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Abstract: For the identification of non-trivial quantum phase, we exploit a Bell-type correlation that
is applied to the one-dimensional spin-1 XXZ chain. It is found that our generalization of bipartite
Bell correlation can take a decomposed form of transverse spin correlation together with high-order
terms. The formulation of the density-matrix renormalisation group is utilized to obtain the ground
state of a given Hamiltonian with non-trivial phase. Subsequently Bell-type correlation is evaluated
through the analysis of the matrix product state. Diverse classes of quantum phase transitions in the
spin-1 model are identified precisely through the evaluation of the first and the second moments of
the generalized Bell correlations. The role of high-order terms in the criticality has been identified
and their physical implications for the quantum phase have been revealed.
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1. Introduction

Quantum correlation, that has no classical counterparts, plays a pivotal role in studying the
many-body systems. Investigation of such a complex massive system through correlation is a
major research topic in statistical and condensed matter physics as they provide useful views for
the quantification of physical properties in large scale systems [1]. Especially, the trait of quantum
phase and its phase transition driven by the quantum fluctuation in correlation have attracted much
interest throughout the years as they are closely related to macroscopic quantum phenomena, such as
superconductivities and topological state of a matter. They are analyzed through the various measures
that have been rooted in quantum information theory.

Quantum entanglement is one of the most crucial concepts that has been extensively studied
in the last two decades to comprehend the quantum phase transitions and the exotic quantum
properties in condensed matter systems [2]. Concurrence, one of the most used measures for two-qubit
entanglement, is exploited to estimate the quantum criticality and, further, its scaling behavior is also
analyzed near the critical point of the one-dimensional XY model [3,4]. Entanglement entropy of a
block in various many-body systems has also been discussed during the analysis using conformal
field theory [5]. The entanglement entropy demonstrates logarithmic divergence at critical points,
whereas it saturates noncritical systems associated with the area law [5,6]. The localizable entanglement,
another measure of entanglement, is used to detect the phase transition in spin-1/2 XXZ model and
to show the divergence of the entanglement length in valence-bond solid states [7,8]. Subsequently,
entanglement instabilities demonstrates the origin of the quantum criticality precisely and their analytic
dynamics as the interaction parameters are modified [9].

It is well known that all pure entangled states for two-qubit systems violate CHSH-Bell
inequality [10]. On the other hand, the nonlocal character of mixed entangled states are not easily
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quantifiable since it does not necessarily violate Bell inequalities [11]. It means that quantum
entanglement is not necessarily equivalent to the concept of Bell nonlocality [11,12]. Thus, it can
be said that the concept of entanglement is closely related to nonlocality while they addresses the
different physical quantities in general.

Unlike many-body entanglement, that has been subjected to extensive investigation, the Bell
nonlocality in many-body systems has been attracted less attention relatively so far. It is because
generalization of nonlocality is needed to consider all the possible local measurements and locate their
nontrivial combinations of the joint probabilities. It is only recent that the nonlocality in many-body
systems gets to make an active progress. At first, Bell correlations for many-body systems are applied
to two-site reduced density states which are generated from the ground state in one-dimensional
(1D) spin-1/2 XY model [13] and spin-1/2 XXZ model [14]. As a result, it has been known that the
Bell correlation demonstrates the non-analyticity at the critical point while, due to the monogamy
characteristics of the correlation, any bipartite Bell inequality is not violated by the translational
invariant many-body systems [15].

It is in two-dimensional local Hilbert space that the most Bell correlations are elucidated
in aforementioned studies. In other words, Bell correlations in d-dimensional systems of many
particles have been rarely investigated, whereas the other measures of quantum information
theory, such as fidelity and quantum coherence, are used to characterize the quantum phase
transitions (QPTs) many times in spin-1 chains or more [16–18]. In this work, we use a generalized
high-order Bell correlation obtained from high-dimensional spin measurements, which is proposed
by D. Collins et al. [19] and W. Son et al. [20,21]. Then, we analyze its Bell correlation in the
spin-1 chain to identify diverse quantum phase transitions. Moreover, we discuss whether the
violation of the Collins–Gisin–Linden–Massar–Popescu (CGLMP) inequality can be detected even in
three-dimensional systems.

In particular, we choose 1D spin-1 XXZ model with the onsite anisotropy, which is one of
the most studied spin-1 chain models. Higher-spin XXZ systems have richer quantum phases in
various different parameter regimes and certain parts of the system are need to be depicted with
more complicated physics, such as symmetry-protected topological phases [22]. Since the ground
state of spin-1 chains is not exactly obtainable, we utilize a numerical technique—the infinite-size
density-matrix renormalization group (iDMRG) method—for the ground state of spin-1 system,
which is described in matrix product state (MPS) representations.

The outline of this paper is as following: In Section 2, we start with the system hamiltonian of the
1D spin-1 XXZ model with the onsite anisotropy. There, we briefly explain its phases at the different
parameter regime and their criticalities at the QPTs. In Section 3, we show the Bell correlation in the
CGLMP inequality from the generalized SLK–Mermin–Bell formalism described in an operator form.
Then, using the state obtained, we present our results for the description of Bell correlations in overall
parameter space and provide a close analysis in the vicinity of the criticality in Section 4, and we
conclude this paper in Section 5.

2. The 1d Spin-1 XXZ Model with the On-Site Anisotropy

We now start with the description of the system to be analyzed. Our choice of model is made
on the system with the versatile quantum phases occurred by the second-order magnetization term.
The Hamiltonian for the one-dimensional spin-1 XXZ model with the on-site anisotropy is in the
form of

Ĥ = ∑
j

J(Ŝx
j Ŝx

j+1 + Ŝy
j Ŝy

j+1 + JzŜz
j Ŝz

j+1) + D ∑
j
(Ŝz

j )
2, (1)

where Ŝa
j for a = x, y, z denotes the spin-1 operators at site j. The summation in Equation (1) illustrates

the one-dimensional spin-1 XXZ chain with the exchange anisotropy Jz and we set J = 1 for the unit
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energy scale. The second sum in Equation (1) describes an on-site anisotropy where the constant D
means the uniaxial single-site anisotropy.

It has been known that this model can be found in various phases, including the antiferromagnetic
(AFM), the ferromagnetic (FM), XY1, XY2, Haldane, and the large-D phases. The FM and AFM
phases have the magnetic order. In the former, all spins point in the same direction and, in the
latter, spins at the nearest neighbor sites, are aligned in the opposite directions. The XY phase is
that all spins, which interacts with the nearest neighbors, which lie in the xy plane and are not
allowed to point in the spin-z direction. The XY models are gapless, so that the spin–spin correlation
〈Ŝ+

i Ŝ−i+r〉 and 〈(Ŝ+
i )2(Ŝ−i+r)

2〉 display a power-law decay for XY1 and XY2 phases of Equation (1),
respectively [23–25]. For Haldane and large-D phases, the system has a finite gap and exponentially
decaying spin–spin correlations [26,27]. The string order parameter, the expectation value of the
nonlocal operator (here, the term, nonlocal, is not the same as the Bell nonlocality, meaning the
violation of Bell inequality—see more Ref [28]), has nonzero values in the Haldane phase, when the
system preserves the Z2 × Z2 symmetry [29–31]. Later, the Haldane and large-D phases can be
distinguished by the symmetry-protected topological order [32–35].

Additionally, as the parameters Jz and D vary, the ground state of the system undergoes diverse
types of QPTs, such as Ising-type, Berezinskii, Kosterlitz, and Thouless (BKT) phase transitions [23].
The ground-state phase diagram of the spin-1 chain Equation (1) is investigated in an earlier study [36].
Here, we briefly demonstrate the characteristics of the different phases and QPTs in the given
parameter space.

3. Bell-Type Correlation from the Generalized Nonlocality Criteria

Bell-type inequalities examine the correlation between two parties of a composite quantum state
and determine whether a given quantum state is nonlocal through the violation of local realistic
bounds. The Clauser–Horne–Shimony–Holt (CHSH) version of Bell inequality is given for the simplest
symmetric states where two dichotomic measurements are performed for each of the parties [37].
If the CHSH correlation admits the local hidden variable model, its absolute value does not exceed the
local realistic bound 2. Taking pure entangled states into account, one can find violation of the CHSH
inequality and its maximal violation 2

√
2 derived by Tsirelson [38]. For the case of two-qubit mixed

states, entangled ones do not always violate this inequality [11].
When it comes to the systems of arbitrary dimension d, the inequality derived by Collins et al.

provides a generalized version of CHSH inequality [19]. Further generalization of the CHSH inequality
for the multiparty d-dimensional systems has been made by Son et al., which is also consistent with
the CGLMP inequality [20,21]. In these scenarios, all the parties are permitted to perform two different
measurements at each site with d-outcome measurements.

From here, the correlation on the left hand side of the inequality for d× d system is said to be
CGLMP correlation as it reduced into the one found by CGMLP [19]. Our description is made not by a
set of probabilities but by the form of correlation functions. It can be proved that the representations
are equivalent as long as an appropriate collection of the correlations is made through the right choices
of weighting coefficients [21].

In the scenario of the CGLMP inequality, there are two observers (j = 1, 2) and each of them has
two measurement choices Vj ∈ {Aj, Bj}. The measurement operators for the j-th party are given as

V̂j ≡
d−1

∑
α=0

ωα|α〉Vj〈α|, (2)

where d is the index of the number of possible outcomes, ωα is the eigenvalue, and |α〉Vj is the
corresponding eigenvector. One observer chooses the Fourier transformed basis and the other observer
takes the inverse Fourier basis. The Fourier transformed basis is given as
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|α〉Vj =
1√
d

d−1

∑
β=0

ω
−(α+φVj

)β|β〉, (3)

where ω = exp(2πi/d) and φVj denotes a phase shift for a measurement V̂j. Here, the basis |β〉 is
nothing but the computational basis, such as the spin-z basis for d = 2.

As for maximal tests, four different measurement choices can be made through four different
phase shifts that are φA1 = 0, φB1 = 1/2, φA2 = −1/4 and φB2 = 1/4. Based upon this expression,
CGLMP correlation can be described by the expectation value of the following composite operator,

〈B̂〉 =
〈

d−1

∑
n=1

fn

(
Ân

1 + ωn/2B̂n
1

)
⊗
(

Ân
2 + ωn/2B̂n

2

)†
〉
+ c.c. (4)

when the weight function becomes fn ≡ 1/2
d−1 ω

n
4 sec(nπ/2d). As addressed in [21], the weight fn

can be specified for the convex sum of the probability distributions suggested by Collins et al. [19].
Bell correlation Equation (4) for the case of d = 2 is obviously equivalent to one in the CHSH inequality.
The local realistic bounds of the CGLMP correlation for d = 3 are given by −4 ≤ 〈B̂〉 ≤ 2, which can
be derived from fn [21].

It is convenient to investigate the structure of the operator B̂ in Equation (4) by introducing the
n-level lowering operator Ĵn

j ≡ ∑d−1
β=n |β〉j〈β− n| for j-th party. From Equations (2) and (3), one can

derive the identities such that

1
2
(Ân

1 + ωn/2B̂n
1 ) = Ĵn

1 ,
1
2
(Ân

2 + ωn/2B̂n
2 ) = ωn/4 Ĵn

2 (5)

where the different choice of measurements on the second system, as shown in Equation (4), results in
the extra shift of the local phase. Thus, together with the replacement, the Bell operator B̂ can be
rewritten in a simplified manner as

B̂ =
2

d− 1

d−1

∑
n=1

sec
[nπ

2d

] (
Ĵn
1 ⊗ Ĵn†

2 + Ĵn†
1 ⊗ Ĵn

2

)
. (6)

The operator can be applied to the system with the local basis dimension d. In this work, we analyze
the spin-1 chain where the dimension of local basis is set to be three—i.e., d = 3. When the set of
states {|β〉 | β = 0, 1, 2} is regarded as the computational basis, the matrix representation of Ĵ and Ĵ2 is
given as

Ĵ =

0 0 0
1 0 0
0 1 0

 and Ĵ2 =

0 0 0
0 0 0
1 0 0

 . (7)

The operators shift the higher spin state into the lower spin state in one step and two steps,
respectively. The choice of measurements Ai and Bi in Equation (4) using the corresponding φAi and
φBi leads to the lowering operators of higher order and they identifies all the matrix elements of the
given state. It can be found that the convex sum of the correlation function provides the symmetric
selection of relevant probabilities for the correlations in the parties as addressed in [21].
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4. Quantum Criticality through the Correlation for the Nonlocality Tests

First, let us present the CGLMP correlation 〈B̂i,i+r〉 that is obtained by the expectation value of
the operator B̂ for the ground state of Equation (1) in the thermodynamic limit. A quantum state |Ψ〉
on the 1D translationally invariant systems of length N can be written in the MPS form [39–42]

|Ψ〉 = ∑
s1,··· ,sN

Γs1 ΛΓs2 · · ·ΛΓsN |s1 · · · sN〉, (8)

where Γsj is the χ× χ matrix with the bond dimension χ and |sj〉 is the jth-site local basis of dimension
d with the physical indices sj = 0, . . . , d − 1. Here, the class of matrices Γsj and Λ for the ground
state can be obtained from the iDMRG method (we simulate the iDMRG method and calculate some
expectation values by using TeNPy Library (version 0.4.1) [43]. We choose the bond dimension χ = 200
and specially confine a parameter for convergence such that the relative difference of entanglement
entropy in each sweep is not over 10−7.).

Here we obtain the characteristics of the CGLMP correlation for the particular set of fixed
parameters D = 0, Jz = 1 and Jz = −1 in Equation (1). In the parameter region, various phases
and QPTs have been identified through the criticality of Bell correlations although the quantum
violation of the CGLMP inequality cannot be observed. They are presented in Figures 1a, 2a and 3a.
Such nonviolation of the CGMLP inequality is consistent with the cases of the CHSH inequality in the
earlier studies of 1D spin-1/2 XY chain [13] and XXZ chain [14].

Nevertheless, the CGLMP correlation 〈B̂r〉 can be applied to elucidate the physical properties for
the various quantum phases in the system Equation (1). Criticality can be clearly found through the
non-analyticity of the CGLMP correlation. Moreover, it is notable that the contribution of higher-order
correlation for the criticality is possible to be discriminated in our formalism. The noble feature of the
rationales is that the versatile quantification of quantum phases is possible to be identified through
them. It is since Equation (6) that d = 3 can be decomposed into a linear combination of spin–spin
correlation functions in the first and the second order moments where the n-level lowering operator
Ĵn
j is regarded as the spin-1 lowering operator (Ŝ−)n

j —i.e., Ĵ† ≡ Ŝ+/
√

2 and Ĵ ≡ Ŝ−/
√

2. It is, thus,
given by

〈B̂r〉 = 2
(

1√
3

C(1)
r +

1
2

C(2)
r

)
, (9)

where the transverse spin–spin correlations C(1)
r and C(2)

r are given by

C(1)
r ≡ 〈Ŝ+

i Ŝ−i+r〉 and C(2)
r ≡ 〈(Ŝ+

i )2(Ŝ−i+r)
2〉. (10)

In Equation (9), we drop the index i because these correlation functions depend not on the site i but
on the relative distance r between two spins due to the translational symmetry in the thermodynamic
limit. It is known that the qualitative forms of the correlation functions C(1)

r and C(2)
r , including various

exponents, can be expected by using the bosonization technique, an analytical approach based on the
effective field theory with defects [23].

Thus, we discuss below how the CGLMP correlation Equation (9) can be used as an indicator of
the QPTs by identifying the extremum and inflection points [44]. It is also discussed how the Bell-type
correlations vary as the distance r changes, especially at the point of QPT, in the following subsections.
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Figure 1. (Color online) (a) the CGLMP correlation 〈B̂r〉 and (b) the spin–spin correlations C(2)
r and

(c) C(1)
r as varying the parameter Jz at D = 0 for odd distances.

4.1. The CGLMP Correlation at D = 0

Let us analyze our evaluation of the CGLMP correlation at D = 0 as varying the anisotropic
exchange interaction Jz. The CGLMP correlation is zero in the FM phase (Jz < −1.0), which is trivially
illustrated. A discontinuous change of 〈B̂r〉 can be detected at Jz = −1 where the first-order QPT
occurs at the point. The spins in the AFM phase (Jz & 1.18) are inclined to locate the spins alternatively
in either |+〉 or |−〉 site by site. A very large Jz gives rise to nearly vanishing value of the transverse
spin–spin correlations and the CGLMP correlation becomes consequently close to zero. The inflection
point of the CGLMP correlation, ∂2〈B̂〉/∂J2

z =0, can be found at Jz = 1.18, which turns the AFM phase
into different phases. This type of transition is similar to the criticality in the model of two-dimensional
Ising interaction. Moreover, the critical point Jz = 1.18 agrees with known results from the previous
analysis using the DMRG techniques [18,45,46].

The crucial region for the non-trivial phase lies at the interval between the FM and the AFM
phases. For spin-1/2 system, only the XY phase exists in this interval, while there are the XY phase
and the Haldane phase for the spin-1 systems. Therefore, more phase transition points exist between
the XY phase and the Haldane phase whereas the transition type is going to be the BKT type QPT [23].
However, both C(1)

r and C(2)
r do not show the critical behavior solely in the region because minimum

or the inflection points do not appear, as can be seen in Figure 1b,c. Therefore, the CGLMP correlation
does not identify the BKT-type QPTs near the point Jz = 0 at which the QPT in the spin-1 XXZ chain
is expected to occur [36]. Instead of identifying the transition point from the CGLMP correlation
directly, the BKT-type QPT can be indicated by an indirect manner, such as vanishing string order
parameter, or a local maximum of the entanglement entropy [45,46]. In this case, it is demonstrated
that the correlation function C(1)

r evaluated from iDMRG method fits a function arη + b near Jz = 0.
Through the extrapolation, the critical exponents ηc = 1/4 of the BKT-type QPT can be found at
Jz = 0.02.

In comparison to the spin-1 case, it is intriguing that BKT-type QPT can be identified by the CHSH
correlation in the spin-1/2 XXZ chain [14]. At Jz = 1, the spin-1/2 XXZ chain undergoes BKT-type QPT
and has the SU(2) symmetry. It is possible that the SU(2) symmetry, rather than criticality, is involved
in the minimum of the CHSH correlation for Jz = 1. To be more specific, while 〈Ŝx

i Ŝx
i+r〉 < 〈Ŝz

i Ŝz
i+r〉

in the AFM phase (Jz > 1), 〈Ŝx
i Ŝx

i+r〉 > 〈Ŝz
i Ŝz

i+r〉 in the XY phase (Jz < 1). Due to the SU(2) symmetry,
〈Ŝx

i Ŝx
i+r〉 = 〈Ŝz

i Ŝz
i+r〉 for Jz = 1, which affects the maximization of the CHSH correlation with respect

to the measurement directions in each phase.
Let us discuss the CGLMP correlation 〈B̂r〉 as a function of the distance r between two sites.

We expect that the decaying behavior of the CGLMP correlations are affected by that of the spin–spin
correlations C(1)

r and C(2)
r . The spin–spin correlation C(1)

r , rather than C(2)
r in Figure 1b, dominates 〈B̂r〉

without the onsite anisotropy. Then, the CGLMP correlation as a function of r exhibits the even–odd
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oscillation. A notable feature of the CGLMP correlation is shown in the XY1 phase: 〈B̂r〉 still has a
finite value due to a power-law decay of C(1)

r , whereas in other phases it drastically approaches to zero
at a large distance r (see Figure 1). For the Haldane phase and the AFM phase, the CGLMP correlations
〈B̂r〉 are also characterized by an exponential decay, which results from the behavior of the spin–spin
correlations C(1)

r and C(2)
r . In Figure 1a, CGLMP correlation in the Haldane phase decays less slowly

than the AFM phase. These features correspond to the fact that the spin–spin correlation function
decays exponentially in the AFM phase and one also has an exponential decaying with an additional
factor

√
r in the Haldane phase—i.e., C(1)

r ∼ (−1)rr−1/2 exp(−r/ξ) at the Heisenberg point (Jz = 1
and D = 0) [27,47].

4.2. The CGLMP Correlation at Jz = 1

The Hamiltonian in Equation (1) goes through three different phases by tuning the single-ion
anisotropy D at Jz = 1—the AFM, the Haldane, and the large-D phase. In addition, there are two types
of QPTs that correspond to an extremum point (either minimum for an odd r or maximum for an even r)
and an inflection point of the CGLMP correlation 〈B̂r〉 for each r in Figure 2a. These critical points are
influenced by ones for both correlations C(1)

r and C(2)
r . In the previous section, the characteristics of

the Haldane and the AFM phase have been discussed and for Jz = 1 we can also detect the Ising-type
QPT at Dc1 ' −0.31 between them, a peak of ∂〈B̂r〉/∂D for small r compared with the fidelity [16]. So,
we are going to concentrate on the characteristics of the Haldane phase, and its relationship with the
large-D phase. It is noteworthy in Figure 2a that the phase transition lies between the Haldane phase
and the large-D phase, often called the Gaussian phase transition.

Figure 2. (a) CGLMP correlation 〈B̂r〉 and the first derivative of 〈B̂r〉 with respect to D near
(b) D = − 0.31 and (c) D = 0.97 as varying the parameter D at Jz = 1 for odd distances.

The string order parameter, consisting of spin operators, has a nonzero value only in the Haldane
phase and thereby is widely used to discriminate the Haldane and large-D phase in this model. Later,
the Haldane phase and the large-D phase are featured by a nontrivial topological phase and a trivial
one under the symmetry protection, respectively [32,35]. It is suggested that the order parameter
which reflects the symmetry-protected topological order in the presence of Z2 × Z2 symmetry becomes
−1 for the Haldane and 1 for the large-D phase [35]. Furthermore, other various studies have revealed
the boundary of the Haldane and large-D phases. The structure for the energy levels has been mainly
analyzed to capture the accurate transition point Dc2 = 0.975 [46]. Additionally, the behaviors of
the ground-energy state have been treated by investigating the fidelity (Dc2 = 0.97) [16] and the
entanglement entropy (Dc2 = 0.96845(8)) [48], which all use the DMRG method.

In our simulation (see Figure 2a), Dc2 the minimum points of 〈B̂r〉 which come from those of

spin–spin correlations C(1)
r and C(2)

r are captured around the phase transition between the Haldane
and the large-D phase. For r = 1, we can find the critical point Dc2 = 0.914 by evaluating the minimum
of 〈B̂r=1〉. This critical point moves to Dc2 = 0.968 at r = 81 using the linear interpolation near the
criticality in Figure 2c. This critical point converges to Dc2 = 0.969 until the CGLMP correlation decays
to zero as the distance r goes to infinity in Figure 2c. Thus, 〈B̂r〉 deserves an indicator of the QPT for
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sufficiently distant parties. It is also remarkable that the peak shape in Figure 2a remains in the vicinity
of the criticality, even at a large distance r. Specifically, the CGLMP correlation 〈B̂r〉 as a function of
r decays more slowly in the vicinity of the critical point than in the noncritical region. It is because
the correlation functions C(1)

r and C(2)
r decay as a power law near the criticality, whereas they decay

exponentially in the Haldane and the large-D phase [23,30].

4.3. The CGLMP Correlation at Jz = −0.1

The spin-1 Hamiltonian Equation (1) involves two different types of XY phases, the XY1 phase
and XY2 phases [23]. The former which we have been discuss above is located at small D and the latter
lies along the large negative D.

In order to investigate the CGLMP correlation in two types of XY phases and their transition, let us
take the anisotropy Jz to be −0.1 and change the on-site anisotropy D. In Figure 3a,b, the fact that the
correlation C(2)

r is more dominant that C(1)
r brings about the positive value of the CGLMP correlation

in the XY2 phase (D < Dc). It is also shown that for large negative D, decay of the correlation function
C(2)

r obeys power laws while the correlation C(1)
r decays exponentially, which coincides with the XY2

phase [23]. In Figure 3c, we can detect the Ising-type criticality between the XY1 and XY2 phases
Dc ' −2.10 by solving ∂2〈B̂r〉/∂D2 = 0. The farther the distance r is, the deeper the peak of ∂〈B̂r〉/∂D
is in the vicinity of this criticality. This detection quite exactly corresponds to the level crossing point
of two energy gaps, one of which consists of the excitation (or the quantum number) Mz = ±2 in the
XY2 phase and the other has Mz = ±1 in the XY1 phase [36].

Figure 3. (a) CGLMP correlation 〈B̂r〉, (b) spin–spin correlations C(1)
r and C(2)

r as varying the parameter
D, and (c) first derivative of 〈B̂r〉 with respect to D at Jz = −0.1 for odd distances r.

5. Conclusions

We have investigated CGLMP correlations in the 1D XXZ model with onsite anisotropy
especially near the quantum phase transitions. In the case of spin-1, the CGLMP correlation
obtained from local measurements in the Fourier bases can be interestingly interpreted as a linear
combination of the first-order and second-order transverse spin–spin correlations. As a result,
we found various QPTs that are accurately indicated by analyzing the derivatives of the CGLMP
correlation. The first-order QPT (FM-to-XY transitions) shows discontinuity of the CGLMP correlation.
The Ising-type (Haldane-to-AFM and XY1-to-XY2) QPTs occur where the second derivative of the
CGLMP correlation vanishes. The Haldane-to-large-D transition, also referred to as the Gaussian
phase transition, emerges when ∂〈B̂r〉/∂D = 0. The criticality of the CGLMP correlation is caused by
the fact that both the derivatives of the spin–spin correlations C(1)

r and C(2)
r are simultaneously zero in

the criticality. Moreover, decaying behaviors of the CGLMP correlation with respect to the distance r
in each phase can be predicted from the field-theoretical approach [23]. However, the BKT-type QPT
at Jz = 0 cannot be indicated by finding critical points of the derivatives of the CGLMP correlation.
This is in contrast to the CHSH correlation in spin-1/2 XXZ chain [14].

Another crucial result is that there is unfortunately nonviolation of the CGLMP inequality in
all phases of spin-1 chain; that is, the CGLMP correlations for the ground states of spin-1 chain do
not surpass the local realistic bounds. Even though we do not optimize the measurements for the
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ground states in each phase, this nonviolation coincides with the one in the 1D spin-1/2 XY chain [13]
and XXZ chain [14] invariant under translational symmetry. The reduced density matrices on two
sites, which display mixed entangled states, are not sufficient to violate the CGLMP inequality in
the spin-1 chain, although many-body ground states are pure and highly entangled in this model.
As the CHSH correlation has monogamy trade-off relation [15], monogamy of the CGLMP correlation
can be a candidate to explain the non-violation of CGLMP inequality in the spin-1 chain. Therefore,
in order to detect nonlocality in this model, one should consider multipartite Bell correlations for
arbitrary dimensions. This gets a clue from the result that multipartite Bell correlations for spin-1/2
invariant under the permutational symmetry [49] do not satisfy the local hidden variable model in the
Ising model with long-range interactions [50,51]. We leave that for future investigation, which is quite
consistent with the current approach demonstrated in this work.
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