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Abstract: Based on Arimoto’s work in 1972, we propose an iterative algorithm for computing the
capacity of a discrete memoryless classical-quantum channel with a finite input alphabet and a finite
dimensional output, which we call the Blahut–Arimoto algorithm for classical-quantum channel,
and an input cost constraint is considered. We show that, to reach ε accuracy, the iteration complexity
of the algorithm is upper bounded by log n log ε

ε where n is the size of the input alphabet. In particular,
when the output state {ρx}x∈X is linearly independent in complex matrix space, the algorithm has
a geometric convergence. We also show that the algorithm reaches an ε accurate solution with a

complexity of O(
m3 log n log ε

ε ), and O(m3 log ε log(1−δ)
ε

D(p∗ ||pN0 )
) in the special case, where m is the

output dimension, D(p∗||pN0) is the relative entropy of two distributions, and δ is a positive number.
Numerical experiments were performed and an approximate solution for the binary two-dimensional
case was analysed.

Keywords: capacity; classical-quantum channel; Blahut–Arimoto type algorithm; convergence speed

1. Introduction

The computation of channel capacity has always been a core problem in information theory.
The very well-known Blahut-Arimoto algorithm [1,2] was proposed in 1972 to compute the discrete
memoryless classical channel. Inspired by this algorithm, we propose an algorithm of Blahut-Arimoto
type to compute the capacity of discrete memoryless classical-quantum channel. The classical-quantum
channel [3] can be considered as a mapping x → ρx of an input alphabet X = {1, 2, . . . , |X |} to a set of
quantum states in a finite dimensional Hilbert spaceH. The state of a quantum system is given by a
density operator ρ, which is a positive semi-definite operator with trace equal to one. Let Dm denote
the set of all density operators acting on a Hilbert spaceH of dimension m. If the source emits a letter
x with probability px, the output would be ρx, thus the output would form an ensemble: {px : ρx}x∈X .

In 1998, Holevo showed [4] that the classical capacity of the classical-quantum channel is the
maximization of a quantity called the Holevo information over all input distributions. The Holevo
information χ of an ensemble {px : ρx}x∈X is defined as

χ({px : ρx}x∈X ) = H(∑
x

pxρx)−∑
x

px H(ρx), (1)
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where H(·) is the von Neumann entropy, which is defined on positive semidefinite matrices:

H(ρ) = −Tr(ρ log ρ). (2)

Due to the concavity of von Neumann entropy [5], the Holevo information is always non-negative.
The Holevo quantity is concave in the input distribution [5], and thus the maximization of Equation (1)
over p is a convex optimization problem. However, it is not a straightforward convex optimization
problem. In 2014, Sutter et al. [6] promoted an algorithm based on duality of convex programming

and smoothing techniques [7] with a complexity of O(
(n∨m)m3(log n)1/2

ε ), where n ∨m = max{n, m}.
For discrete memoryless classical channels, the capacity can be computed efficiently by using

an algorithm called Blahut–Arimoto (BA) algorithm [1,2,8]. In 1998, H. Nagaoka [9] proposed a
quantum version of BA algorithm. In his work, he considered the quantum-quantum channel and this
problem was proved to be NP-complete in 2008 [10]. Despite the NP-completeness, in [11], an example
is given of a qubit quantum channel which requires four inputs to maximize the Holevo capacity.
Further research of Nagaoka’s algorithm was presented in [12], where the algorithm was implemented
to check the additivity of quantum channels. In [9], Nagaoka mentioned an algorithm concerning
classical-quantum channel; however, its speed of convergence was not studied there and the details
of the proof were not presented either. In this paper, we show that, with proper manipulations,
the BA algorithm can be applied to computing the capacity of classical-quantum channel with an input
constraint efficiently. The remainder of this article is structured as follows. In Section 2, we propose
the algorithm and show how the algorithm works. In Section 3, we provide the convergence analysis
of the algorithm. In Section 4, we show the numerical experiments of BA algorithm to see how well
this algorithm performs. In Section 5, we propose an approximate solution for a special case, which is
the binary input, two-dimensional output case.

Notations: The logarithm with basis 2 is denoted by log(·). The space of all Hermitian operators
of dimension m is denoted by Hm. The set of all density matrices of dimension m is denoted by
Dm := {ρ ∈ Hm : ρ ≥ 0, Tr ρ = 1}. Each letter x ∈ X is mapped to a density matrix ρx, thus the
classical-quantum channel can be represented as a set of density matrices {ρx}x∈X . The set of all
probability distributions of length n is denoted by ∆n := {p ∈ Rn : px ≥ 0, ∑n

x=1 px = 1}. The von
Neumann entropy of a density matrix ρ is denoted by H(ρ) = −Tr[ρ log ρ]. The relative entropy
between p, q ∈ ∆n, if supp(p) ⊂ supp(q), is denoted by D(p||q) = ∑x px(log px − log qx) and +∞
otherwise. The relative entropy between ρ, σ ∈ Dm, if supp(ρ) ⊂ supp(σ), is denoted by D(ρ||σ) =
Tr[ρ(log ρ− log σ)] and +∞ otherwise.

2. Blahut–Arimoto Algorithm for Classical-Quantum Channel

First, we write down the primal optimization problem:

Primal :


max

p
H(∑x pxρx)−∑x px H(ρx),

subject to sT p ≤ S;

p ∈ ∆n,

(3)

where ρx ∈ Dm, s ∈ Rn is a positive real vector, S > 0. We denote the maximal value of Equation (3) as
C(S). In this optimization problem, we are to maximize the Holevo quantity with respect to the input
distribution {px}x∈X . Practically, the preparation of different signal state x has different cost, which is
represented by s = (s1, s2, . . . , sn). We would like to bound the expected cost of the resource within
some quantity, which is represented by the inequality constraint in Equation (3).



Entropy 2020, 22, 222 3 of 15

Lemma 1. [6] Let a set G be defined as G := arg max
p∈∆n

χ({px : ρx}x∈X ) and Smax := min
p∈G

sT p. Then, if S ≥

Smax, the inequality constraint in the primal problem is inactive; and, if S < Smax, the inequality constraint in
the primal problem is equivalent to sT p = S.

Now, we assume that min{sx}x∈X ≤ S ≤ Smax. The Lagrange dual problem of Equation (3) is

Dual :

 min
λ≥0

max
p

H(∑x pxρx)−∑x px H(ρx)− λ(sT p− S)

subject to p ∈ ∆n.
(4)

Lemma 2. Strong duality holds between Equations (3) and (4).

Proof. The lemma follows from standard strong duality result of convex optimization theory ([13],
Chapter 5.2.3).

Define functions. Let

fλ(p, p′) = ∑
x

Tr{pxρx[log (p′xρx)− log (pxρ′)]} − λsT p, (5)

F(λ) = max
p

max
p′

f (p, p′). (6)

where ρ′ = ∑x p′xρx.

Lemma 3. For fixed p, arg max
p′

fλ(p, p′) = p.

Proof. Actually, we can prove a stronger lemma (the following lemma was proposed in [9], but no
proof was given, perhaps due to the space limitation). We now restate the lemma in [9] and give
the proof.

Lemma 4. For fixed {px : ρx}x∈X , we have

max
{qx :σx}x∈X

−D(p||q) + ∑
x

px Tr{ρx[log σx − log σ]} = ∑
x

px Tr{ρx[log ρx − log ρ]},

i.e., arg max
{qx :σx}x∈X

−D(p||q) + ∑
x

px Tr{ρx[log σx − log σ]} = {px : ρx}x∈X ,
(7)

where p, q ∈ ∆n, σx ∈ Dm and ρ = ∑x pxρx, σ = ∑x qxσx .

Proof. Considering Equation (7), we have

RHS− LHS =D(p||q) + ∑
x

pxD(ρx||σx)− D(ρ||σ)

=D(ρXB||σXB)− D(ρ||σ),

where ρXB = ∑x px|x〉〈x|X ⊗ ρx and σXB = ∑x qx|x〉〈x|X ⊗ σx are classical-quantum state [5]. Let the
quantum channel N be the partial trace channel on X system; then, by the monotonicity of quantum
relative entropy ([5], Theorem 11.8.1), we have

D(ρXB||σXB) ≥ D(N (ρXB)||N (σXB)) = D(ρ||σ).

Notice that, if we let σx = ρx in Equation (7), with some calculation, Equation (7) becomes
Lemma 3. Thus, Lemma 3 is a straightforward corollary of Lemma 4
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Theorem 1. The dual problem in Equation (4) is equivalent to

min
λ≥0

F(λ) + λS. (8)

Proof. It follows from Equation (5) and Lemma 3 that

max
p′

fλ(p, p′) = fλ(p, p) = H(ρ)−∑
x

px H(ρx)− λsT p.

Hence,

min
λ≥0

max
p

H(ρ)−∑
x

px H(ρx)− λ(sT p− S)

=min
λ≥0

max
p

max
p′

fλ(p, p′) + λS

=min
λ≥0

F(λ) + λS.

The BA algorithm is an alternating optimization algorithm, i.e., to optimize fλ(p, p′), each iteration
step would fix one variable and optimize the function over the other variable. Now, we use BA
algorithm to find F(λ). The iteration procedure is

p0
x > 0,

p′tx = pt
x ,

pt+1 = arg max
p ∑

x
Tr{pxρx[log (pt

xρx)− log (pxρt)]} − λsT p,

where ρt = ∑x pt
xρx.

To get pt+1, we can use the Lagrange function:

L =∑
x

Tr{pxρx[log (pt
xρx)− log (pxρt)]} − λsT p− ν(∑

x
px − 1),

setting the gradient with respect to px to zero. By combining the normalization condition, we can have
(taking the natural logarithm for convenience):

pt+1
x =

rt
x

∑x rt
x

, (9)

where rt
x = exp (Tr {ρx[log (pt

xρx)− log ρt]} − sxλ), (10)

ρt =∑
x

pt
xρx.

Thus, we can summarize the Algorithm 1 below.

Algorithm 1 Blahut–Arimoto algorithm for discrete memoryless classical-quantum channel.

set p0
x = 1

|X | , x ∈ X ;
repeat

p′tx = pt
x;

pt+1
x = rt

x
∑x rt

x
, where rt

x = exp (Tr {ρx[log (pt
xρx)− log ρt]} − sxλ);

until convergence.
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Lemma 5. Let p∗(λ) = arg maxp f (p, p) for a given λ; then, sT p∗(λ) is a decreasing function of λ.

Proof. For convenience, we denote χ({px : ρx}x∈X ) as χ(p). Notice that fλ(p, p) = χ(p)− λsT p by
definition of f (p, p).

For λ1 < λ2, if 〈p∗(λ1)s < sT p∗(λ2), then, by the definition of p∗(λ), we have:

χ(p∗(λ1))− λ1sT p∗(λ1) ≥χ(p∗(λ2))− λ1sT p∗(λ2)

=⇒ χ(p∗(λ2))− χ(p∗(λ1)) ≤λ1sT(p∗(λ2)− p∗(λ1))

<λ2sT(p∗(λ2)− p∗(λ1))

=⇒ χ(p∗(λ1))− λ2sT p∗(λ1) >χ(p∗(λ2))− λ2sT p∗(λ2),

which is a contradiction to the fact that p∗(λ2) is an optimizer of χ(p)− λ2sT p. Thus, we must have
sT p∗(λ1) ≥ sT p∗(λ2) if λ1 < λ2.

We do not need to solve the optimization problem in Equation (8), because from Lemma 1 we can
see that the statement “p∗ is an optimal solution” is equivalent to “sT p∗ = S and p∗ maximizes
fλ(p, p) + λS = χ({px, ρx}x∈X ) − λ(sT p − S)”, which is also equivalent to “sT p∗ = S and p∗

maximizes fλ(p, p)", thus, if for some λ ≥ 0, a p maximizes fλ(p, p) and sT p = S, then the capacity
C(S) = F(λ) + λS, and such λ is easy to find since sT p is a decreasing function of λ, and, to reach an ε

accuracy, we need

O(log ε) (11)

steps using bisection method.

3. Convergence Analysis

Next, we show that the algorithm indeed converges to F(λ) and then provide an analysis of the
speed of the convergence.

3.1. The Convergence Is Guaranteed

Corollary 1.

fλ(pt+1, pt) = log (∑
x

rt
x).

Proof.

fλ(pt+1, pt) =−∑
x

Tr {pt+1
x ρx log pt+1

x }+ ∑
x

Tr {pt+1
x ρx[log(pt

xρx)− log(ρt)]} − λsT pt+1

=−∑
x

pt+1
x log pt+1

x + ∑
x

pt+1
x log(rt

x)

=∑
x

pt+1
x log(

rt
x

pt+1
x

)

= log(∑
x

rt
x).

The first equality comes from a manipulation of Equation (5). The second equality follows from
Equation (10). The last equality follows from Equation (9).

Corollary 2. For arbitrary distribution {px}x∈X , we have

χ({px, ρx}x∈X )− λsT p− f (pt+1, pt) ≤∑
x

px log(
pt+1

x
pt

x(x)
).
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Proof. Define ρ = ∑x pxρx. Then, we have

∑
x

px log(
pt+1

x
pt

x
) = ∑

x
px log(

1
pt

x

rt
x

∑x′ rt
x′
)

=− fλ(pt+1, pt) + ∑
x

px log
rt

x
pt

x

=− fλ(pt+1, pt) + ∑
x

px Tr{ρx[log(pt
xρx)− log ρt]− sxλ− log pt

x}

=− fλ(pt+1, pt) + ∑
x

px Tr{ρx[log ρx − log ρt]} − λsT p

=− fλ(pt+1, pt) + ∑
x

px Tr{ρx[log ρx − log ρ + log ρ− log ρt]} − λsT p

=− fλ(pt+1, pt) + χ({px, ρx}x∈X )− λsT p + D(ρ||ρt).

(12)

The first equality follows from Equation (9). The second equality follows from Corollary 1. The third
equality follows from Equation (10). The last equality follows from Equation (1). Since the relative
entropy D(ρX ||ρt) is always non-negative [5], we have

χ({px, ρx}x∈X )− λsT p− fλ(pt+1, pt) ≤∑
x

px log(
pt+1

x
pt

x(x)
).

Theorem 2. fλ(pt+1, pt) converges to F(λ) as t→ ∞.

Proof. Let p∗ be an optimal solution that achieves F(λ); then, we have the following inequality

N

∑
t=0

[F(λ)− fλ(pt+1, pt)] (13)

=
N

∑
t=0

[χ({p∗x, ρx}x∈X )− λsT p∗ − fλ(pt+1, pt)]

≤
N

∑
t=0

∑
x

p∗x log(
pt+1

x
pt

x
)

=∑
x

p∗x
N

∑
t=0

log(
pt+1

x
pt

x
)

=∑
x

p∗x log(
pN+1

x

p0
x

)

=∑
x

p∗x log(
p∗x
p0

x
) + ∑

x
p∗x log(

pN+1
x

p∗(x)
)

=D(p∗||p0)− D(p∗||pN+1)

≤D(p∗||p0). (14)

The first equality follows from Equations (5), (6), and (1). The first inequality follows from Corollary 2.
The last inequality follows from the non-negativity of relative entropy.

Thus, let N → ∞ and with F(λ)− fλ(pt+1, pt) ≥ 0, we have

0 ≤
∞

∑
t=0

[F(λ)− fλ(pt+1, pt)] ≤ D(p∗||p0), (15)
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Notice we take the initial p0 to be uniform distribution, so the right hand side of Equation (15) is
finite. Combine with the fact that fλ(pt+1, pt) is a non-decreasing sequence, this means fλ(pt+1, pt)

converges to F(λ).

Theorem 3. The probability distribution {pt}∞
t=0 also converges.

Proof. Remove the summation over t in Equations (13) and (14); then, we have

0 ≤ F(λ)− fλ(pt+1, pt) ≤∑
x

p∗x log(
pt+1

x
pt

x
) = D(p∗||pt)− D(p∗||pt+1). (16)

Now that the sequence {pt}∞
t=0 is a bounded sequence, there exists a subsequence {ptk}∞

k=0 that
converges. Let us say it converges to p̄. Then, clearly, we have f ( p̄, p̄) = F(λ) (or f (pt+1, pt) would
not converge). Substituting p∗ = p̄ in Equation (16), we have

0 ≤ D( p̄||pt)− D( p̄||pt+1).

Thus, the sequence {D( p̄||pt)}∞
t=0 is a decreasing sequence and there exists a subsequence

{D( p̄||ptk )}∞
k=0 that converges to zero. Therefore, we can conclude that {D( p̄||pt)}∞

t=0 converges
to zero, which means {pt}∞

t=0 converges to p̄.

3.2. The Speed of Convergence

Theorem 4. To reach ε accuracy to F(λ), the algorithm needs an iteration complexity less than log n
ε .

Proof. From the proof of Theorem 2, we know

N

∑
t=0

[F(λ)− fλ(pt+1, pt)] ≤ D(p∗||p0)

=∑
x

p∗x log(
p∗x
p0

x
) = log n− H(p∗) < log n,

and [F(λ)− fλ(pt+1, pt)] is non-increasing in t, thus

F(λ)− fλ(pt+1, pt) <
log n

t
.

Next, we show that in some special cases the algorithm has a better convergence performance,
which is a geometric speed of convergence.

Assumption 1. The channel matrices {ρx}x∈X are linearly independent, i.e., there does not exist a vector
c ∈ Rn such that

∑
x

cxρx = 0.

Remark 1. Assumption 1 is equivalent to: The output state ρ = ∑x pxρx is uniquely determined by the input
distribution p.

Theorem 5. Under Assumption 1, the optimal solution p∗ is unique.

Proof. Notice that the von Neumann entropy in Equation (2) is strictly concave [14], thus,
for distributions p 6= p′, ρ = ∑x pxρx 6= ∑x p′xρx = ρ′, which is followed from Assumption
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refas1. Thus, this means H(ρ) is strictly concave in p. Thus, Holevo quantity in Equation (1) is strictly
concave in p, which means the optimal solution p∗ is unique.

We also need the following theorem:

Theorem 6. [15] The relative entropy satisfies

D(ρ||σ) ≥ 1
2

Tr(ρ− σ)2.

Now, we state the theorem of convergence:

Theorem 7. Suppose start from some initial point p0, then, under Assumption 1, the algorithm converges to
the optimal point p∗, and p0 converges to p∗ at a geometric speed, i.e., there exist N0 and δ > 0, where N and δ

are independent, such that, for any t > N0, we have

D(p∗||pt) ≤ (1− δ)t−N0 D(p∗||pN0).

Proof. Define dx = p∗x − pt
x and the real vector |d〉 = (d1, d2, . . . , dn)T . Using Taylor expansion,

we have

D(p∗||pt) =∑
x

p∗x log(
p∗x
pt

x
) = ∑

x
−p∗x log(1− dx

p∗x
)

=
1
2
〈d|P|d〉+ ∑

x
O(d3

x),

where P = diag(p∗1 , p∗2 , . . . , p∗n). Now, pt converges to p∗, i.e., |d〉 converges to zero, thus there exists a
N0 such that, for any t > N0, we have

D(p∗||pt) ≤ 2
3
〈d|P|d〉. (17)

From Theorem 6, we have

D(ρ∗||ρt) ≥ 1
2

Tr{[∑
x

dxρx]
2} = 1

2
〈d|M|d〉, (18)

where M ∈ Rn×n:

Mij = Tr(ρiρj).

From Equation (18), we know that, under Assumption 1, M is positive definite. Thus, there exists a
δ > 0 such that

1
2

M > δ
2
3

P⇒ 1
2
〈d|M|d〉 > δ

2
3
〈d|P|d〉.

Thus, for any t > N0, it follows from Equations (17) and (18) that

D(ρ∗||ρt) ≥ δD(p∗||pt). (19)

From Equation (12), we know

∑
x

p∗x log(
pt+1

x
pt

x
) ≥ D(ρ∗||ρt)

⇒D(p∗||pt+1) ≤ D(p∗||pt)− D(ρ∗||ρt),
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combined with Equation (19), we have

D(p∗||pt+1) ≤ D(p∗||pt)− δD(p∗||pt) = (1− δ)D(p∗||pt)

=⇒ D(p∗||pt) ≤ (1− δ)t−N0 D(p∗||pN0)
(20)

for any t > N0.

Remark 2. (Complexity). Denote n, m as the size of input alphabet and output state dimension, respectively.
A closer look at Algorithm 1 reveals that, for each iteration, a matrix logarithm log ρt needs to be calculated,
and the rest are just multiplication of matrices and multiplication of numbers. The matrix logarithm can be
done with complexity O(m3) [16], thus, by Theorem 4 and Equation (11), the complexity to reach ε-close

to the true capacity using Algorithm 1 is O(
m3 log n log ε

ε ). With extra condition of the channel {ρx}x∈X ,
which is Assumption 1, the complexity to reach an ε-close solution (i.e., D(p∗||pt) < ε) using Algorithm 1 is
O(m3 log ε log(1−δ)

ε
D(p∗ ||pN0 )

). Usually, we do not need ε to be too small (no smaller than 10−6), thus, in either

case, the complexity is better than O(
(n∨m)m3(log n)1/2

ε ) in [6] when n ∨m is big, where n ∨m = max{n, m}.

4. Numerical Experiments on BA Algorithm

We only performed experiments on BA algorithm with no input constraint (BA algorithm with
input constraint is some combination of BA algorithm with no input constraint.) We studied the
relations between iteration complexity and n, m (i.e., the input size and output dimension) when
the algorithm reaches certain accuracy. Since we do not know the true capacity of a certain channel,
we used the following theorem to bound the error of the algorithm.

Theorem 8. With the iteration procedure in the BA Algorithm 1, maxx{D(ρx||ρt)− λsx} converges to F(λ)
from above.

Proof. Following from Algorithm 1, Corollary 1, and Theorem 3, we have

lim
t→∞

pt+1
x
pt

x
= exp[D(ρx||ρ∗)− λsx − F(λ)],

where ρ∗ = ∑x p∗xρx, p∗ is an optimal distribution. The limit above is 1 if p∗x > 0 and does not exceed 1
if p∗x = 0. Thus,

D(ρx||ρ∗)− λsx ≤ F(λ)

for every x ∈ X , with equality if p∗x > 0. This proves

max
x
{D(ρx||ρt)− λsx} → F(λ).

For any pt and any optimal distribution p∗, we have

max
x

[D(ρx||ρt)− λsx] ≥∑
x

p∗x[D(ρx||ρt)− λsx]

= ∑
x

p∗xD(ρx||ρ∗) + D(ρ∗||ρt)− λsT p∗

= F(λ) + D(ρ∗||ρt) ≥ F(λ).

The first equality requires some calculation and the second equality follows since p∗ is an optimal
distribution. This means maxx{D(ρx||ρt)− λsx} converges to F(λ) from above.
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Thus, our accuracy criterion was: for a given classical-quantum channel, we ran the BA algorithm
(with no input constraint), until [maxx{D(ρx||ρt)} − f (pt, pt)] was less than 10−k, and recorded the
number of iteration. At this time, the accuracy was of order 10−(k+1) at most since maxx{D(ρx||ρt)}
and f (pt, pt)] converged to the true capacity from above and below, respectively.

We performed the following numerical experiments: for given values of input size n ,
output dimension m and accuracy, we generated 200 classical-quantum channels randomly, recorded
the numbers of iterations, and then calculated the average number of iterations of these 200 experiments.
The results are shown in Figure 1. Note that the accuracy 10−k in Figure 1 means we ran the BA
algorithm until [maxx{D(ρx||ρt)} − f (pt, pt)] was less than 10−k, and the error between the true
capacity and the computed value was of order 10−(k+1) at most.

Figure 1. The number of iterations needed to reach certain accuracy.

We can see in Figure 1 that the iteration complexity scales better as accuracy and input dimension
increase. We can also see for given input size n and accuracy, the output dimension has vary little
influence on iteration complexity, which means the iteration complexity also scales better as the output
dimension m increases. Compared with our theoretical analysis of iteration complexity in Theorem 4:
to reach ε accuracy, we needed log n

ε iterations; the numerical experiments showed that the number
of iterations was far smaller than logn

ε to reach ε accuracy, whether the output quantum states were
independent or not (cases in (n, m) = (6, 2), (10, 2)). The reason for this is that the inequalities in the
proof of Theorem 4 are quite loose. Thus, Theorem 4 only provides a very loose upper bound on
iteration complexity. We can also guess that maybe the relation in Equation (20) holds generally and
we just cannot prove it yet.

Next, we needed to see the running time of the BA algorithm. There were three methods
to compute the classical-quantum channel capacity: BA algorithm, the duality and smoothing
technique [6], and the method created by Hamza Fawzi et al. [17]. In [17], a Matlab code package called
CvxQuad is provided which accurately approximates the relative entropy function via semidefinite
programming so that many quantum capacity quantities can be computed using a convex optimization
tool called CVX. Here, we compared the running time of the above three methods. For different input
size n and output dimension m, we generated a classical-quantum channel randomly and computed
the channel capacity using the above three methods and then recorded the running time of each
method. The results are shown in Figure 2.
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Figure 2. The caparison of the running time of three methods.

In Figure 2, we can see the BA algorithm was the fastest method. The duality and smoothing
method was rather slow and we did not record the running time of the duality and smoothing method
when n = 30 because it took too long. We can also notice that the running time of the CvxQuad
method was extremely sensitive to the output dimension, which is not a surprise because CVX is a
second-order method. Thus, our BA algorithm was significantly faster than the other two methods
when n and m became big.

5. An Approximate Solution of p in Binary Two Dimensional Case

In this section, we provide an approximate optimal input distribution for the case of the input
size and output dimension are both 2:

{p1 : ρ1; p2 : ρ2}, p1 + p2 = 1, ρ1, ρ2 ∈ D2.

5.1. Use Bloch Sphere to Get an Approximate Solution

Any two-dimensional density matrix can be represented as a point in the Bloch sphere [5],
as shown in the following:

Any density matrix can be represented as a vector in the Bloch sphere starting from the origin.
Suppose ρ1, ρ2 can be represented as r1, r2 respectively, as shown in Figure 3; then, the two eigenvalues
would be 0.5± r1/2 and 0.5± r2/2, respectively. Extending r1, we get two intersections on the surface
of the Bloch sphere; then, these two intersections represent the two eigenvectors of ρ1 (the points on the
surface of the sphere represent pure state and the interior points represent mixed states). A probabilistic
combination of ρ1, ρ2 can be represented as p1ρ1 + p2ρ2 = p1r1 + p2r2 ([5] Exercise 4.4.13). Any point
on the surface of Bloch sphere can be represented as

cos
α

2
|0〉+ sin

α

2
eiφ|1〉,

where α is the angle to the Z-axis and φ is the angle of the X-axis to the projection of the point on the
X–Y plane.
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Figure 3. Bloch sphere.

By symmetry, it is obvious that the Holevo quantity is only related to r1, r2, θ, p1, where θ is the
angle between r1, r2. One interesting result is that the angle θ has very little influence on p∗, where p∗

is the optimal distribution that maximizes Holevo quantity. If we know λ1, λ2 (the bigger eigenvalues
of ρ1, ρ2, respectively), θ and p1, then the Holevo quantity can be written as

χ(λ1, λ2, θ, p1) = S(
1
2
+

1
2
||p1r1 + (1− p1)r2||2)− [p1S(

1
2
+

1
2

r1) + (1− p1)S(
1
2
+

1
2

r2)], (21)

where S(·) is the binary entropy (S(x) = −(x log x + (1− x) log(1− x)) and ri = 2λi − 1.
Using Cosine Theorem to calculate ||p1r1 + (1− p1)r2||2), the gradient of χ with respect to p1 can

be calculated directly, denoted as

∇p1 χ(λ1, λ2, θ, p1).

If we can find a p1 such that ∇p1 χ(λ1, λ2, θ, p1) = 0, then this p1 is the optimal solution
(because χ(λ1, λ2, θ, p1) is concave in p1). However, we cannot solve the equation∇p1 χ(λ1, λ2, θ, p1) =

0 with respect to p1 when θ 6= 0. Now that θ has little influence on p∗, let θ = 0 (this is actually the
classical case), and let

∇p1 χ(λ1, λ2, θ = 0, p1) = 0,

the above equation is easy to solve and we get a solution p̂1:

p̂1 =
1−c
1+c − r2

r1 − r2
, where c = 2

S(λ1)−S(λ2)
(r1−r2)/2 , (22)

where we assume r1 6= r2. (It can be easily seen from the Bloch sphere that if r1 = r2, the optimal
distribution would be { 1

2 , 1
2}.)

This p̂1 can be used as an approximate optimal solution for all θ ∈ [0, π]. Next, we need numerical
experiments to see how accurate p̂1 is.
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5.2. Numerical Experiments on the Approximated Solution p̂1

It is obvious that the maximum of Holevo quantity only depends on r1, r2 and θ, thus, without
loss of generality, we let ρ1 be on the Z-axis and ρ2 be on the X–Z plane:

ρ1 = λ1|0〉〈0|+ (1− λ1)|1〉〈1|;
ρ2 = λ2|ψ0〉〈ψ0|+ (1− λ2)|ψ1〉〈ψ1|,

where

|ψ0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉;

|ψ1〉 = − sin
θ

2
|0〉+ cos

θ

2
|1〉,

which means the angle between ρ1 and ρ2 (i.e., r1 and r2) is θ [5].
In the numerical experiments, we let λ1, λ2 range from 0.5 to 1, and θ range from 0 to π. For each

value of (λ1, λ2, θ), we substituted (λ1, λ2) into Equation (22) to compute p̂1. Then, we substituted
(λ1, λ2, θ, p̂1) into Equation (21) to get the approximate maximum of Holevo quantity over p1:
χ(λ1, λ2, θ, p̂1). To see how accurate this approximate maximum is, we need a BA algorithm to
provide an accurate maximum. The termination criterion for the iteration process of BA algorithm is
stopping when [maxx{D(ρx||ρt)} − f (pt, pt)] is less than 10−6; then, the BA algorithm outputs a value
of Holevo quantity χBA(λ1, λ2, θ). We can compute the error of χ(λ1, λ2, θ, p̂1) then take the maximum
over θ ∈ [0, π]

Error(λ1, λ2) = max
θ∈[0,π]

|χ(λ1, λ2, θ, p̂1)− χBA(λ1, λ2, θ)|.

Figure 4 is the numerical result, which is a plot of (λ1, λ2, Error(λ1, λ2)).

Figure 4. Error of the approximated method.

In Figure 4, we can see that, if λ1, λ2 are not “too big", the error can be upper bounded by 10−3.
To see this more directly, we take the maximum of Error(λ1, λ2) for different ranges of λ1, λ2:

max
λ1,λ2∈[0.5,R]

Error(λ1, λ2).

Figure 5 is a plot of (R, maxλ1,λ2∈[0.5,R] Error(λ1, λ2)).



Entropy 2020, 22, 222 14 of 15

Figure 5. Error of the approximate method.

In Figure 5, we can see that, if λ1, λ2 < 0.95, the error of approximate maximum of Holevo
quantity can be upper bounded by 3× 10−4. Thus, we can conclude that, when the bigger eigenvalues
of ρ1, ρ2 are not too big (no bigger than 0.95), Equation (22) can make the error of the maximum of
Holevo quantity smaller than 3× 10−4.

The approximate solution is an interesting phenomenon. The reason the angle θ has such little
influence on the maximum of Holevo quantity is unclear.

6. Discussion

In this paper, we provide an algorithm which computes the capacity of classical-quantum channel.
We analyzed the speed of convergence theoretically and numerical experiments showed that our
algorithm outperforms the existing methods [6,17]. We also provide an approximated method to
compute the capacity of binary two-dimensional classical-quantum channel, which shows high
accuracy. As mentioned in the Introduction, for a general quantum-quantum channel, maximizing
Holevo quantity with respect to both the input distribution and output quantum state is NP-complete
and this is not a convex optimization problem because Holevo quantity is concave with respect to
input distribution and convex with respect to output quantum states. Thus, it remains open whether
there exists an efficient algorithm to solve this problem. However, for classical-quantum channel,
Holevo quantity has an upper bound, thus one future work would be to maximize Holevo quantity
with respect to output states with given input distribution. It remains open if alternating optimization
algorithms, in particular of Blahut–Arimoto type, can also be given for other optimization problems in
terms of quantum entropy.
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