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Abstract: The word-frequency distribution provides the fundamental building blocks that generate
discourse in natural language. It is well known, from empirical evidence, that the word-frequency
distribution of almost any text is described by Zipf’s law, at least approximately. Following Stephens
and Bialek (2010), we interpret the frequency of any word as arising from the interaction potentials
between its constituent letters. Indeed, Jaynes’ maximum-entropy principle, with the constrains
given by every empirical two-letter marginal distribution, leads to a Boltzmann distribution for word
probabilities, with an energy-like function given by the sum of the all-to-all pairwise (two-letter)
potentials. The so-called improved iterative-scaling algorithm allows us finding the potentials from
the empirical two-letter marginals. We considerably extend Stephens and Bialek’s results, applying
this formalism to words with length of up to six letters from the English subset of the recently created
Standardized Project Gutenberg Corpus. We find that the model is able to reproduce Zipf’s law,
but with some limitations: the general Zipf’s power-law regime is obtained, but the probability of
individual words shows considerable scattering. In this way, a pure statistical-physics framework is
used to describe the probabilities of words. As a by-product, we find that both the empirical two-letter
marginal distributions and the interaction-potential distributions follow well-defined statistical laws.

Keywords: maximum entropy principle; two-letter interactions; Boltzmann factor; word-frequency
distribution; Zipf’s law; quantitative linguistics; power laws

1. Introduction

Zipf’s law is a pattern that emerges in many complex systems composed by individual elements
that can be grouped into different classes or types [1]. It has been reported in demography, with citizens
linked to the city or village where they live [2]; in sociology, with believers gathering into religions [3];
in economy, with employees hired by companies [4]; and also in ecology [5,6], communications [3,7],
cell biology [8], and even music [9–11]. In all these cases, the size of the groups in terms of the number
of its constituent elements shows extremely large variability, more or less well described in some range
of sizes by a power-law distribution with an exponent close to two (for the probability mass function;
this turns out to be an exponent close to one for the complementary cumulative distribution).

Of particular interest is Zipf’s law in linguistics [12–17], for which individual elements are word
tokens (i.e., word occurrences in a text), and classes or groups are the words themselves (word types).
In this way, the “size” of a word type is given by the number of tokens of it that appear in the text
under study (in other words, the absolute frequency of the word), and thus, the linguistic version of
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the law states that the frequency of word types can be described by a power-law probability mass
function, with an exponent around two. Some variability has been found in the value of the exponent
regarding the language [18] or age of the speakers [19], but not the length of the text [20,21] or the
precise word definition (i.e., word forms versus lemmas [20]). Let us clarify that (what we call today)
Zipf’s law was discovered more than 100 years ago by Estoup [22] and formalized mathematically
by the recognized physicist E. Condon in 1928 [23]; the posterior rediscovery and intensive work by
Zipf [24] is what made the law so well-known.

There have been many attempts to provide a mechanism for this curious law [25–27].
With text generation in mind, we can mention monkey typing, also called intermittent silence [28]
(criticized in [29]), the least effort principle [30–32], sample-space reduction [33,34], and
codification optimization [35]. More general mechanistic models for Zipf’s law are preferential
attachment [18,36–38], birth-and-death processes [39], variations of Polya urns [40] and random walks
on networks [41]. The existence of so-many models and explanations is a clear indication of the
controversial origin of the law. Furthermore, there have been also important attempts to explain not
only Zipf’s law but any sort of power-law distributions in nature [42–45].

A different approach is provided by the maximum-entropy principle. In statistical physics it
is well known that a closed system in equilibrium with a thermal bath displays fluctuations in its
energy but keeping a constant mean energy. As Jaynes showed [46], the maximization of the Shannon
entropy [47] with the constrain that the mean energy is fixed yields the Boltzmann factor, which states
that the probability of any microstate has to be an exponential function of its energy (note that this
does not mean that the distribution of energy is exponential, as the number of microstates as a function
of the energy is not necessarily constant).

Therefore, some authors have looked for an analogous of the Boltzmann factor for power laws.
For example, one can easily obtain a power law not imposing a constant (arithmetic) mean but a
constant geometric mean [48] (assuming also a degeneracy that is constant with respect the energy).
Also, fixing both the arithmetic and the geometric mean leads to a power law with an exponential
tail [49]. Nevertheless, the physical meaning of these constraints is difficult to justify.

More recently, Peterson et al. [50] have proposed a concrete non-extensive energy function that
leads to power-law tails of sizes when maximizing the Shannon entropy. The main idea is that the
probability is exponential with the energy, but the energy is logarithmic with size, resulting in an
overall power law for sizes [50]. Other authors have found the use of the Shannon entropy inadequate,
due to its close connection with exponential distributions, and have generalized the very entropy
concept, yielding non-extensive entropies such as the Havrda-Charvát entropies [51], also called Tsallis
entropies [52], and the Hanel-Thurner entropies [53,54].

Here we will follow the distinct approach of Stephens and Bialek [55], extending their results.
Like Peterson et al. [50], these authors [55] consider the well-known Jaynes’ maximization of the plain
Shannon entropy, but in contrast to them [50], no functional form is proposed a priori for the energy.
Instead, the constrains are provided by the empirical two-body marginal distributions. The framework
is that of word occurrence in texts, and words are considered to be composed by letters that interact
all to all, in pairs. In a physical analogy, one could think of a word as a (one-dimensional) molecule,
and the constituent letters would be the corresponding atoms. The interaction between atoms (letters)
does not only depend on the distance but also on the position (i.e., the interaction between a and b
is not the same between positions 1 and 3 than between 2 and 4, and so on; moreover, symmetry is
not preserved). Let us remark that this is different from a Markov model [47]; all-to-all interaction is
an important distinction. The resulting Boltzmann-like factor allows one to identify, in a natural way,
the Lagrange multipliers (obtained in the maximization of entropy under the empirical values of the
constrains) with the interaction potentials (with a negative sign).

Stephens and Bialek [55] only considered four-letter English words and performed a visual
comparison with the empirical frequencies of words. We will considerably extend their results by
analyzing words of any length from 1 to 6 letters in a much larger English corpus, and will undertake
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a quantitative statistical analysis of the fulfillment of Zipf’s law. In this way, using Shannon and
Jaynes’ framework we will obtain a Boltzmann-like factor for the word probabilities that will allow
a direct comparison with Zipf’s law. We will pay special attention to the values of the interaction
potentials. The main conclusion is that two-body (two-letter) pairwise interactions are able to reproduce
a power-law regime for the probabilities of words (which is the hallmark of Zipf’s law), but with
considerable scatter of the concrete values of the probabilities.

In the next section, we review the maximum-entropy formalism and its application to pairwise
interaction of letters in words, using the useful concept of feature functions. Next, we describe the
empirical data we use and the results, including the empirical pairwise marginals (which are the
input of the procedure) and the resulting pairwise potentials (which are the output from which the
theoretical word distribution is built). The Zipfian character of the theoretical word distribution as
well as its correspondence with the empirical distribution is evaluated. In the final section we discuss
limitations and extensions of this work.

2. Maximum Entropy and Pairwise Interactions

“Information theory provides a constructive criterion for setting up probability distributions on
the basis of partial knowledge,” which leads to a special type of statistical inference. This is the key
idea of Jaynes’ maximum-entropy principle [46]. The recipe can be summarized as: use that probability
distribution which has maximum Shannon entropy subject to whatever is known. In other words,
everything should be made as random as possible, but no more [56] (E. G. Altmann has made us
notice that Jaynes, being close to be a Bayesian, would not have totally agreed with the identification
of entropy with randomness, and would have prefer the use of “ignorance”. Therefore, we could write
instead: we should be as ignorant as possible, but no more.) .

Let us consider words in texts. Labelling each word type by j, with j = 1, 2, . . . V, and V the size
of the vocabulary (the total number of word types), the Shannon entropy is

S = −
V

∑
j=1

Pj ln Pj,

where Pj is the probability of occurrence of word type j. Please note that as we use natural logarithms,
the entropy is not measured in bits but in nats, in principle. To maximize the entropy under a series of
constrains one uses the method of Lagrange multipliers, where one finds the solution of

∂L
∂Pj

= − ln Pj − 1− α
∂

∂Pj
(constrain 1)− β

∂

∂Pj
(constrain 2)− · · · = 0, (1)

for all j, with α, β, etc., the Lagrange multipliers associated with constrain 1, constrain 2, etc., and
L = S− α× (constrain 1)− β× (constrain 2)− . . . the Lagrangian function.

One can see that the maximum-entropy method yields intuitive solutions in very simple cases.
For example, if no constrains are provided one obtains the equiprobability case, Pµc

j = 1/V (as there is
in fact one implicit constrain: normalization; µc stands from microcanonical, in analogy with statistical
physics). If there are no other constrains it is clear one cannot escape this “rudimentary” solution.
If, instead, one uses all empirical values as constrains, one gets the same one puts, with a solution
P f ull

j = ρ(j), with ρ(j) the empirical probability of occurrence of word j (i.e., the relative frequency
of j). Therefore, the full data is the solution, which is of little practical interest, as this model lacks
generalization and does not bring any understanding.

More interestingly, when the mean value of the energy is used as a constrain (as it happens in
thermodynamics for closed systems in thermal equilibrium with a bath), the solution is given by the
Boltzmann distribution [57],

Pcan
j =

e−βEj

Z
, (2)
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with the notation can coming from the analogy with the canonical ensemble, Ej referring to the energy
of type (or state) j, and with Z = ∑j e−βEj . If one could propose, a priori, an expression for the energy
Ej of a word type, the word probability would follow immediately; however, that energy would
lack interpretation. Let us stress that we are not referring to the physical (acoustic) energy [58–60],
as arising in speech; in fact, our approach (which is that of Stephens and Bialek) would lead to
something analogous to the energy of a word. However, the analogy one finds in this way (through
the Boltzmann factor) is so neat that it is not possible to escape identifying that with a sort of “energy”.

2.1. Feature Functions and Marginal Probabilities

At this point it becomes useful to introduce the feature functions [61]. Given a feature i, the
feature function fi(j) is a function that for each word j takes the values

fi(j) =

{
1 if the word j contains feature i
0 if not

For example, let us consider the feature i = { letter c is in position 1}, summarized as i = 1c
(in this case, this could be called letter function); then f1c(cat) = 1 and f1c(mice) = 0, as c is the first
letter in cat but not in mice (let us mention that, for us, capital and lower-case letters are considered
the same letter).

Considering m features, each one yielding a constrain for its expected value, we have

〈 fi〉 =
V

∑
j=1

Pj fi(j) = ∑
j s.t. i in j

Pj = Fi (3)

for i = 1, 2, . . . m, with Fi the empirical mean value of feature i (fraction of word tokens with feature i).
Please note that Pj and 〈 fi〉 are unknown, whereas Fi should not. With these m constrains, the method
of Lagrange multipliers [Equation (1)] leads to

∂L
∂Pj

= − ln Pj − 1+
m

∑
i=1

λi fi(j) = 0,

where λi are now the Lagrange multipliers (we have in fact inverted their sign with respect the previous
cases, in particular Equations (1) and (2), for convenience). The solution is

Pj = exp

(
−1 +

m

∑
i=1

λi fi(j)

)
(4)

= exp
(
−1 + ∑ λ’s of features of word j

)
.

In contrast with the previous simplistic models, we are now able to deal with the inner structure
of words, as composed by letters, i.e., j = {`1, `2, . . . } and Pj = P(`1`2 . . . ), with `1 the letter at first
position of word j and so on. If we consider that the features describe the individual letters of a word,
for example, for i = 1c, then Equation (3) writes

〈 f1c〉 =
V

∑
j=1

Pj f1c(j) =
z

∑
`2=a

z

∑
`3=a

· · · P(c`2`3 . . . ) = PI
1 (c) = ρ1(c) (5)

(using that only words starting with `1 = c contribute to the sum); in words, we obtain that the
expected value of the feature 1c is the marginal probability PI

1 (c) that the first letter in a word is c,
which we make equal to its empirical value ρ1(c) (which is just the number of tokens with letter c
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in position 1 divided by the total number of tokens). Notice that we do not impose normalization
constrain for the Pj’s, as this is implicit in the marginals.

Coming back to the expression for the probabilities, Equation (4), we have, for a three-letter example,

PI(cat) = exp(λ1c + λ2a + λ3t − 1),

the label I standing for the fact that the solution is obtained from the constrains of one-letter marginals.
Substituting this into the constrain, Equation (5), we arrive to ρ1(c) ∝ eλ1c , from where we can take
solutions of the form eλ1c−1/3 = ρ1(c) and so,

PI(cat) = ρ1(c)ρ2(a)ρ3(t)

(note that other solutions for the λ1c’s are possible, but they lead to the same PI ’s; in particular, the
origin of each potential is not fixed and one could replace, for instance, λ1`1 → λ1`1 + C1 for all `1,
provided that the other potentials are modified accordingly to yield the same value of the sum).

This model based on univariate (single-letter) marginals is very simple indeed, and closely related
to monkey-typing models [28,29], as we obtain that each word is an independent combination of letters,
with each letter having its own probability of occurrence (but depending on its position in the word).
In other words, one could think of a monkey typing on a keyboard at random, with each letter having
a different probability. However, in addition, the probabilities of each letter change depending if the
letter is the first of a word, or the second, etc. (the blank is considered to be special letter, which signals
the end of a word). Please note that, although the “classical” extension of these simple monkey-typing
models is towards Markov models [47], Stephens and Bialek’s approach [55] takes a different direction.

2.2. Pairwise Constrains

The approach of Stephens and Bialek uses the generalization of the previous model to two-letter
features, which leads to constrains over the two-letter marginals. For instance, if the feature i = 12ca
denotes that the word has letter c in position 1 and letter a in 2, then, Equation (3) writes

〈 f12ca〉 = ∑
∀j

Pj f12ca(j) =
z

∑
`3=a

z

∑
`4=a

· · · P(ca`3 . . . ) = PI I
12(ca) = ρ12(ca), (6)

with ρ12(ca) the two-letter marginal, provided by the empirical data,

ρ12(ca) =
number of tokens with c in 1 and a in 2

total number of tokens
.

The solution (4), restricted for the particular example of a three-letter word can be written as

PI I(cat) = exp(λ12(ca) + λ13(ct) + λ23(at)− 1), (7)

using the notation λ12ca = λ12(ca) for the multipliers, and the label I I denoting that we are dealing
with theoretical probabilities arising from two-letter features, i.e., two-letter marginals. The same result
writes, in general,

PI I(`1`2 . . . `K) = exp

(
−1 +

K−1

∑
k=1

K

∑
k′=k+1

λkk′(`k`k′)

)
, (8)

with K the word length (in number of letters). Comparing to Boltzmann distribution, as in Equation (2),
we can identify the argument of the exponential with the energy (in units of β−1 and with a minus
sign) and the Lagrange multiplier for each feature with the pairwise interaction potential between the
letters defining the feature (with a minus sign, and with a shift of one unit); for example,

−βE(cat) = λ12(ca) + λ13(ct) + λ23(at)− 1,
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and in general,

−βE(`1`2 . . . `K) = −1 +
K−1

∑
k=1

K

∑
k′=k+1

λkk′(`k`k′).

Therefore, words can be seen as networks of interacting letters (with all-to-all interaction between
pairs, and where the position of the two letters matters for the interaction). Please note that three-letter
interactions, common in English orthographic rules, are not captured by the pairwise interaction;
for example, in positions 3 to 5: believe (rule) versus deceive (exception, due to the c letter).
Remarkably, this pairwise approach has been used also for neuronal, biochemical, and genetic
networks [55]. A very simplified case of this letter system turns out to be equivalent to an Ising model
(or, more properly, a spin-glass model): just consider an alphabet of two letters (a and b) and impose
the symmetries (not present in linguistic data, in general) λkk′(ab) = λkk′(ba) and λkk′(aa) = λkk′(bb)

(if one wants to get rid of this symmetry in the Ising system one could consider external “magnetic”
fields, associated with the one-letter marginals).

Substituting the solution (4) or (7) into the constrains (6), the equations we need to solve would
be like

PI I
12(ca) = 〈 f12ca〉 = ∑

j
f12ca(j) e−1+∑m

i=1 λi fi(j) =

= eλ12(ca)
z

∑
`3=a

eλ13(c`3)+λ23(a`3)−1 = ρ12(ca), (9)

if we restricted to three-letter words.
For computational limitations, we will only treat words comprising from 1 to 6 letters. As the

numerical algorithm we will use requires that the number of letters is constant (see the Appendix A),
we will consider that words shorter than length 6 are six-letter words whose last positions are filled
with blanks; for example, cat = cat���, where the symbol � denotes a blank. In this way, instead
of the usual 26 letters in English we deal with 27 (the last term in the sums of some of the previous
equations should be �, instead of z). This yields 6× 5/2 = 15 interaction potentials (15 features) for
each word, and a total of 15× 272 = 10,935 unknown values of the interaction potential (i.e., Lagrange
multipliers with minus sign) corresponding to 10,935 equations (one for each value of the two-letter
marginals). In contrast, note that there are about 276 = 387,420,489 possible words of length between 1
and 6 (the figures turn out to be a bit smaller if one recalls that blanks can only be at the end of the
word, in fact, 26 + · · ·+ 266 = 321,272,406). In more generality, the 10,935 equations to solve are like

eλ12(ca) ∑
`3 ...`6

eλ13(c`3)+···+λ16(c`6)+λ23(a`3)+···+λ26(a`6)+λ34(`3`4)+...···+λ56(`5`6)−1 = ρ12(ca), (10)

where the solution is not straightforward anymore, and has to be found numerically. Therefore,
we deal with a constrained optimization problem, for which the Appendix A provides complete
information. Here we just mention that the so-called improved iterative-scaling method [61,62] consist
of the successive application of transformations as

λ12(ca)→ λ12(ca) +
1

15
ln

ρ12(ca)

PI I
12(ca)

,

see Equation (A1) in the Appendix A, with PI I
12(ca) calculated from the maximum-entropy solution,

Equation (9). Please note that, as in the case of univariate marginals, the potentials are undetermined
under a shift, i.e., λ12(`1`2) → λ12(`1`2) + C12, as long as the other potentials are correspondingly
shifted to give the same value for the sum.
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3. Data and Results

3.1. Data

As a corpus, we use all English books in the recently presented Standardized Project Gutenberg
Corpus [63]. This comprises more than 40,000 books in English, with a total number of tokens
2,016,391,406 and a vocabulary size V = 2,268,043. The entropy of the corresponding word-probability
distribution is S = 10.27 bits. To avoid spurious words (misspellings, etc.), and also for computational
limitations, we disregard word types with absolute frequency smaller than 10,000; the corresponding
relative frequencies are below 5× 10−6. Also, word types (unigrams) containing characters different
than the plain 26 letters from a to z are disregarded (note that we do not distinguish between capital and
lower-case letters). Finally, we remove also Roman numerals (these are not words for our purposes, as
they are not formed by interaction between letters). This reduces the number of tokens to 1,881,679,476
and V to 11,042, and so the entropy becomes S = 9.45 bits. Finally, the subset of words with length
smaller or equal to 6 yields 1,597,358,419 tokens, V = 5081 and S = 8.35 bits. We will see that these
sub-corpora fulfill Zipf’s law, but each one with a slightly different power-law exponent. Please note
that the fact of disregarding relative frequencies below 5× 10−6 does not influence the fulfillment of
Zipf’s law, as Zipf’s law is a high-frequency phenomenon (see Table 1).

Table 1. Results of power-law fitting of the form g(ρ) ∝ 1/ργ+1 (for a ≤ ρ ≤ b) applied to the 15
empirical two-letter marginal distributions (with b = ∞), to the empirical word frequency ρword and
to the theoretical maximum-entropy solution PI I . The empirical distribution for words of any length,
ρall word, is also shown, in order to compare it with ρword. V is the number of types (pairs of letters or
words); ρmax is the highest empirical frequency; jmax is the corresponding type (pair of letters or word
type; the next highest-frequency types appear in brackets); o.m. is the number of orders of magnitude
in the fit, log10(ρmax/a); v is the number of types that enter into the power-law fit; σ is the standard
error of the fitted exponent; and p is the p−value of the goodness-of-fit test. The ratio v/V ranges
from 0.09 to 0.3. Only words of length from 1 to 6 are taken into account. Blanks are not considered in
the marginals. 50 values of a and b (when b is not fixed to ∞) are analyzed per order of magnitude,
equally spaced in logarithmic scale. p−values are computed from 1000 Monte Carlo simulations. Fits
are considered non-rejectable if p ≥ 0.20.

Distribution V ρmax jmax
a b o.m. v γ ± σ p

(×10−4)

ρ12 223 0.143 th (an, of, to, he) 63.1 ∞ 1.36 40 1.282 ± 0.213 0.21
ρ13 471 0.146 te (i�, o�, a�, ad) 16.6 ∞ 1.94 133 1.138 ± 0.097 0.24
ρ14 455 0.038 t� (a�, o�, i�, h�) 34.7 ∞ 1.04 81 1.391 ± 0.156 0.23
ρ15 391 0.043 t� (a�, o�, i�, h�) 36.3 ∞ 1.07 78 1.433 ± 0.175 0.28
ρ16 285 0.042 t� (a�, o�, w�, i�) 69.2 ∞ 0.78 45 2.110 ± 0.324 0.23
ρ23 309 0.160 he (f�, o�, ��, nd) 57.5 ∞ 1.44 42 1.207 ± 0.197 0.29
ρ24 361 0.049 h� (n�, o�, f�, e�) 60.3 ∞ 0.91 50 1.466 ± 0.210 0.24
ρ25 334 0.057 h� (o�, n�, e�, a�) 52.5 ∞ 1.04 53 1.309 ± 0.183 0.29
ρ26 240 0.055 h� (o�, n�, e�, a�) 145.0 ∞ 0.58 21 2.576 ± 0.627 0.22
ρ34 330 0.048 �� (e�, d�, s�, t�) 83.2 ∞ 0.76 36 1.764 ± 0.340 0.41
ρ35 371 0.039 �� (e�, d�, s�, r�) 50.1 ∞ 0.89 57 1.359 ± 0.190 0.28
ρ36 273 0.045 �� (e�, d�, r�, t�) 75.9 ∞ 0.78 44 1.935 ± 0.298 0.32
ρ45 278 0.051 �� (e�, t�, n�, h�) 87.1 ∞ 0.77 35 1.579 ± 0.270 0.33
ρ46 244 0.044 �� (e�, t�, n�, l�) 100.0 ∞ 0.64 31 1.946 ± 0.378 0.28
ρ56 154 0.115 �� (e�, s�, d�, t�) 72.4 ∞ 1.20 34 1.140 ± 0.201 0.58

ρall word 11042 0.071 the (of, and, to, a) 1.0 0.073 2.85 925 0.925 ± 0.030 0.25
ρword 5081 0.084 the (of, and, to, a) 0.5 0.087 3.20 1426 0.811 ± 0.023 0.31
PI I 2174013 0.081 the (of, and, to, a) 0.2 0.083 3.53 2947 0.886 ± 0.017 0.38

3.2. Marginal Distributions

Figure 1 displays the empirical two-letter marginal probabilities (obtained from the 6-or-less-letter
sub-corpus just described), which constitute the target of the optimization procedure. There are a
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total of 5092 non-zero values of the marginals. Notice that, although the two-letter marginals are
bivariate probabilities (for example, ρ12(`1`2), see also Figure 1a in [55]), Zipf’s representation allows
one to display them as univariated. This is achieved by defining a rank variable, assigning rank
r = 1 to the type with the highest empirical frequency ρ (i.e., the most common type), r = 2 to the
second most common type, and so on (Figure 1(left)). This is called the rank-frequency representation
(or, sometimes, distribution of ranks), and constitutes a sort of projection of a bivariate (in this case, or
multivariate, in general) distribution into a univariate one; for example, ρ12(`1`2), instead of being
represented in terms of the random variables `1 and `2, is considered a univariate function or the rank,
ρ12(r).

Then, Zipf’s law can be formulated as a power-law relation between ρ and r,

ρ ∝
1

r1/γ
(11)

for some range of ranks (typpically the lowest ones, i.e., the highest frequencies), with the exponent
γ−1 taking values close to one (the symbol ∝ denotes proportionality). When we calculate and report
entropies we use always the rank-frequency representation.

An approximated alternative representation [17,64,65], also used by Zipf [14,24], considers
the empirical frequency ρ as a random variable, whose distribution is computed. In terms of the
complementary cumulative distribution, G(ρ), Zipf’s law can be written as

G(ρ) ∝
1

ργ
, (12)

which in terms of the probability density or probability mass function of ρ leads to

g(ρ) ∝
1

ργ+1 , (13)

asymptotically, for large ρ (Figure 1(right)). Both G(ρ) and g(ρ) constitute a representation in terms of
the distribution of frequencies. For more subtle arguments relating ρ(r), G(ρ), and g(ρ), see [17,64,65].

We can test the applicability of Zipf’s law to our two-letter marginals, in order to evaluate
how surprising or unsurprising is the emergence from them of Zipf’s law in the word distribution.
Remember that, in the case of marginal distributions, types are pairs of letters. Figure 1(left) shows that,
despite the number of data in the marginals is relatively low (a few hundred as shown in Table 1, with
a theoretical maximum equal to 262 = 676), the marginal frequencies appear as broadly distributed,
varying along 4 orders of magnitude (with the frequency ρ in the range from 10−5 to 10−1). Although
the double logarithmic plots do not correspond to straight lines, the high-frequency (low-rank) part of
each distribution can be fitted to a power law, for several orders of magnitude ranging from 0.5 to 2
and an exponent γ typically between 1 and 2, as it can be seen in Table 1. Thus, the two-letter marginal
distributions display a certain Zipfian character (at least considering words of length not larger than 6,
in letters), with a short power-law range, in general, and with a somewhat large value of γ (remember
that γ has to be close to one for the fulfillment of Zipf’s law).

Remarkably, Figure 1(right) also shows that all the marginal distributions present a characteristic,
roughly the same shape, with the only difference being on the scale parameter of the frequency
distribution, which is determined by the mean frequency 〈ρkk′〉 (denoted generically in the figure as
〈ρemp〉). This means, as shown in the figure, that the distribution g(ρemp), when multiplied (rescaled)
by 〈ρemp〉, can be considered, approximately, as a function that only depends of the rescaled frequency,
ρemp/〈ρemp〉, independently on which potential ρkk′ one is considering. In terms on the distribution of
ranks this scaling property translates into the fact that ρemp/〈ρemp〉 can be considered a function of
only r/V.
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For the fitting we have used the method proposed in [66,67], based on maximum-likelihood
estimation and Kolmogorov-Smirnov goodness-of-fit testing. This method lacks the problems
presented in the popular Clauset et al.’s recipe [3,68,69]. The fitting method is applied to ρ as a
random variable (instead than applied to r [16]); this choice presents several important advantages, as
discussed in [65]. The outcome of the method is a estimated value of the exponent γ together with a
value of ρ, denoted by a, from which the power-law fit, Equations (12) and (13), is non-rejectable (with
a p-value larger than 0.20, by prescription). Although other distributions different than the power
law can be fitted to the marginal data (e.g., lognormal [67]) our purpose is not to find the best fitting
distribution, but just to evaluate how much Zipf’s power law depends on a possible Zipf’s behavior of
the marginals.
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Figure 1. Empirical two-letter marginal distributions (for word length not larger than 6 letters). Left:
The distribution ρ12 is represented in terms of the rank-frequency plot [corresponding to Equation (11)].
The most common values of ρ12 correspond to the following pairs: th, an, of, to, he, in, a�,
ha, wh, wa, ... The power-law fit from Table 1 is shown as a straight line, with exponent 1/γ = 0.78.
Right: All 15 two-letter marginals are represented in terms of the distributions of the value of the
marginal probabilities, ρ12, ρ13, . . . ρ56 (denoted in general as ρemp). All the distributions have been
shifted (in log-scale) by rescaling by their mean values 〈ρemp〉, see [70]. This makes apparent the
similarities between all the two-letter marginal distributions, except for a scale factor given by 〈ρemp〉.
Values below the mean (ρemp < 〈ρemp〉) can be fitted by a truncated power law, with exponent
1 + γ′ ' 0.9 (not reported in the tables). The tail (large ρemp) is well fitted by power laws, with the
values of exponents 1 + γ in Table 1.

3.3. Word Distributions

Figure 2 shows that the optimization succeeds in getting values of the theoretical marginal
distributions very close to the empirical ones. However, despite the fact the target of the optimization
are the marginal distributions (whose empirical values are the input of the procedure), we are interested
in the distribution of words, whose empirical value is known but does not enter into the procedure, as
this is the quantity we seek to “explain”. Zipf’s rank-frequency representation allows us to display
in one dimension the six-dimensional nature (from our point of view) of the word frequencies; for
the empirical word frequencies this is shown in Figure 3. We find that the distribution is better
fitted in terms of an upper truncated power law [66,71], given, as in Equation (13), by g(ρ) ∝ 1/ργ+1

but in a finite range a ≤ ρ ≤ b < ∞ (the untruncated case would be recovered by taking b → ∞).
This corresponds, in the continuum case, to a cumulative distribution G(ρ) ∝ 1/ργ − 1/bγ, and to a
rank-frequency relation

ρ ∝
1

(r + V/bγ)1/γ
,

which coincides in its mathematical expression with the so-called Zipf-Mandelbrot distribution
(although the continuous fit makes r a continuous variable; remember that V is the number of types).
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The fitting procedure is essentially the same as the one for the untruncated power law outlined in the
previous subsection, with the maximization of the likelihood a bit more involved [66,67].
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Figure 2. Comparison between the empirical two-letter marginal distributions ρemp and the theoretical
ones ρtheo obtained from the improved iterative-scaling optimization procedure [61,62]. The relative
error between both values of the marginal probability is shown as a function of the empirical value, for
the 15 marginals.
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Figure 3. Empirical (ρword) and maximum-entropy theoretical (PI I) word occurrence probabilities in
the rank-frequency representation, together with the power-law fit of the distribution of frequencies
for the empirical case. The same distributions are shown at two different scales. Left: only ranks below
10,000. Right: only probabilities (frequencies) above 10−13.

In Figure 3 we also display the theoretical result, PI I , Equation (8), arising from the solution
of Equation (10). We see that, qualitatively, PI I has a shape rather similar to the empirical one.
Both distributions fulfill Zipf’s law, with exponents γ equal to 0.89 and 0.81, respectively. We also see
in the figure that the quantitative agreement in the values of the probability (PI I and ρword) is rather
good for the smallest values of the rank (r < 10); however, both curves start to slightly depart from each
other for r > 10. In addition, the rank values are associated with the same word types for r ≤ 6 (the,
of, and, to, a, in), but for larger ranks the correspondence may be different (r = 7 corresponds to
i in one case and to that in the other). If we could represent ρword and PI I in six dimensions (instead
that as a function of the rank) we would see more clearly the differences between both.

Zipf’s law is, in part, the reason of this problem, as for r ≥ 10 the difference in probabilities
for consecutive ranks becomes smaller than 10 %, see Equation (11), and for r ≥ 100 the difference
decreases to less than 1 % (assuming γ ' 1). Therefore, finite resolution in the calculation of PI I will
lead to the “mixing of the ranks.” However, the main part of the problem comes from the unability of
the algorithm in some cases to yield values of PI I close to the empirical value, ρword, as it can be seen in
the scatter plot of Figure 4 (in agreement with [55]). The entropy of the theoretical word probabilities
turns out to be S = 9.90 bits, somewhat larger than the corresponding empirical value 8.35 bits. If we
truncate this distribution, eliminating probabilities below 10,000/1,597,358,419 ' 6× 10−6 (as in the
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empirical distribution) we get S = 8.88 bits, still larger than the empirical value, which simply means
that real language has more restrictions than those imposed by the model. Existing (empirical) words
for which the algorithm yields the lowest theoretical probabilities are enumerated in the caption of the
figure. Curiously, as it can be seen, these are not particularly strange words.

An interesting issue is that the maximum-entropy solution, Equation (8), leads to the “discovery”
of new words, or, more properly, pseudowords. Indeed, whereas the empirical corpus has V = 5081
(number of word types), the theoretical solution leads to V = 2,174,013 (words plus pseudowords).
Most of these pseudowords have very small probabilities; however, there are others far from being
rare (theoretically). In this way, the most common pseudoword (theoretical word not present in the
empirical corpus) is whe, with a theoretical rank r = 40 (it should be the 40-th most common word in
English, for length six or below, following the maximum-entropy criterion). Table 2 provides the first
25 of these pseudowords, ranked by their theoretical probability PI I . We see that the orthography of
these pseudowords looks very “reasonable” (they look like true English words). On the other side,
the most rare pseudowords, with probability PI I ∼ 10−30, are nearly impossible English words, as:
sntnut, ouoeil, oeoeil, sntnu, snsnua... (not in the table).

Table 2. Most common theoretical words from the maximum-entropy procedure that are not present
in the analyzed sub-corpus. In fact, all of these theoretical words are present in the original complete
corpus (but not in our sub-corpus as we have disregarded frequencies smaller than 10,000). We can
distinguish four different cases: the (theoretical) word does not exist in a dictionary (@) and can be
considered a pseudoword (and appears in the complete corpus probably as a misspelling); the word
exists in a dictionary as a word (∃); the word appears in a dictionary as an archaism (arch.); and the
word appears as an abbreviation (abbrev.). r is (theoretical) rank and PI I is (theoretical) probability.

r PI I Word Case

40 2.88 × 10−3 whe @
48 2.20 × 10−3 wis abbrev.
52 1.95 × 10−3 mo abbrev.
61 1.74 × 10−3 wast arch.
64 1.69 × 10−3 ond @
71 1.52 × 10−3 ar abbrev.
77 1.40 × 10−3 ane ∃
87 1.24 × 10−3 ald abbrev.
89 1.21 × 10−3 bo ∃
92 1.16 × 10−3 thes @
94 1.10 × 10−3 hime @
98 9.83 × 10−4 hive ∃

102 9.45 × 10−4 thise @
103 9.39 × 10−4 af abbrev.
110 8.80 × 10−4 wer @
117 8.16 × 10−4 thay @
118 8.16 × 10−4 hes @
123 7.88 × 10−4 wath ∃
125 7.82 × 10−4 hor abbrev.
127 7.60 × 10−4 sime @
134 7.22 × 10−4 tome ∃
135 7.21 × 10−4 har ∃
141 6.94 × 10−4 thit @
143 6.86 × 10−4 mas abbrev.
146 6.77 × 10−4 hew ∃
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Figure 4. Maximum-entropy theoretical probability PI I for each word type in the sub-corpus as
a function of its empirical probability (relative frequency) ρword. The straight line would signal a
perfect correspondence between PI I and ρword. Values of PI I below 10−10 are not shown. Words with
the lowest PI I (in the range 10−17–10−15) are shaggy, isaiah, leslie, feudal, caesar, yankee,
opium, yields, phoebe, sydney.

3.4. Values of Lagrange Multipliers and Potentials

We have established that, for a given word, the value of its occurrence probability PI I comes
from the exponentiation of the sum the 15 interaction potentials between the six letter positions that
constitute the word (in our maximum-entropy approach). Therefore, the values of the potentials
(or the values of the Lagrange multipliers) determine the value of the probability PI I . It is interesting
to investigate, given a potential or a multiplier (for instance λ12), how the different values it takes
(λ12(aa), λ12(ab), etc.) are distributed. Curiously, we find that the 15 different potentials are (more or
less) equally distributed, i.e., follow the same skewed and spiky distribution, as shown in Figure 5(left).

One can try to use this fact to shed some light on the origin of Zipf’s law. Indeed, exponentiation
is a mechanism of power-law generation [44,68]. We may arguee that the sum of 15 random numbers
drawn from the same spiky distribution has to approach, by the central limit theorem, a normal
distribution, and therefore, the exponentiation of the sum would yield a lognormal distribution for PI I

(i.e., a lognormal shape for g(PI I)). However, this may be true for the central part of the distribution,
but not for its rightmost extreme values, which is the part of the distribution we are more interested
in (high values of PI I , i.e., the most common words). Note also that, in practice, for calculating the
probability of a word, we are not summing 15 equally distributed independent random numbers,
as not all the words are possible; i.e., there are potentials that take a value equal to infinite, due to
forbidden combinations, and these infinite values are not taken into account in the distribution of the
potentials. An additional problem with this approach is that, although most values of the potentials
converge to a fix value (and the distribution of potentials shown in the figure is stable), there are single
values that do not converge, related to words with very low probability. These issues need to be further
investigated in future research. In addition, Figure 5(right) shows, as a scatter plot, the dependence
between the value of each potential and the corresponding two-letter marginal probability. Although
Equation (10) seems to indicate a rough proportionality between both, the figure shows that such
proportionality does not hold (naturally, the rest of terms in the equation play their role).
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Figure 5. Left: Empirical probability densities of the 15 individual potentials (with a negative sign) and
the probability density of the 15 aggregated data sets. Right: Value of the Lagrange multiplier (which
corresponds to the interaction potential with a negative sign) for each pair of letters (and positions) as
a function of the corresponding marginal probability.

4. Discussion

We have generalized a previous study of Stephens and Bialek [55]. Instead of restricting our
study to four-letter words, we consider words of any length from one to six, which leads to greater
computational difficulties, and employ a much larger English corpus as well. We perform an analysis
of the fulfillment of Zipf’s law using state-of-art statistical tools. Our more general results are
nevertheless in the line of those of [55]. We see how the frequency of occurrence of pairs of letters in
words (the pairwise marginal distributions), together with the maximum-entropy principle (which
provides the distribution with the maximum possible randomness), constrain the probabilities of word
occurrences in English.

Regarding the shape of the distributions, the agreement between the maximum-entropy solution
for the word distribution and its empirical counterpart is very good at the qualitative level, and
reasonably good at the quantitative level for the most common words, as shown in Figure 3. Moreover,
new possible English words, or pseudowords, not present in the corpus (or, more exactly, in the
subcorpus we have extracted) have been “discovered”, with hypothetical (theoretical) values of the
occurrence probability that vary along many orders of magnitude. However, regarding the probabilities
of concrete words, the method yields considerable scatter of the theoretical probabilities (in comparison
with the known empirical probabilities), except for the most common words, see Figure 4.

As two by-products, we have found that the pairwise (two-letter) occurrence distributions are all
characterized by a well defined shape, see Figure 1(right), and that the distributions of the 15 different
interaction potentials are nearly the same, see Figure 5(left). The latter is an intriguing result for two
reasons. First, the fact that the values that the 15 interaction potentials take are more or less the same for
all of them (Figure 5(left)) seems to indicate that all the potentials are equally important; nevertheless,
remember the potentials are undefined with respect one additive constant, and comparison of their
absolute values is misleading. Second, not only the values that the potentials take are nearly the same,
but they seem to be equally distributed. We have tried to relate, without success yet, this distribution
to other skewed and spiky distributions that appear in complex and correlated systems, such as the
so-called Bramwell-Holdsworth-Pinton (BHP) distribution [72], the Tracy-Widom distribution, or the
Kolmogorov-Smirnov distribution [73,74].

Despite our results, one could still abandon the all-to-all interaction and embrace instead
nearest-neighbor coupling (this may seem similar to a Markov model, however, the study of the
possible similarities or not should be the subject of a future work). Nearest-neighbor coupling
reduces the number of potentials from 15 to 5 (with open boundary conditions), with the subsequent
computational simplification. A further reduction would be to impose that all potentials are the same
(i.e., they do not depend on letter positions, only on difference of positions, e.g., λ12 = λ23, etc.).
This leads to only one potential (in the case of nearest-neighbor interaction; 5 potentials in the all-to-all
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case). It would be interesting to compare these modifications with the original model and to confirm
that they lead to much worse results; this is left for future research.

An extension towards a different direction would be to use phonemes or syllables instead of letters
as the constituents of words. We urge the authors of the corpus in [63] to provide the decomposition
of the words in the corpus into these parts. Naturally, other languages than English should be
studied as well. An interesting issue is if our approach (which is that of [55]) can shed light on other
linguistic laws; in particular, the word-length law [75,76] and the brevity law (also called Zipf’s law
of abbreviation [75–77]). Therefore, we could verify up to which point longer words have smaller
theoretical probabilities, and if the robust patterns found in [76] are also valid for the maximum-entropy
solution. Furthermore, we could quantify the role of the pairwise interaction potentials in determining
the length of the word (the “brevity”), looking at the interaction of any of the 26 letters with the blank.
Alternatively, one could study the word frequency distributions at fixed length [76], and check if the
potentials are stable for different word lengths. Finally, let us mention that the approach presented here
has also been applied to music [78]. This, together with the applications in neuronal, biochemical, and
genetic networks mentioned above ([55] and references therein) confirms the high interdisciplinarity
of this approach.
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Appendix A

We summarize here the main formulas in [62], for the improved iterative-scaling method.
The per-datum log-likelihood L(~λ) of the model Pj(~λ) (stressing the dependence on the value of
the set of parameters~λ) is given by

L(~λ) =
V

∑
j=1

ρ(j) ln Pj(~λ),

with ~λ = (λ1, λ2, . . . λm) and ρ(j) the empirical probability for word type j. Substituting the
maximum-entropy solution for the theoretical probability Equation (4), written as Pj = e∑i λi fi(j)/Z
with Z = ∑j e∑i λi fi(j), one gets

L(~λ) =
m

∑
i=1

λiFi − ln Z,

with ∑j ρ(j) fi(j) = Fi, from Equation (3), which leads to

∂L
∂λi

= Fi −
1
Z

∂

∂λi
∑

j
e∑i′ λi′ fi′ (j) = Fi − 〈 fi〉,

using Equation (3). This indicates that the parameters~λ that fulfill the constrains also maximize the
log-likelihood, and vice versa, and therefore the maximum-entropy parameters can be obtained from
maximum likelihood.
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It can be shown that, for a change~δ in the values of the parameters, the increase in log-likelihood fulfils

L(~λ +~δ)− L(~λ) ≥∑
j

ρ(j)
m

∑
i=1

δi fi(j) + 1−∑
j

Pj(~λ)
m

∑
i=1

fi(j)
n(j)

eδin(j),

see Equation (7) in [62], with n(j) = ∑i fi(j) = number of features present in word j. Now one should
look for the values of ~δ that maximize the lower bound (right-hand side of the previous inequality).
Curiously, [62] does not provide the final solution, but this is in [61] instead. Differentiating with
respect δi one gets

δi =
1
n

ln
∑j ρ(j) fi(j)

∑j Pj(~λ) fi(j)
=

1
n

ln
Fi
〈 fi〉

(A1)

using that n(j) = constant = n, if word length is constant (15 = 6× 5/2 in the case of 6-letter length,
considering that blanks complete shorter words). The improved iterative-scaling algorithm is just:
Initialize λi, calculate Pj(~λ) [Equation (4)], update 〈 fi〉 [Equation (3)], calculate δi [Equation (A1)] and
the new λi as λi + δi, and so on.

As the equation to solve, Equation (10), is a sum of exponentials, when a marginal value is not
present in the empirical data, i.e., when the right-hand side of Equation (10) is zero, the left-hand side
of the equation cannot verify the equality unless some Lagrange multiplier is minus infinite, which
is a value that the numerical algorithm cannot achieve. We therefore take from the beginning the
corresponding multiplier to be equal to minus infinity (i.e., interaction potential equal to infinite).
To be concrete, if for example ρ12(zz) = 0, we take λ12(zz) = −∞, which leads to Pj = 0 for any
j = {zz`3`4 . . . }. This means that we can restrict our analysis of possible words to those with all pairs of
letters corresponding to non-null empirical marginals, because the rest of words have zero probability.

The code to perform these calculations was programed in FORTRAN 77. The resulting code was
too “dirty” to be useful to the readers; instead, we provide a schematic pseudocode in Figure A1. Please
note that when we denote that the letters go from a to z, the blank space � has to be included there.
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%%%% PART 1: Calculation of empirical marginal distributions

Input: data file with the absolute frequency of each word type, as freq, word

Initialize the 15 marginal-distribution vectors to zero 
rho12=0, ... rho56=0

For any word, formed by letters l1...l6, with frequency freq
   rho12(l1,l2)=rho12(l1,l2)+freq 
   ...
   rho56(l5,l6)=rho56(l5,l6)+freq  

Normalize
   rho12(l1,l2)=rho12(l1,l2)/L  %% L is the sum of all frequencies 
   ...
   rho56(l5,l6)=rho56(l5,l6)/L

%%%% PART 2: List of possible words and pseudowords
%%%% (all their constituent marginal values have be above 0, i.e., rho > 0)

loop l1=a to z
...
loop l6=a to z
   if rho12(l1,l2) > 0 and ... and rho56(l5,l6) > 0
      sizelist=sizelist+1    %% previously initialized to zero
      list(sizelist)=l1...l6   %% the word

%%%% PART 3: Iterative calculation of Lagrange multipliers (minus potentials) lambda

Initialize the 15 Lagrange-multiplier vectors to constant probabilities
lambda12=C, ... lambda56=C   %% with C=(1-log(sizelist))/15

loop iter=1 to 10000
    %%%% Calculation of theoretical word probability:
    loop typeindex=1 to sizelist
        get letters l1...l6 from list(typeindex)  %% word letters
        P(l1,...l6)=exp(lambda12(l1,l2)+...+lambda56(l5,l6)-1)  %% Eq. (8)

    %%%% Calculation of theoretical marginal = expected value of features
    Initialize the 15 feature-expected-value vectors to zero
    Ef12=0, ... Ef56=0

    loop typeindex=1 to sizelist
        get letters l1...l6 from list(typeindex)  %% word letters
        Ef12(l1,l2)=Ef12(l1,l2)+P(l1,... l6)   %% Eq. (6)
        ...
        Ef56(l5,l6)=Ef56(l5,l6)+P(l1,... l6)

    %%%% Recalculation of the multipliers 
    loop l1=a to z
    ...
    loop l6=a to z
        if rho12(l1,l2) > 0 then   %% Eq. (14)
           lambda12(l1,l2)=lambda12(l1,l2) + log(rho12(l1,l2)/Ef12(l1,l2))/15
        ...
        if rho56(l5,l6) > 0 then 
           lambda56(l5,l6)=lambda56(l5,l6) + log(rho56(l5,l6)/Ef56(l5,l6))/15

1

Figure A1. Pseudocode illustrating the calculation of the interaction potentials between pairs of letters.
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