.

P entropy ey

Supplementary Figures for the manuscript ‘Robust and
Scalable Learning of Complex Intrinsic Dataset Geometry via
ElPiGraph’ by Albergante et al.

Figure S1. Explicit control for topological complexity in EIPiGraph, using a parameter. (A) Iris
dataset, approximated by EIPiGraph with default parameters, using increasing values of a. Here, the
color of the points designates the point class labels. Each node of the graph represented as a pie-chart,
which size is proportional to the number of data points projected into it, and the size of the sectors
are proportional to the number of data points of certain class. (B) Synthetic dataset characterized by
a ‘thick turn’ pattern (when the local variance of the dataset increases in the region characterized by
the largest curvature of the principal curve). Using explicit control for topological complexity, it is
possible to suppress the small branches while retaining the major one. Small fictitious branches
appear here due to effective increase of local data dimension, which does not change the underlying
data topology. Here, the data point color visualizes the partitioning of the data by principal node
branches: each color corresponds to the data points projected on a particular branch of the tree. The
nodes of the graph are shown by empty circles which size is proportional to the number of data points
projected into it.

Entropy 2019, 21, x; doi: FOR PEER REVIEW www.mdpi.com/journal/entropy

Entropy 2019, 21, x FOR PEER REVIEW 20f4

Samplé size = 300

. Sample size = 1800

x |
) 1
0.2 +t Down-sampling S .
o) % 1O
O I
S T 0 i
P ver-sampiin
£0.15] | Z Ping —
o)
(O} N
1 1 w»n 3
o D *
= 011] * i
o) O
= | ©
£ o
] [
A 0.05 'S -
=
=

D 1o 10° 10" 102
Down/QOver-sampling

Figure S2. Effect of downsampling or over-sampling on the robustness of the construction of the
principal tree in a simple 2D branching data example. (A) Initial dataset and the principal tree
reconstructed (EIPiGraph was run with parameters A=0.02, p=0.2, a=0.005 and s = 50 nodes). (B)
Principle of computing the distance between the reference tree (shown in red) and a tree constructed
on a subsample of data (shown by crosses). For each node of the subsample principal tree we perform
the nearest neighbor search of the reference tree node. The distance is computed as ratio between the
sum of distances between all nodes matched in the reference and the subsample tree (shown by
dashed grey lines) and the total length of the reference tree (sum of all edge lengths). (C) Runs of
EIPiGraph on 20 subsamples of the initial dataset of different sizes. (D) Dependence of the distance

Entropy 2019, 21, x FOR PEER REVIEW 3of4

from a subsample tree to the reference tree (y-axis), based on 20 random subsamples of different sizes.
The x-axis is a fraction of the sample with respect to the initial dataset.

| !
/ 3 0
= I: 0.50 -
Q K
© § 0.25 -
o
o Bs oo00-
2 3
= o la\o -0.25 =
o~
IE -0.50 -
-0.75 - 1 1 1 1 1 [| [1
-0.6 -04 -02 00 02 04 06 08 10
PC1 %exp. var.: 43.22
50 nodes 100 nodes 150 nodes
<
o
©
—
)
a
w
£
—
'_
<
Q
©
|
)
[
w
'_
o
o
Q
%
£
‘0
o
o~
[}
9}
S
'_
o
o
(a)]
R
= P
= .'.;..1-4'.
— % A G5O
Q- roaE
'O:J '.:.,?5‘
o tery
()]
o

Figure S3. Comparison of EIPiGraph with SimplePPT and DDRTree methods, using generator of synthetic
branching data distributions LizardBrain (see the main text for description). First row, left: The underlying
topology of an example generative model, consisting of 12 non-linear branches embedded in the 10-dimensional
unit hypercube. The structure has 11 stars. First row, right: Projection of the generated noisy dataset on the plane
of the first two principal components. The three algorithms are run using 50, 100, 150 graph nodes.

EIPiGraph row: principal graph reconstructed from unlabeled data with default parameters (from the simplest
two-node initial guess). The graph contains 5, 7, and 8 stars at three learning steps. Note that the green and violet
branches were incorrectly wired with the orange and yellow branches early in the learning process.
EIPiGraphTrim row: robust principal graph constructed using TrimmingRadius=0.3 option. The algorithm
detected 5 stars out of 11, missing those connections when the initial branches were connected close to their ends.
SimplePPT row: SimplePPT algorithm applied with default parameters. DDRTree2D row: DDRTree algorithm

Entropy 2019, 21, x FOR PEER REVIEW 40f4

applied with default parameters, using two-dimensional projection on the local linear manifold at each iteration.
DDRTreel0D row: DDRTree algorithm applied with default parameters except for the linear manifold
dimension set to 10. EIPiGraph and simplePPT plots were produced by applying the Kamada-Kawai force-
directed layout algorithm and placing data points next to their closest edge. For DDRTree we do not show a
force-directed layout but directly the output data and node embedding. The implementation of DDRTree
provided by Cole Trapnell laboratory has a known issue and does not return the adjacency matrix of the graph,
preventing us from generating a force-directed layout (https://github.com/cole-trapnell-lab/DDRTree/issues/1).
The implementation of simplePPT was taken from VISION: https://rdrr.io/github/YosefLab/VISION/
https://rdrr.io/github/YosefLab/VISION/man/applySimplePPT.html. The implementation of DDRTree was
taken from MONOCLE 3 alpha installation instructions: http://cole-trapnell-lab.github.io/monocle-
release/monocle3/ which refers to: https:/github.com/cole-trapnell-lab/DDRTree. The Jupyter notebook
producing this graph can be found in the EIPiGraph Python repository.

