + 1) ≤ γBi pAi(t) + (1− µBi)pBi(t) +
N

∑
j=1

βBibij pBj(t).

(6)

The preceding Equations can be written in matrix form as[
PA(t + 1)
PB(t + 1)

]
≤
[

I−MA + BAA GA

GB I−MB + BBB

] [
PA(t)
PB(t)

]
≤ H

[
PA(t)
PB(t)

]
(7)

with I, Mk, Bk and Gk, k = A, B defined in the statement of Lemma 1. In virtue of (5) it follows that
there exists a constant α = σ(H) ∈ (0, 1) so that∥∥∥∥∥

[
PA(t + 1)
PB(t + 1)

]∥∥∥∥∥ < α

∥∥∥∥∥
[

PA(t)
PB(t)

]∥∥∥∥∥
implying the exponential stability (4) of the extinction state.

Remark 1. It should be noted at this place that according to the dynamics in (7) for the asymptotic stability of the
origin [PT

a , PT
B ]

T = 0 it is not sufficient to ensure the asymptotic stability in both sub-networks, what would be
ensured by analyzing the diagonal sub-matrices I−MK + BKK separately for K = A, B, but that it is required
to account explicitly for the particular interconnection structure and the associated transition probabilities
between sub-networks. This establishes a significant difference to the case of single-layer networks as considered
e.g., in [36–38]. Given that the solutions of the linear dynamics (7) bound the one for the nonlinear dynamics,
Theorem 1 is intrinsically connected with the input-to-state stability and the small-gain condition [47,48] for the
interconnection (1).
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4. Control Design

The next question to be addressed is how the sufficient condition established in Theorem 1 can be
used to design an efficient control strategy, and how the number of nodes to be controlled varies when
considering the interconnection of two networks. This question is addressed in the following Lemma.

Lemma 2. Let Nki, k = {A, B}, i = 1, . . . , N denote the number of neighbors of node i in network k.
For constant values µki, γ∗ki, and β∗ki, the extinction state is (globally in P = [0, 1]2N) exponentially stable if for
every node i in A and B it holds that

µAi > γ∗Ai + β∗Ai NAi, (8a)

µBi > γ∗Bi + β∗Bi NBi. (8b)

Proof. In virtue of Lemma 1, it is sufficient to show that the conditions (8) ensure that σ(H) < 1.
This is achieved by applying Geršgorin’s theorem [50] to the matrix H using an upper-bound estimate
for the spectral radius.

Let λ be an arbitrary eigenvalue of H. Recalling that all entries of the matrices A and B are
non-negative, Geršgorin’s theorem [50] implies the following inequalities

|λ| ≤ γ∗Ai + ∑N
j=1 β∗Aiaij + 1− µAi,

|λ| ≤ γ∗Bi + ∑N
j=1 β∗Bibij + 1− µBi.

Thus |λ| < 1 is satisfied if

|λ| < γ∗Ai + ∑N
j=1 β∗Aiaij + 1− µAi < 1,

|λ| < γ∗Bi + ∑N
j=1 β∗Bibij + 1− µBi < 1.

Rearranging and taking into account that the numbers of neighbors of node i in network A and B is
given by NAi = ∑N

j=1 aij, NBi = ∑N
j=1 bij, respectively, it follows that this condition is satisfied if

γ∗Ai +
N

∑
j=1

β∗Aiaij = γ∗Ai + β∗Ai NAi < µAi,

γ∗Bi +
N

∑
j=1

β∗Bibij = γ∗Bi + β∗Bi NBi < µBi,

for i = 1, 2, . . . , N. These inequalities correspond to the ones stated in (8).

Remark 2. The stability conditions (8) of the system basically state that the recovery rate of each node must be
higher than the rate with which it potentially receives infected messages or has contact with infected neighbors,
measured by the total amount of intra-layer contacts in each network k = {A, B} during one time interval,
i.e., βki Nki plus the inter-layer contacts γki during the same time interval.

Condition (8) can be used to determine which nodes should be controlled, i.e., for which nodes i
inequalities (8) are not satisfied in either of the networks A and/ or B and thus either of the rates γki or
βki should be adapted in such a way that γki < γ∗ki and/ or βki < β∗ki with γ∗ki, β∗ki chosen so that (8)
holds. This is summarized in the following corollary.

Corollary 1. The extinction state is (globally in P) exponentially stable if for all nodes i for which either of the
conditions in (8) does not hold the parameter γki and/ or βki are adapted so that the inequalities (8) are satisfied.
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Remark 3. It should be noted that the conditions of Corollary 1 are only sufficient and not necessary. Actually,
in specific scenarios the number of nodes for which the transmission parameters have to be adapted can be smaller.
Alternative (non-analytic) approaches to determine the nodes to be controlled would be e.g., using optimization
or genetic algorithms.

Remark 4. In comparison with the single-layer setup considered, e.g., in [36–38] the additional dependency on
γki, k = A, B introduces stronger conditions. This will most probably imply a higher number of nodes to be
controlled in the case of interconnecting the network with another one, i.e., the number of nodes that need to be
controlled to ensure an asymptotically stable interconnection will be larger then the sum of the numbers of nodes
that need to be controlled in each sub-network to achieve individual asymptotic stability. This is a particularly
important point highlighting a consequence of the complex interplay of two nonlinear dynamical systems pointed
out in Remark 1.

Remark 5. Conditions (8), as alternative to Corollary 1, also suggests as sufficient condition, to adapt the
parameters NAi and/or NBi. This adaptation requires disconnecting links from those nodes that do not satisfy
condition (8) in order to reach the extinction state, resulting in an equivalent method as the one proposed in
Adaptive Networks [39,46]. However, our approach keeps the network structure, modifying the parameters
associated with the interaction probabilities of the model, avoiding disconnecting nodes.

According to inequalities (8), a set of all possible scenarios for adaptation of parameters in every
layer and for every node is presented in Table 1. That means that every node could have a different set
of parameter to be controlled as shown in the Table, with the exception of those nodes that satisfied the
condition (8) that do not need to be controlled as is shown in scenario 1. We can notice that in scenario
2 the critical parameter (i.e., the parameter to be controlled) of node i, situated in layer k = {A, B},
is given by γki. For the scenario 5 we have several options and the criterion to be selected will depend
on the specific implementation costs varying with the particular case example at hand.

Note from Table 1 that it is not necessary for the nodes of any layer to be acquainted of the
structure and properties of the nodes of the other layer in order to control and eventually reach the
extinction state. This constitutes one of the virtues of non centralized control.

Table 1. Amenable control parameters for the nodes of every layer k = {A, B}.

Scenario Critical Parameter Satisfied Not Satisfied

1 - µki > γki + βki Nki -
2 γki µki − βki Nki ≥ 0 µki > γki + βki Nki
3 βki µki − γki ≥ 0 µki > γki + βki Nki
4 γki and βki - µki > γki + βki Nki

5 γki or βki
µki − βki Nki ≥ 0

µki > γki + βki Nkiµki − γki ≥ 0

5. Simulations

To corroborate the theoretical results, numerical simulations have been performed considering
a spreading process in a two-layer network with N = 105 nodes in each layer. In the simulations
performed, in order to verify that our results are independent of the topology, we have selected three
different types of networks: Barabási–Albert scale-free (BA type), Regular nearest-neighbor (R type)
and Small-World (WS type). Every network was built according to the methods discussed in [51],
and as it is stated in this reference, the WS network was constructed randomly rewiring a Regular
network with parameters shown in Table 2. As stated above, each node in layer A is connected to its
counterpart in layer B.
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Table 2. Construction parameters for networks Barábasi-Albert (BA), Regular (R) and Small-World (WS).

Network Parameters

BA1 m0 = 10, m = 2
BA2 m0 = 5, m = 3
R1 Every node is connected with 20 nearest neighbors.
R2 Every node is connected with 10 nearest neighbors.

WS1 Every node in R1 network was randomly rewired with probability 0.2.
WS2 Every node in R2 network was randomly rewired with probability 0.3.

For the subsequent analysis the parameter intervals shown in Table 3 were selected for µi, γi
and βi and every type of network in Table 2 and for every node i = 1, 2, . . . , N in such a way
that a considerable endemic response can be observed when the network parameters are uniformly
distributed over these intervals.

Table 3. Simulation parameters for each node i = 1, 2, . . . , N, in every network in Table 2.

Network µi γi βi

BA1, R1, WS1 (0.60, 0.80) (0.40, 0.80) (0.01, 0.03)
BA2, R2, WS2 (0.50, 0.70) (0.20, 0.35) (0.02, 0.06)

Considering the parameters shown in Table 2, six network layers were built (two networks for
each network BA, R and WS) that were combined to form six different two-layer networks as listed in
Table 4. The parameters of each node in each layer were assigned randomly according to the intervals
given in Table 3. Based on these scenarios the nodes to be controlled were identified and classified
according to Table 1 to establish a control criteria. The results are summarized in Table 5 showing the
number of nodes for which γ needs to be adjusted, those for which β needs to be adjusted, those for
which either of both needs to be adjusted and those for which both need to be adjusted. Accordingly,
the total number of nodes to be controlled is given in the last column.

Table 4. Amenable parameters chosen to control every two layer network. Compare this with data
shown in Table 5.

No. Layer A Layer B Amenable Parameters Chosen Figure

1 R1 R2 βAi and βBi 2
2 BA1 BA2 γAi, βAi and βBi 3
3 WS1 WS2 γAi, βAi and βBi 4
4 R2 BA2 βAi and βBi 5
5 BA1 WS2 γAi, βAi and βBi 6
6 R1 WS2 γAi and βBi 7

Table 5. Number of nodes and their parameters to control for every network.

Network γi βi γi or βi γi and βi Nodes to Control

BA1 12,178 25,716 52,080 7761 97,735
BA2 0 5082 12,191 0 17,273
R1 19,939 0 67,448 0 87,387
R2 0 6138 62,286 0 68,424

WS1 19,915 30 66,501 24 86,470
WS2 0 11,697 52,678 0 64,375

The difference between analyzing and controlling the networks in a single layer context to the
two-layer one becomes clear when comparing the numbers in Table 4. Without interconnection of
the two layers only the third column is relevant, i.e., the number of nodes for which β must be
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adjusted. It can be clearly seen that due to the coupling with a second layer very drastic changes occur,
independent of the choice of topology in the attached layer. In particular, consider an interconnection
of R1 and WS1. In the isolated network R1 no node needs to be controlled as the extinction point
is globally asymptotically stable. The network WS1, when isolated only requires 30 nodes to be
controlled. When interconnecting both networks it becomes necessary to control 87,387 nodes in R1

and 86,470 in WS1.
Note further that according to Table 5 several scenarios could arise depending on the networks

selected to build the two layer multiplex network, for example, if we propose a two layer multiplex
network made up of R2 (layer A) and BA2 (layer B) then, according to Table 5, it is only necessary to
control both networks taking β as amenable parameter.

In order to show the effect of the proposed control law, we simulate several two layer networks
as described in Table 4. The changes in the transmission parameters are applied at time 35. In these
simulations, and following the above discussion, the specific values for the control parameters are
chosen either as one of the following:

βki(t) =

{
βki t < 35,

0.99 µki−γki
Nki

t ≥ 35
(9a)

γki(t) =

{
γki t < 35,

0.99(µki− βkiNki) t ≥ 35
(9b)

for k = {A, B} and i = 1, 2, . . . , N. Besides, in this case it is also possible to chose γ and β (at the same
time) as control parameters (scenario 4 from Table 1). This is also the case of networks 2, 3 and 5 in
Table 4, where an specific combination of control parameters are chosen as γki = 0.99µki and (9a).

In consequence of this control scenario, at the beginning the state converge to an endemic fixed
point that disappears after applying the control strategy at t = 35, causing the states to exponentially
converge to the extinction state, as shown in Figures 2–7. In the figures each line corresponds to the
mean value (or probability density)

ρA(t) =
N

∑
i=1

pAi(t) (red) and ρB(t) =
N

∑
i=1

pBi(t) (blue), (10)

in the respective network for the initial conditions pAi(0), pBi(0)∈{0.1, 0.3, 0.5, 0.7, 0.9}, i = 1, . . . , N.
For example, in Figure 3 around 28% of the nodes in layer A are infected meanwhile in network B,
around 17% of the nodes are. Once the control is activated, in all simulations, the state of the system
exponentially converges to the extinction state according to the assertion of Corollary 1.

In order to analyze the dependency of the number of nodes to be controlled on the particular choice
of network a statistical analysis has been carried out for the networks BA1, BA2, R1, R2, WS1, WS2 with
construction specified in Table 2 by randomly assigning the seeds for the network generation and
the parameters using a uniform distribution over the intervals provided in Table 3. For the BA-type
networks a total of 481 networks were considered, for the R-type networks 600, and for the WS-type
networks 464. The resulting sample distributions showing the number of times a certain number of
nodes needs to be controlled are shown in Figure 8. For all six networks two scenarios are evaluated:
(a) the isolated network and (b) the network in interconnection with another one. From the sub-figures
it can be seen that (i) in all networks a very small variation is observed in the number of nodes to
be controlled, and (ii) in the passage from the isolated to the interconnected network the number of
nodes to be controlled increases considerably. This last fact illustrates again the substantial difference
between controlling isolated and interconnected networks, as highlighted above at several places.
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Figure 2. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network R1-R2.
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Figure 5. ρA(t) (red) and ρB(t) (blue) for several initial conditions in network R2-BA2.
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Figure 8. Sample distributions of the number of nodes to be controlled in the considered networks
specified in Table 2: (a) isolated network and (b) interconnected network.

6. Conclusions

The control of a spreading process in a two-layer multiplex network with a parametric control
strategy is analyzed. Sufficient conditions for the choice of nodes and parameters to be controlled
are established using rigorous mathematical derivations ensuring the exponential stability of the
extinction state globally with respect to the set of all possible probability states. The proposed
control strategy consists in the adaptation of the parameters specifying the intra-layer and inter-layer
transmission rates only for a limited number of nodes that are characterized by a parametric threshold
condition. Particular emphasis is made on the substantial difference between controlling isolated and
interconnected networks, showing intrinsic cnections with the individual input-to-state stability
and the small-gain criterion. It results that in the passage from controlling isolated networks
to interconnected ones, the number of nodes that need to be controlled significantly increases.
The theoretical results are analyzed in multiplex networks with different representative topologies in
each layer with 105 nodes each. The corresponding simulation studies and statistical evaluations of
the number of nodes to be controlled corroborate the theoretical findings.
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Based on the presented results future studies will focus on the generalization of the discussed
ideas to the case of n-layer multiplex networks, in order to further enlighten the expected challenges
when adding additional layers. Furthermore, the model identification and testing of the presented
approaches in real-world scenarios based on explicit data will be focused on in future studies.
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