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Abstract: A new solution to overcome the constraints of multimodality medical intra-subject image
registration is proposed, using the mutual information (MI) of image histogram-oriented gradients as
a new matching criterion. We present a rigid, multi-modal image registration algorithm based on
linear transformation and oriented gradients for the alignment of T2-weighted (T2w) images (as a
fixed reference) and diffusion tensor imaging (DTI) (b-values of 500 and 1250 s/mm2) as floating images
of three patients to compensate for the motion during the acquisition process. Diffusion MRI is very
sensitive to motion, especially when the intensity and duration of the gradient pulses (characterized by
the b-value) increases. The proposed method relies on the whole brain surface and addresses the
variability of anatomical features into an image stack. The sparse features refer to corners detected
using the Harris corner detector operator, while dense features use all image pixels through the image
histogram of oriented gradients (HOG) as a measure of the degree of statistical dependence between a
pair of registered images. HOG as a dense feature is focused on the structure and extracts the oriented
gradient image in the x and y directions. MI is used as an objective function for the optimization
process. The entropy functions and joint entropy function are determined using the HOGs data.
To determine the best image transformation, the fiducial registration error (FRE) measure is used.
We compare the results against the MI-based intensities results computed using a statistical intensity
relationship between corresponding pixels in source and target images. Our approach, which is
devoted to the whole brain, shows improved registration accuracy, robustness, and computational cost
compared with the registration algorithms, which use anatomical features or regions of interest areas
with specific neuroanatomy. Despite the supplementary HOG computation task, the computation
time is comparable for MI-based intensities and MI-based HOG methods.

Keywords: image registration; mutual information; histogram-oriented gradients; sparse and dense
features; fiducial registration error
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1. Introduction

Brain image registration is a fundamental component of the medical image analysis pipeline
and consists of an optimization of the spatial correspondence between pairs of images by aligning
corresponding structures to ease the comparison between different brain images. During the acquiring
of stacks of 2D slices in real-time MRI, it is desirable to reduce the scan time and to avoid the slice
crosstalk artifacts. The images of interest are acquired either at different times (multi-temporal analysis)
or using various devices/sensors (multi-modal analysis) and may belong to the same patient or to
different patients [1–10]. Moreover, the same structure taken from different viewpoints (multi-view
analysis) may be considered.

However, despite all these efforts, the diversity of images to be registered and the wide range of
types of image degradations cause a universal registration method to be intractable.

Being an automatic diagnosis tool, image registration adds value to imagery information media
by allowing MR image modalities like T2w and diffusion tensor imaging (DTI) brain images to be
analyzed in the same coordinate system, especially to correct the motion [6–8]. Grigorescu et al. [7]
proposed a deep learning registration approach for the registration of T2w and DTI images belonging
to infants born and scanned at different gestational ages. The proposed T2w + DTI registration model
provided better results in terms of aligning subcortical structures. The performance of the proposed
registration model was compared to baseline model trained T2w data and the differences between
the moved and fixed fractional anisotropy maps. The benefits of using brain image multi-modal
registration consist of aligning corresponding structures to ease the comparison between different
brain images. Once the images are aligned, they share the same coordinate system and the difference
between test and reference images can be easily analyzed. Diffusion MRI yields information on the
underlying organization of the brain white matter and the connections inside the brain. T2w images
are useful for detecting edema, revealing white matter lesions, and provide structural information.

Such a T2w-DTI multi-modal registration approach is the main interest of this paper, as the
proposed method uses the whole brain surface and addresses the variability of anatomical features
into image stack. We present a rigid and multi-modal image registration algorithm based on linear
transformation and oriented gradients for the alignment of T2w images and DTI (b-values of 500 and
1250 s/mm2) images.

Several recent papers have addressed the importance of developing image registration techniques
and made it beneficial in medical diagnosis or treatment using a rigid and linear registration
algorithm applied to brain images [10–12]. Roura et al. [10] studied a co-registration method between
structural T1-weighted (T1w) scans and fractional anisotropy maps of DTI images. A multi-channel
registration algorithm was implemented and tested using 100 simulated brain atrophy images.
The experimental results indicated that the multi-channel registration approach and fractional
anisotropy maps provide significant improvements in alignment accuracy over single-channel or
T1w-based pipelines. Lin et al. [11] reported a sound performance comparison of the commercially
available MRI analysis/image registration software packages for information of clinical users and
for further development of improved algorithms for clinical use. They used 20 patients and four
sequences: T2w, FLAIR (fluid attenuated inversion recovery), susceptibility-weighted angiography,
and T1 postcontrast. Zhang et al. [12] proposed a knowledge-based approach for registration accuracy
improvement using so-called “mediator images”, which act as intermediates between a reference
and registered images. Linear transformations were performed between reference and mediator
and mediator and registered images and a library of intermediate images (mediators) was proposed.
To overcome the drawback of increased computational time, the authors reduced the size of the library
by clustering. They claim a clear improvement in registration accuracy.

The utility of image registration in medical diagnosis or treatment is often influenced by the
modality of acquisition. Nowadays, the multi-modal registration approach enhances the reliability of
the correspondence and comparison across subjects [13,14]. Guyader et al. [13] proposed so-called
groupwise registrations, which are able to register two or more images without the need of a reference
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image. The total correlation replaces the mutual information as an objective function for optimization.
Registration experiments were conducted on a dynamic CT (computed tomography) imaging dataset,
and on five quantitative magnetic resonance imaging datasets. In the framework of groupwise image
registration, the proposed total correlation measure provides registration results comparable to those
of other previously reported experiments. Goubran et al. [14] combined histologically cleared volumes
with connectivity atlases and MRI to investigate the global structural and network changes following
an ischemic stroke. They implemented this feature for multimodal interrogation of brain connectivity
by registered imaging of cleared volumes with MR/CT and the Allen atlas. The ultimate goal was to
demonstrate tract-level histological changes of stroke by instrumentality of multi-modal registration.

Image similarity metrics such as mean squared difference (MSD) or normalized cross correlation
(CC) are largely used as optimization functions when image pairs with similar contrast/unimodal
registration are used for registration [15–17]. The unimodal image registration just uses the assumption
that corresponding pixels have similar intensity values. On the contrary, in multimodal registration
problems, the same structure may display different intensities. For images acquired with different
modalities, metrics such as mutual information (MI) or correlation ration (CR) are indicated because
the same brain structures may have quite different gray values in the multi-modal case.

To estimate the best parameters of rigid transformation for an optimal registration and to solve an
ill-posed problem due to sparse information on intra- and inter-correspondence of scenes in multiple
images, the mutual information (MI) criterium, which takes intensity information into account, is a
valuable solution [18–20]. MI is a measure of common information in source and target images.
Fan et al. [19] highlighted that the intensity discretization procedure, before the accumulation of
statistical entropy used in MI computation, leads to poor performance in registration. To overcome this
issue, they embedded a function of the gradient information and prioritized strong gradient regions
over the small gradient regions. The results have indicated that the image registration becomes stable.
Yang et al. [20] proposed a new method that combines the normalized mutual information with spatial
information for nonrigid medical image registration. The algorithm was validated on a simulated
brain image with single-modality and multi-modality. When both the spatial and intensity differences
of different tissues with different imaging modes are considered, satisfactory registration results are
obtained. However, the performance of MI is affected when the local intensity variations manifest.

The accuracy of the registration and the quantification of the registration error is performed usually
by the so-called fiducial registration error (FRE). It analyzes the relationship between the position and
orientation parameters of rigid transformations [21–24]. FRE is a sum-of-squared difference for pairs
of selected points of interest within the source image space and the corresponding points of interest
within the target image; these points are the fiducials and are used to assess the registration validation.

We are unaware of any previous studies that have registered images across T2w and DTI (b-values
of 500 and 1250 s/mm2, i.e., different gradient amplitude, duration, and time interval between gradient
pulses) modalities. We report an intra-patient registration method of T2w and DTI data across
the whole brain images of three datasets, one for a healthy patient, one for a patient with right
parietal lobe hemorrhage, and one for a patient with ischemic stroke. Each dataset includes three
T2w images/15 slices per image, three DTI (500 s/mm2) images/15 slices per image, and three DTI
(1250 s/mm2) images/15 slices per image. The multiple registration algorithm is applied using each T2w
stack sequence as fixed reference images and stacks of DTI images for b-values of 500 and 1250 s/mm2

are used for registration. The relative starting and relative ending positions of the image stacks ensure
the premises of a diversity of spatial and intensity information, leading to a robust registration. Hence,
we investigate how to choose optimal transformations through a robust and user-independent decision
metric to improve the accuracy of performance in registration algorithms. The contributions of this
paper are as follows:

- Sparse/geometrical and dense features are considered. The spatial information is extracted as
“sparse features” by the instrumentality of the Harris corner features. They are robust to global
changes of intensity and provide an initial coarse registration. Further, the HOG feature descriptor
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takes into consideration the gradient orientation in localized portions of an image and organizes
the gradients into histograms. The magnitude of gradients is large around the edges and corners.
The histogram of gradients (i.e., the magnitude and gradient directions, at every pixel) provides
the so-called “dense features”. Dense features search for the degree of statistical dependence
between the intensities in a pair of registered images;

- To reduce the uncertainty of the transformation, multi-source information that uses image
information such as edge features or their gradients helps to quantify the similarity between
images. The key contribution of this paper is the method by which the entropy and MI are
estimated. Thus, histograms of oriented gradients (HOGs) are used to compute entropy of
source/target images, as well as the joint entropy of both images. First, the optimal translation
parameter τ was identified using the smallest Euclidian distance (ED) values; this step ensures a
coarse registration to eliminate significant scale differences. Then, the rotational parameters of
the rigid transformation (Θ) followed by HOG feature extraction are iteratively generated by the
MI in order to find the best matches between reference registered images. It provides the final,
fine registration.

- The accuracy of the proposed registration method is checked by using a fiducial registration error
(FRE) driven by the minimization of the distance between the selected fiducials/Harris corners in
both images after registration.

We show that a T2w image together with features from a DTI image can be used to properly align
subjects with improved accuracy. Moreover, the proposed method can be implemented in the problem
of the automated brain DTI image follow up, i.e., detection of abnormalities by comparing different
images of the same patient using an older brain DTI image as a reference and highlighting the possible
presence of abnormalities at the time of evolution.

The paper is organized as follows. Section 2 outlines the proposed methods to brain images’
registration. Section 3 describes and discusses the results, and Section 4 summarizes the conclusion of
the present work.

2. Materials and Methods

2.1. Transformation Model. Harris Corner Detection. Rigid Registration Using a Global Mapping Method and
Histogram of Oriented Gradients

The image registration method is formulated as a parametric optimization problem to maximize
the similarity between a source image Is and target image It through a transformation T:

T = argmax
Θ, τ

Metric
[
Is, It ◦ TRglobal

]
(1)

where TRglobal denotes the transformation model, which is adopted here as a global rigid transformation
parametrized by translation τ and rotation Θ. Metric is a similarity measure identified for this study
with mutual information (MI). A global mapping method is linear transformation-based and allows
the calculation of translational and rotational vectors when the integrity and consistency of the brain
structures are maintained. In this case, the registration is based on a given set of known point pairs
while the brain volume, size, and shape are preserved. This kind of transformation belongs to a
low-dimensional parametric class of deformations and mainly corrects the head movement in various
image stacks belonging to the same patient.

TRglobal maps all the points from the space of a source image to the space of a target image:

TRglobal(x) = Θ(x) + τ(x) (2)
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where x =

(
x
y

)
denotes the coordinates of ith pixel in the image, Θ =

(
cosθ − sinθ
sinθ cosθ

)
accounts for

the rotation matrix by angle θ, and τ =
(
τx

τy

)
is the translation vector over the x and y axis.

In order to perform the translation operation, the interest points, such as corners, are determined
using the Harris corner detector operator (R) [25,26]. Corners are the key features of the morphology
of brain images. The Harris operator is computed from the local autocorrelation function of the partial
derivative of intensity in the x and y directions and relied on aggregated gradients. They represent the
sparse features.

Into the image, corners are regions with large variation in intensity in all directions, and represent
the more stable features across scaling/translation, rotation, or illumination, for example. The Harris
corner detection is based on finding the difference in intensity for the shift (u, v) in all directions:

S(u, v) =
∑

x

∑
y

w(x, y)(I(x, y) − I(x− u, y− v))2 (3)

where I(x, y) is the intensity and I(x− u, y− v) denotes the shifted intensity. The window function
w(x, y) is either a rectangular or Gaussian window. For corner detection, the function S(u, v) must be
maximized using the Taylor expansion and some math operations. A 2 × 2 matrix for image derivatives
in the x and y directions allows one to compute the eigenvalues λ1 and λ2, respectively. In this way,
we obtain the directions for both the largest and smallest variation of S(u, v). The corner response is
as follows:

R = λ1λ2 − k(λ1 + λ2) (4)

where k is set empirically between 0.04 and 0.06. The region is a corner when R is large; this means that
λ1 and λ2 are large and λ1 ≈ λ2. The strong corners are selected in the source and registered images.

These corner features are used to put an image pair into correspondence. Initial, a coarse
registration is performed through a translation of −5 to +5 pixels with a step size of 0.5 pixels along the
x and y axis. Then, the Euclidian distance (ED) between similarly strong corners in each pair image is
computed. The new position of the translated registered image is evaluated according to ED values.
The best new translated position is determined using the smallest ED values.

After it is established that two images have been correctly matched by a certain value of translation
τ, a rotation is performed and histograms of gradients are generated using the HOG algorithm. First,
the image is divided into 8 × 8 patches. Then, the gradients for every pixel in the x and y directions are
calculated. Moreover, the magnitude and direction for each pixel value are determined. To minimize
the influence of illumination effects, the gradients were normalized by considering 16 × 16 blocks. Thus,
four 8 x 8 patches are combined to create a 16 × 16 block to extract HOG features. Then, histograms are
generated using gradients and orientation for each block.

2.2. Mutual Information

The probability distribution functions of gradients are used to compute the entropy of source/target
images, as well as the joint entropy of both images, for each rotation parameter [27–29]. They represent
the dense features. This step is the fine registration part. MI came from the information theory and
assumes a statistical relationship between two discrete random variables, which, in our case, are image
intensities p and q [30,31]:

MI = H(p) + H(q) −H(p, q)
H(p) = −

∑
i pi log pi, H(q) = −

∑
j q j log q j, H(p, q) = −

∑
i, j pi j log pi j

(5)

where H denotes the Shannon entropy, pi and qi are the marginal probability distribution of HOG
intensity occurring in the source (registered) image, and pi j is the joint probability distribution of
both occurring at the same place. Moreover, we assume a whole brain similarity of two images.
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The gradient-related entropy makes the MI similarity measure more definitive for each pixel and for
its intensity level, helping to avoid local minima. In this way, the robustness to illumination change or
small distortions is assured.

MI analyzes the feature vectors generated by the HOG algorithm for all locations in the image
and provides certain informational correlation between images. The analysis was done for an optimal
translation parameter and for a rotation in the range θ∈[−5◦, +5◦], with the step of variation being 0.5◦.
MI is larger when the analyzed images are more similar and are correctly aligned.

2.3. Assessment of Registration Accuracy

The fiducial registration error (FRE) metric, which is a sum-of-squared difference between
the position of fiducial/corner points in the source image (R) viewed as the ground truth and the
position of fiducial/corner points in the registered image (R̃) obtained with the registration method,
was used [22–24]:

FRE =
1
|Ω|

|Ω|∑
k=1

(
Rk − R̃k

)2
(6)

The selected fiducial points (|Ω|) are spread evenly over the whole brain image and represent the
Harris corners. We used |Ω| = 30 corner points for the T2w and DTI (b-values of 500 and 1250 s/mm2)
images, respectively. |Ω| represents the minimum number of corresponding corner points identified
in all the analyzed images and they have low mobility and high importance, according to the ED
values. A low FRE value signifies good registration accuracy. The accuracy of the registration method
was assessed as the root mean square (RMS), mean, and standard deviation of the FRE values after
the registration.

2.4. Dataset Acquisition

All datasets were recorded by the authors. MRI scans were performed using a 1.5 T MRI scanner
(Philips Medical Systems, Best, Netherlands) in the Radiology Department of “Sfântul Andrei” Hospital,
Galati (Romania). DTI sequences were acquired using a system with six-channel sensitivity encoding
(SENSE) for faster scanning (FS = 1.5). The imaging parameters were as follows: 3D gradient echo
with echo time (TE) ranging from 83 to 110 ms; repetition time (TR) ranging from 6500 to 7800 ms;
bandwidth = 1070 Hz/pixel; flip angles (2- and 6-); voxel resolution ranging from 2.5 to 3.0 mm;
and slice thickness = 4 mm. The acquisition matrix was 128 × 128.

Three datasets—S1 for a healthy patient (male, 36 y), S2 for a patient (male, 68 y) with right parietal
lobe hemorrhage and a small sequela in the right hemisphere, and S3 for a patient with ischemic
stroke (male, 74 y)—were investigated. Each dataset includes three T2w images/15 slices per image,
three DTI (b-values = 500 s/mm2) images/15 slices per image, and three DTI (b-values = 1250 s/mm2)
images/15 slices per image. The procedure was applied to pairs of T2w-DTI (b-values = 500 s/mm2) and
T2w-DTI (b-values = 1250 s/mm2). A T2w scan was performed without coil using identical parameters.
The images were skull stripped and no other preprocessing was applied.

Approval for the study was obtained from the Research Ethics Committee of the “Dunărea de Jos”
University of Galat, i and “Sfântul Andrei” Hospital. Voluntary and informed consent was obtained in
writing from each patient involved.

3. Results and Discussion

The proposed model is an end-to-end model without using any preprocessing methods or
denoising techniques. Each target image (DTI, b-values = 500 and 1250 s/mm2) was aligned to the
source image (T2w) directly using the proposed method. Figure 1 shows the flow chart of this new
proposed method. For the sparse feature determination, an experiment based on Harris corner detector
operator was carried out. The Harris operator was used to extract corner and edge information by
setting k = 0.05 and T = 1500. These parameters were set empirically to ensure the best registration



Entropy 2020, 22, 1299 7 of 16

performance. Two translations in horizontal and vertical directions, respectively, were performed.
The strong corners are robust to global changes of intensity and are selected in the source (R) and
registered images (R̃), and ED between similar strong corners in each pair of images is computed
when the registered image is translated on the x and y axis with an imposed step. The optimal
translation parameter τ ensures a coarse registration and eliminates significant scale differences. Then,
the fine registration based on the rotation is performed in the range θ∈[−5◦, +5◦] with a step of
variation of 0.5◦, and histograms of gradients (HOGs, HOGt) for the source (s) and target (t) images
are determined. The fine registration stage amends and improves the misalignment and refines the
registration performance through a local approach by HOG. Then, MI and FRE are computed.
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Figure 1. A flowchart of the proposed registration method. In the left block, the coarse registration
step is displayed. The translation vector over the x and y axis; R and R̃ corner points in the source (s)
and target/registered (t) images, respectively; and the Euclidian distance (ED) between similar strong
corners are determined. i = 1, . . . , 20 is the incremental step for translational operation with a step of 0.5.
In the right block, the fine registration based on the rotation is performed and histograms of gradients
(HOGs, HOGt) for the source (s) and target (t) images are determined. Then, mutual information (MI)
and fiducial registration error (FRE) are computed. m = 1, . . . , 20 denotes the rotation operations with
a step of 0.5.

The experiment results for the translation of the registered images are provided in Figures 2 and 3.
In the coarse registration step, the average number of sparse features/corners per image varied as
follows: for S1, from 40 to 181 for T2w-DTI (b-values = 500 s/mm2) and from 40 to 166 for T2w-DTI
(b-values = 1250 s/mm2), respectively. For S2, from 38 to 167 for T2w-DTI (b-values = 500 s/mm2)
and from 35 to 152 for T2w-DTI (b-values = 1250 s/mm2), respectively. For S3, from 42 to 160 for
T2w-DTI (b-values = 500 s/mm2) and from 39 to 144 for T2w-DTI (b-values = 1250 s/mm2), respectively.
They are spread evenly over the brain surface and are located in that spots where a large variation in
intensity in all the directions manifests. These selected corners have similar locations and belong to
the same regions in the pair images. The locations of these corners have certain variability, but the
mobility of corners is limited by the brain structure to a narrow range. In our case, the low mobility
of corners indicates high importance values of corners and helps generate matched Harris corner

pairs. The optimal translation parameters τ =
(
τx

τy

)
=

(
−4.5
−4.5

)
for S1, τ =

(
τx

τy

)
=

(
−2.5
−2.5

)
for S2,

and τ =
(
τx

τy

)
=

(
2.5
2.5

)
for S3, respectively, were identified using the smallest ED values between

similar strong corners. These parameters ensure a coarse registration to eliminate significant scale
differences. This coarse registration step shortens the exploration range in the transformation model.
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Figure 2. Examples of pairwise linear registration/translation between source and target images, for 
a healthy patient, using corner points detection. Image labeling using the Harris operator. Detected 
corners have similar locations and belong to the same regions, but show certain mobility. The optimal 
translation parameter for a coarse registration is identified as τ = (−4.5; −4.5). The fixed/source image 
is displayed in green and the moving/target image in magenta. (a) T2w. (b) DTI (b = 500 s/mm2). (c) 
T2w-DTI (b = 500 s/mm2). (d) DTI (b = 1250 s/mm2). (e) T2w-DTI (b = 1250 s/mm2). 
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Figure 2. Examples of pairwise linear registration/translation between source and target images,
for a healthy patient, using corner points detection. Image labeling using the Harris operator.
Detected corners have similar locations and belong to the same regions, but show certain mobility.
The optimal translation parameter for a coarse registration is identified as τ = (−4.5; −4.5).
The fixed/source image is displayed in green and the moving/target image in magenta. (a) T2w.
(b) DTI (b = 500 s/mm2). (c) T2w-DTI (b = 500 s/mm2). (d) DTI (b = 1250 s/mm2). (e) T2w-DTI
(b = 1250 s/mm2).

For each completed rigid transformation image, HOG, as a fine-scale gradient computation
technique, is applied and the gradients and orientations of the edges, for all locations, are collected to
form the feature vectors. These features generate the HOG histogram and provide certain informational
correlation between images. Figure 4 shows examples of HOG features as the final bins and their
magnitude. The image intensities and change in intensities are exceptionally described for each local
cell. A block size of 8 × 8 contains abundant shape information and the number of HOG features
is 34,596.

Figure 5 shows examples of the MI-based HOG comparable graphs. The maxima for the image-wise
MI scores is obtained in terms of rotation and translation parameters, as follows: for S1 (−2◦, −4.5 mm,
−4.5 mm), for S2 (2◦, −2 mm, −2 mm), and for S3 (2.5◦, 2.5 mm, 2.5 mm), respectively. It is well known
that MI would not yield to a precise alignment of the two datasets mainly because of the joint entropy,
which is the main hindrance in the registration, by indicating how much information one signal has
about another. However, the individual input’s entropy corrects this issue and recommends MI as the
best similarity measure for image registration. MI computed based HOG features consider the spatial
information about the pixel, thus the main limitation of MI is addressed and overcome.
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Figure 3. Examples of pairwise linear registration/translation between source and target images,
for a patient with right parietal lobe hemorrhage, using corner points detection. Image labeling
using the Harris operator. Detected corners have similar locations and belong to the same regions,
but show certain mobility. The optimal translation parameter for a coarse registration is identified as
τ = (−2.5; −2.5). The fixed/source image is displayed in green and the moving/target image in magenta.
(a) T2w. (b) DTI (b = 500 s/mm2). (c) T2w-DTI (b = 500 s/mm2). (d) DTI (b = 1250 s/mm2). (e) T2w-DTI
(b = 1250 s/mm2).

The FREs between corrected displacements (translation + rotation) and initial positions were used
as a metric to measure the accuracy of the registration. Image registration is successful for smaller
values of FRE (Figure 6). FRE was 2.31 ± 1.90 pixel (or 0.6111 ± 0.5027 mm) for S1; 2.1 ± 1.65 pixel
(or 0.5556 ± 0.4365 mm) for S2, and 2.48 ± 1.56 pixel (or 0.6561 ± 0.4127 mm) for S3, respectively. This is
the smallest registration error. Comparing the MI and FRE result, the T2w-DTI registration has angles
of rotation of −2◦, +2◦, and +2.5◦ as optimal parameters. The FRE results show that the proposed
MI-based HOG method provided accurate results and the corresponding points of the different images
have the same spatial and anatomic positions. Hoelper et al. [32] reported a whole-brain volume
registration error ranging from 0.7 to 2 mm, depending in the region of the brain when 25 anatomic
landmarks were placed in T1w and T2w brain volumes. Grigorescu et al. [7] reported the best average
Dice scores for their cross-validation study in the T2w-DTI case for all studied subcortical structures in
comparison with the T2w-only model (0.88 against 0.84). Moreover, when the same model is applied
to the warped and fixed fractional anisotropy (FA) maps better registration results were obtained for
the T2w-DTI case.
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Figure 4. Examples of HOG features extracted from the original images. HOG computes block-wise 
histogram gradients with multiple orientations. An image is divided into 8 x 8 patches. A 
normalization of the gradients is performed by combining four 8 × 8 patches to create a 16 × 16 block 
for features extraction. A features vector was computed and 34,596 features are extracted. 

Figure 5 shows examples of the MI-based HOG comparable graphs. The maxima for the image-
wise MI scores is obtained in terms of rotation and translation parameters, as follows: for S1 (−2°, −4.5 
mm, −4.5 mm), for S2 (2°, −2 mm, −2 mm), and for S3 (2.5°, 2.5 mm, 2.5 mm), respectively. It is well 
known that MI would not yield to a precise alignment of the two datasets mainly because of the joint 
entropy, which is the main hindrance in the registration, by indicating how much information one 
signal has about another. However, the individual input’s entropy corrects this issue and 
recommends MI as the best similarity measure for image registration. MI computed based HOG 
features consider the spatial information about the pixel, thus the main limitation of MI is addressed 
and overcome. 

  
(a) (b) 

Figure 4. Examples of HOG features extracted from the original images. HOG computes block-wise
histogram gradients with multiple orientations. An image is divided into 8 × 8 8 patches.
A normalization of the gradients is performed by combining four 8 × 8 patches to create a 16 × 16 block
for features extraction. A features vector was computed and 34,596 features are extracted.

Although MI computed as a statistical intensity relationship between corresponding pixels
in both the source and target image is largely accepted as a gold standard similarity measure for
multimodal image registration, there are no gold standard registrations available for T2w-DTI images
registration-based HOG, so the results of the proposed method are compared to the MI based on image
intensities of corresponding pixels. Figure 7 shows examples of the MI based on image intensities of
corresponding pixels graphs.
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proposed MI-based HOG method provided accurate results and the corresponding points of the 
different images have the same spatial and anatomic positions. Hoelper et al. [32] reported a whole-
brain volume registration error ranging from 0.7 to 2 mm, depending in the region of the brain when 
25 anatomic landmarks were placed in T1w and T2w brain volumes. Grigorescu et al. [7] reported 
the best average Dice scores for their cross-validation study in the T2w-DTI case for all studied 
subcortical structures in comparison with the T2w-only model (0.88 against 0.84). Moreover, when 
the same model is applied to the warped and fixed fractional anisotropy (FA) maps better registration 
results were obtained for the T2w-DTI case. 
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Figure 5. First row: MI based on histogram of gradients pattern for the healthy subject (S1),
which depends on a rotation parameter in the range θ∈[−5◦, +5◦] with a step of variation of 0.5◦ and
for a translational parameter of −4.5 pixels along the x and y axis. (a) T2w-DTI (b-values = 500 s/mm2)
registration; (b) T2w-DTI (b-values = 1250 s/mm2) registration. These curves show a maximum at
the correct points of alignment, i.e., (−2◦; 13.2507) for the left plot and (−2◦; 13.3658) for the right
plot. Second row: MI based on histogram of gradients pattern for the diseased subject S2, which also
depends on a rotation parameter in the range θ∈[−5◦, +5◦] with a step of variation of 0.5◦ and for
a translational parameter of −2.5 pixel along the x and y axis. (c) T2-w-DTI (b-values = 500 s/mm2)
registration; (d) T2-w-DTI (b-values = 1250 s/mm2) registration. These curves show a maximum at the
correct points of alignment, i.e., (2◦; 13.3501) for the left plot and (2◦; 15.3682) for the right plot.

This MI-based intensity similarity measure not only considers the intensity statistical characteristics
of the global consistency of images, but also the spatial information is ignored. As a natural consequence,
it cannot notice the complex interactions among the pixel intensities. Some small local maxima exist.
They are mainly caused by a local match between pixel intensities driven by using different imaging
principles or by the large intensity difference of different tissues in different imaging modes. Usually,
these local extremes lead to misregistration. MI-based HOGs reduce the risk of falling into the local
maxima and improve the robustness of the registration compared with the traditional MI measure.

It can be concluded that the MI measure does not have a good registration result when it
is calculated using intensity information from pixel to pixel alone. In contrast, when the spatial
information is combined with gradient information, the registration accuracy is improved, and the
difference between a floating and reference image is minimal.
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Figure 7. First row: MI pattern (as a statistical intensity relationship between corresponding pixels in 
source and target images) for the healthy subject S1, which depends on a rotation parameter in the 
range θ∈[−5°, +5°] with a step of variation of 0.5° and for a translational parameter of −4.5 pixels along 
the x and y axis. (a) T2w-DTI (b-values = 500 s/mm2) registration; (b) T2w-DTI (b-values = 1250 s/mm2) 
registration. These curves show two local maxima, i.e., (−2°; 4.781) and (+0.5°; 4.948) for the left plot, 

Figure 6. Box and whisker plot of the FRE between selected Harris corners as fiducials for T2w-DTI
image registration. The registration accuracy in terms of FRE is performed for 30 control points/fiducials.
(a) Subject S1; (b) subject S2; (c) subject S3.

The proposed registration method based on HOG shows good computational efficiency.
All experiments were performed in MATLAB 2019b. The hardware was a computer with the
following technical performance: Inter (R) Core (TM) i7-8550U CPU @ 1.80 GHz; Memory (RAM)
8 GB DDR4; GeForce MX150 4 GB video; hard disk 500 GB SSD. The values of the computation time
were provided under the same computing power for each registration stage and method (Table 1).
Compared with the MI-based intensity method, the computation time for the proposed MI-based HOG
increases by 6.22% for S1, 6.15% for S2, and 4.78% for S3, respectively. Moreover, Table 1 displays
the quantitative MI results, as follows: the statistics before registration, after translation, and the
statistics for global registration. The experimental results show that the registration based on the
MI–HOG method improves the registration accuracy, while the computational efficiency remains
almost unchanged.

There are some limitations with this study. The placement of Harris corners/fiducials can be
sensitive to error because of the patient’s motion. Harris corner/fiducial sites are limited to those
locations that correspond to anatomic landmarks of the brain. Moreover, our patient numbers
were low. The registration accuracy may be influenced by the brain injuries like brain metastases,
neurodegeneration, and stroke, and future work devoted to these items is planned.
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Figure 7. First row: MI pattern (as a statistical intensity relationship between corresponding pixels in
source and target images) for the healthy subject S1, which depends on a rotation parameter in the
range θ∈[−5◦, +5◦] with a step of variation of 0.5◦ and for a translational parameter of −4.5 pixels along
the x and y axis. (a) T2w-DTI (b-values = 500 s/mm2) registration; (b) T2w-DTI (b-values = 1250 s/mm2)
registration. These curves show two local maxima, i.e., (−2◦; 4.781) and (+0.5◦; 4.948) for the left plot,
and (−2◦; 4.734) and (+0.5◦; 4.901) for the right plot. Second row: MI pattern (as a statistical intensity
relationship between corresponding pixels in source and target images) for the diseased subject S2,
which also depends on a rotation parameter in the range θ∈[−5◦, +5◦] with a step of variation of 0.5◦ and
for a translational parameter of −4.5 pixel along the x and y axis. (a) T2w-DTI (b-values = 500 s/mm2)
registration; (b) T2w-DTI (b-values = 1250 s/mm2) registration. These curves show a certain number of
local maxima. As example, (+1.5◦; 4.1902) and (2◦; 4.2015) for the left plot, and (+0.5◦; 4.1995) and (2◦;
4.2041) for the right plot.

Table 1. Effect of brain image multi-registration on mutual information (MI) (mean ± SD) and
computation time. HOG, histogram of oriented gradients.

Registration Method MI Computation
Time (s)

Healthy patient

Before registration 3.077 ± 0.163 2.33

After translation/linear registration 4.638 ± 0.421 2.48

After global rigid registration
MI-based
intensities 4.018 ± 0.095 2.41

MI-based HOG 13.357 ± 0.004 2.56

Hemorrhagic
patient

Before registration 3.167 ± 0.172 1.95

After translation/linear registration 4.728 ± 0.544 1.78

After global rigid registration
MI-based
intensities 4.133 ± 0.132 1.95

MI-based HOG 15.355 ± 0.004 2.07

Ischemic stroke

Before registration 2.996 ± 0.235 1.85

After translation/linear registration 5.120 ± 0.505 1.62

After global rigid registration
MI-based
intensities 4.247 ± 0.162 1.88

MI-based HOG 14.145 ± 0.004 1.97
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4. Conclusions

The effect of the implementation details on the behavior of the similarity measure and its influence
on the quality of registration was reported. A rigid and multi-modal registration method using
a similarity measure based on image histogram-oriented gradients was proposed, in which both
global changes of intensity information and spatial information are considered. Both sparse features
refer to corners detected using the Harris corner detector operator and dense features as the image
histogram of oriented gradients were used for image registration. Consistent with expectation,
an improved registration precision and computational efficiency were obtained through a robust and
user-independent similarity metric. To summarize, the registration based on MI–HOG similarity
measure improved the registration accuracy by relying on both intensity stationarity from pixel to
pixel and on gradient spatial information about the pixels. Another advantage of the proposed method
is its simplicity in terms of computational complexity.
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