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Abstract: This paper proposes a protocol for lottery and a protocol for auction on quantum
Blockchain. Our protocol of lottery satisfies randomness, unpredictability, unforgeability, verifiability,
decentralization and unconditional security. Our protocol of auction satisfies bid privacy, posterior
privacy, bids’ binding, decentralization and unconditional security. Except quantum Blockchain,
the main technique involved in both protocols is quantum bit commitment.
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1. Introduction

A blockchain is a distributed, transparent and append-only ledger of cryptographically linked
units of data (blocks). Information is stored in a blockchain in a large decentralized network of parties
that do not have to trust one another. The system is distributed in the sense that all nodes of the
network, that are in charge of updating the ledger (usually called miners), have separated, identical
copies of the ledger. To add a new block to the ledger, the nodes storing the information need to
achieve consensus over the content of the ledger.

Cryptocurrencies such as Bitcoin [1] are the best-known applications of blockchain technology.
Smart contracts [2], which are enforceable, irrefutable agreements among mutually distrusting peers
are another important type of applications. The crucial feature of smart contracts is that they do not
require a trusted third party for their administration and enforcement.

Almost all existing blockchain implementations deeply rely on the public-key digital signatures.
For that reason, the developments in the field of quantum computing generate a serious threat to them.
The factorization tasks, on which the cryptographical power of the public-key digital signatures is
based, are hard to solve for traditional computers, but can be easily solved by quantum computers
due to quantum algorithms [3]. Quantum computers, discussed for several decades as a theoretical
concept, and being in an experimental phase right now, are expected to be ready for wider use quite
soon. The current predictions [4] assume that by 2026 the chance of their practical availability is about
15% and by 2031 the chance grows to 50%. As blockchain-based systems are used for the transfer of
value, they are particularly vulnerable to an attack. Thus, as pointed out in [5], blockchain technology
as we know it today may founder unless it integrates quantum technologies.

There is a significant number of publications related to the quantum-safe blockchain immune to
attacks of quantum computers [6–10]. One of the most prominent proposals is the Quantum-secured
Blockchain (QB) [6]. It is based on quantum key distribution (QKD) technology that enables an
unconditionally secure message authentication. The major limitation of QB is that the consensus
protocol it adopts is not efficient, because it becomes exponentially data-intensive if a large number
of cheating parties is present. This limitation is overcome in [9], where a new consensus protocol is
proposed, with only quadratic dependence of resources on the number of miners.
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Quantum-secured Blockchain, as well as other quantum-safe blockchain systems, gives us a
general scheme of a distributed ledger, but does not offer protocols for specific tasks like voting, lottery
or auction that may be built on top of them. In [10] a simple voting protocol based quantum blockchain
is defined. In the present paper, in order to further demonstrate the power and application potential of
quantum blockchain, we present protocols for lottery and auction.

While the auction protocol we propose is the first one of the kind, a lottery protocol for quantum
blockchain was already mentioned in [9]. The lottery protocol presented there is, however, defined
for only two parties and for that reason cannot be applied to the majority of lotteries. In contrast,
the protocol we present in the present paper is designed for any number of players and is secured by a
group of miners. The main technique that we will use for our lottery and auction protocols, except for
quantum blockchain, is quantum bit commitment.

The lottery business is a huge industry of a multi-billion dollar turnover [11]. A lottery is organized
by a trusted authority for a usually large number of players. To participate in the game players buy
tickets from the organizer. Then, a random process determines the winning tickets. Since revenue is
often huge, so is the incentive to cheat. In order to ensure fair play and the trust of players, a lottery
protocol should satisfy the following requirements [12–17]:

1. Randomness. All tickets are equally likely to win.
2. Unpredictability. No player can predict the winning ticket.
3. Unforgeability. Tickets cannot be forged. Especially, it is impossible to create a winning ticket

after the outcome of the random process is known.
4. Verifiablity. The number and the revenue of winning tickets are publicly verifiable.
5. Decentralization. The random process does not rely on a single authority.

Lottery protocols that satisfy the above requirements already exist [12,16]. With the threat
from prospective quantum computers, it is reasonable to require that lottery protocols also satisfy
another property:

6. Unconditional security. Even an adversary with an unlimited power of computation cannot rig
the lottery.

Although quantum coin flipping [18–25], a specific form of lottery, has been researched in the past
20 years, only randomness and the unconditional security has been studied in those works, while other
properties of a lottery have rarely been addressed in this context. In this paper, we design a lottery
protocol that satisfies all the above requirements appropriate for multiple players.

Auction is an even more important business in the sense that trillions of dollars are transferred by
auctions. An auction is a process of buying and selling goods by offering them up for bid, taking bids,
and then selling the item to the buyer who offers the highest bid. In general, there are two types of
auctions: sealed-bid auction and non-sealed-bid auction. The main advantage of the sealed-bid auction
lies in the fact that no buyer gets to know the bids offered by other buyers. In the literature [26–28] it is
acknowledged that an ideal sealed-bid auction must satisfy the following properties:

1. Bid privacy. The submitted bids are not visible to other buyers during the bidding phase.
2. Posterior privacy. The losing bids are not revealed to the public. In other words, only the seller

knows all losing bids and their corresponding buyers.
3. Bids’ binding. Buyers cannot deny or change their bids once they are committed.

In the setting of quantum blockchain, it is reasonable to require that the auction protocol further
satisfies the following properties:

4. Decentralization. The process of the auction does not rely on a single trusted third party.
5. Unconditional security. Even an adversary with an unlimited power of computation cannot

manipulate the process of auction.
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While blockchain-based auction [29,30] does satisfy decentralization and quantum auction [31,32]
does satisfy unconditional security, no existing auction protocol satisfies both of these properties.
The auction protocol we are going to propose satisfies all the above properties.

The rest of the paper is organized as follows. In Section 2 we review some background knowledge
of quantum blockchain and quantum bit commitment. In Section 3 we present our lottery protocol and
in Section 4 our auction protocol. In Section 5 we present conclusions and remarks on the future work.

2. Background

2.1. Quantum Blockchain

The concept of quantum blockchain was presented in [6,9,10]. We are using this general framework
to specify lottery and auction protocols. We assume that each pair of nodes is connected by a quantum
channel and a classical channel. Every pair of nodes can establish a sequence of secret keys by using the
quantum key distribution [33] mechanisms. Those keys will later be used for secure communication.

New transactions or new messages (updates) on the blockchain are initiated by the nodes that
wish to append some new data to the chain. Each miner checks the consistency of the update with
respect to their local copy of the ledger and works out a judgment regarding the update’s admissibility.
Then, all the miners apply a consensus algorithm to the update, arriving at a consensus regarding the
correct version of the update.

In this paper, we will consider quantum blockchain on a high level, omitting its detailed structure
and mechanism, and taking advantage of its following desired properties:

1. Every node is a (small scale) quantum computer which can run some quantum computation
on a small number of qubits. More specifically, nodes are capable of performing the quantum
computation involved in at least one quantum bit commitment protocol.

2. The communication between different nodes is unconditionally secure.
3. There is a consensus algorithm which can be used by all miners to achieve consensus. The consensus

mechanism is immune to attacks. A general definition of the consensus algorithm is given as
the following.

Definition 1 (consensus algorithm). An algorithm among n parties, in which every party p holds an input
value xp ∈ D (for some finite domain D) and eventually, decide on an output value in yp ∈ D, is said to achieve
consensus if the algorithm guarantees that the output values of all honest parties are the same.

2.2. Quantum Bit Commitment

Bit commitment typically consists of two phases, namely: commitment and opening. In the
commitment phase, a sender chooses a bit a (a = 0 or 1) and presents to a receiver some evidence
about it. In the opening phase, the sender discloses more information to the receiver. That information
enables the receiver to reconstruct the initial bit. Let us use a′ to call the reconstructed bit. A useful
bit commitment should be correct, concealing and binding. A correct bit commitment protocol will
ensure that the initial bit is equal to the reconstructed one: a = a′. A protocol is concealing if a receiver
cannot get to know the bit before the opening phase, and is binding if a sender cannot change the bit
after the commitment phase.

The design of the first quantum bit commitment (QBC) protocol can be attributed to Bennett
and Brassard [33]. A number of QBC protocols have been designed to achieve unconditional
security (see e.g., [34,35]). Although according to the Mayers-Lo-Chau (MLC) no-go theorem [36–38],
unconditionally secure QBC cannot be achieved within the theory of quantum mechanics, scientists
have found ways to overcome this negative result in the past two decades. Among them, let us
mention cheat-sensitive quantum bit commitment (CSQBC) [39–43] and relativistic QBC [44–49]
protocols. Accompanied by well-designed punishment mechanisms the CSQBC can be useful in
practice and resilient to the attack of quantum computers. Relativistic QBC protocols make use of
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relativity theory and also achieve unconditional security (see [49], where a protocol is presented in
which a bit is concealed for 24 hours). Another practically useful QBC can be found in He [50,51], who
proposed a QBC protocol based on the use of Mach-Zehnder interferometer.

The following is an abstract yet rigorous definition of QBC, which can be found in Sun et al. [38]
and will be used in this paper.

Definition 2 (quantum bit commitment). A quantum bit commitment protocol consists of the following:

(1) Two finite-dimensional Hilbert spaces A and B.
(2) A function commit : {0, 1} 7→ A⊗ B.
(3) Two pure states |c0〉, |c1〉 ∈ A⊗ B, in which |ci〉 = commit(i) is the commitment of i.
(4) A quantum operation (i.e., completely positive, trace-preserving super operator) Open on A⊗ B such that

Open(|c0〉〈c0|) 6= Open(|c1〉〈c1|).

This QBC protocol is concealing if TrA(|c0〉〈c0|) = TrA(|c1〉〈c1|). It is binding if there is no unitary U
on A such that (U ⊗ IB)|c0〉 = |c1〉.

3. Lottery on Quantum Blockchain

Now let us present our lottery protocol. In the setting of the lottery, we assume there are n players
and every ticket of the lottery is an m-bit string. Our lottery protocol consists of three phases: the ticket
purchasing phase, the ticket agreement phase and the winner determination phase. Figure 1 presents a
simplified visualization of our protocol.

player1 miner1

player2 miner2

commit

commit

commit
CA

Figure 1. A network of players and miners: players commit their tickets to miners. Miners use a
consensus algorithm (CA) to achieve consensus about the players’ tickets.

1. Ticket purchasing:

(a) For every player pi ∈ {p1, . . . , pn}, to purchase a ticket Ti, pi uses QBC to commit Ti
to all miners. At the end of this phase, every miner possesses a list of commitments
(commit(T1), . . . , commit(Tn)).

2. Ticket agreement:

(a) Every player opens his commitment to every miner, so that the commitments in every miner’s
possession change to (Open(commit(T1)), . . . , Open(commit(Tn))), which essentially equals
to (T1, . . . , Tn).

(b) All the miners run a consensus algorithm to achieve a consensus on the tickets (T1, . . . , Tn)

purchased by players. Every miner adds (T1, . . . , Tn) to his local copy of the blockchain.
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3. Winner determination:

(a) The winning ticket is calculated by bit-wise XOR: T = T1 ⊕ . . .⊕ Tn.
(b) A player’s revenue is determined by the Hamming distance between his ticket and the

winning ticket T. The closer his ticket is to the winning ticket, the higher is his revenue (a
specific rule of revenue which satisfies this principle is beyond the scope of this paper and
is left for future work).

Analysis

Our lottery protocol satisfies the following requirements:

1. Randomness.

The winning ticket is calculated by bit-wise XOR. For every index j ∈ {1, . . . , m} in the winning
ticket, T[j] = 1 iff T1[j]⊕ . . .⊕ Tn[j] = 1. Therefore, the probability of T[j] = 1 is the same as
T[j] = 0.

2. Unpredictability.

To predict the winning ticket a player has to know all tickets before they are opened. The concealing
property of QBC ensures that even miners cannot know the players’ tickets before they are opened.
Since tickets are only sent to the miners by QBC, the probability that a player knows all tickets is
even lower than the probability that a miner knows them.

3. Unforgeability.

The binding property of QBC ensures that it is impossible to change a ticket after the ticket
purchasing phase.

4. Verifiablity.

This is because the quantum blockchain is a transparent database. After the ticket agreement
phase, the list (T1, . . . Tn) is added to the blockchain. Every player can read all the other players’
tickets and calculate the winning ticket by himself.

5. Decentralization.

The random process does not rely on a single authority. Every player’s ticket essentially affects
the calculation of the winning ticket.Moreover, the calculation of the winning ticket does not rely
on a single miner, but on all miners.

6. Unconditional security.

Even an adversary with an unlimited power of computation cannot manipulate the lottery
protocol. The concealing and binding property of QBC does not rely on any computational
assumption. Nor does the security of the consensus algorithm. The unconditional security of
the ledger is further guaranteed by the unconditional security of the digital signature schemes
adopted by quantum Blockchain.

4. Auction on Quantum Blockchain

In our protocol of auction, we assume three types of participants: one seller S, m buyers
{B1, . . . , Bm} and n miners {M1, . . . , Mn}. Our protocol works as follows: First all buyers send their
bids to the seller. Then the seller calculates which buyer is the winner. Finally, all miners verify the
seller’s calculation. Figure 2 is a brief visualization of the process of auction. There are five phases in
our protocol.
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buyer1 miner1

seller

buyer2 miner2

commit

commit-open

commit

commit-open

verify

verify

commit
CA

Figure 2. A network of the seller, buyers and miners.

1. The bidding phase: Every buyer Bi commits his bid bi to the seller and to all miners Mj, where bi
is a positive integer.

2. The opening phase: Every buyer opens his bid to the seller.
3. Decision phase: The seller calculates the winning bid, which is the highest bid (if there is a tie,

then one of the maximal bids is chosen randomly), and the winning buyer, who has offered the
winning bid.

4. Verification phase: In this phase, the seller S and every miner Mj (1 ≤ j ≤ n) run the following
procedure to convince Mj that S has chosen the valid winner:

(a) S sends the information about the winning buyer Bw and his bid bw to the miner Mj.

(b) S permutes losing bids to obtain a new list of m− 1 bids (b′1, . . . , b′m−1).
(c) S sends b′1, . . . , b′m−1 to Mj.

(d) Mj first checks if bw ≥ b′k for all k ∈ {1, . . . , m− 1}. If yes, then Mj sends (bw, b′1, . . . , b′m−1)

to all buyers. Otherwise, Mj sets S as a cheater by setting output to ⊥.

(e) After receiving (bw, b′1, . . . , b′m−1), every buyer Bi checks if his bid is in the list, i.e., there is
some b′k = bi. If yes, then Bi sends the message “valid” to Mj. Otherwise Bi opens bi to
Mj. Mj then sets S as a cheater by setting output to ⊥.

(f) If Mj does not output ⊥, then the seller passes the verification phase. The output of Mj is
now (bw, b′1, . . . , b′m−1, Bw)

5. Publication phase: All miners run the consensus algorithm to achieve consensus on the output of
the verification phase. The consensus is then added to the blockchain.

Analysis

Our auction protocol satisfies the following requirements:

1. Bid privacy.

Every buyer only commits and opens his bids to the seller. Therefore, no buyer knows other
buyers’ bids.

2. Posterior privacy.

What is added to the blockchain is the winning buyer and his bid, as well as a permuted list of
losing bids. Therefore, no losing buyer’s bid is revealed.
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3. Bids’ binding.

The binding property of quantum bit commitment ensures that buyers cannot deny or change
their bids once they are committed.

4. Decentralization.

There are in total n miners. The process of the auction does not rely on a single miner.

5. Unconditional security.

As in the case of our lottery protocol, even an adversary with an unlimited power of computation
cannot manipulate the auction protocol because the security of the quantum bit commitment and
consensus algorithm does not depend on computational complexity. The unconditional security
of the ledger relies on quantum Blockchain properties.

5. Conclusions and Future Work

This paper proposes a lottery protocol and an auction protocol based on quantum bit commitment
and quantum blockchain. These protocols satisfy all the important properties of distributed
lottery/auction and are implementable by the current technology.

In the future, we are interested in applying quantum blockchain to the general field of multi-party
computation. We believe that quantum blockchain will provide new insights into these interesting
tasks. We estimate that in the future more complicated protocols (smart contracts) on the quantum
blockchain will be designed. Developing a formal tool for the specification and verification of smart
contracts on the quantum blockchain is on our agenda. The recently developed categorical logic of
quantum programs [52] seems to be a good starting point.
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