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Abstract: Compound fault diagnosis is challenging due to the complexity, diversity and non-stationary
characteristics of mechanical complex faults. In this paper, a novel compound fault separation method
based on singular negentropy difference spectrum (SNDS) and integrated fast spectral correlation
(IFSC) is proposed. Firstly, the original signal was de-noised by SNDS which improved the noise
reduction effect of singular difference spectrum by introducing negative entropy. Secondly, the
de-noised signal was analyzed by fast spectral correlation. Finally, IFSC took the fourth-order
energy as the index to determine the resonance band and separate the fault features of different
single fault. The proposed method is applied to analyze the simulated compound signals and the
experimental vibration signals, the results show that the proposed method has excellent performance
in the separation of rolling bearing composite faults.

Keywords: singular value decomposition; singular negentropy difference spectrum; integrated fast
spectral correlation; rolling bearing; composite fault; fault separation

1. Introduction

Rotating machinery is widely used in modern industries, such as helicopters, airplanes, machining
centers, track loaders, mining tracks and wind turbines [1], as shown in Figure 1. Rolling bearing is
one of the most common components in rotating machines. Whether the rolling bearing runs normally
is directly related to the running state of the whole rotating machinery [2,3]. Due to the bad working
environment and long-term working conditions, several key parts of the rolling bearing are easy to
be damaged at the same time, resulting in composite faults [4]. Composite faults are more harmful
to machinery than the single faults, so it is important to diagnose early complex faults. However, all
kinds of fault features are closely coupled and interfere with each other, which makes the separation of
rolling bearing composite faults more challenging [5].

Figure 1. Some application examples of rotating machinery [1].
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A variety of technical system of rotating machinery fault diagnosis has been formed, such as
vibration analysis [6], acoustic emission analysis [7,8], electrical signal analysis [9] and oil analysis [10].
Among them, fault diagnosis based on vibration analysis is the most widely used. The separation of
rolling bearing composite faults based on vibration analysis is a hot issue. At present, researchers have
proposed some methods to extract the composite fault features of rolling bearings, including resonance
demodulation, spectral kurtosis, wavelet analysis, maximum correlated kurtosis deconvolution and
variational mode decomposition. For example, Wang et al. [11] solved the compound fault problem
by combining the meshing resonance and spectral kurtosis. Wang et al. [12] applied the adaptive
spectral kurtosis to multi-fault detection. Dhamande et al. [13] proposed a fault diagnosis method
combining continuous and discrete wavelet transform. He et al. [14] proposed an adaptive redundant
multiwavelet packet method to diagnose compound fault. Teng et al. [15] established a novel vibration
model and used empirical wavelet transform to find multiple fault feature. Lyu et al. [16] proposed an
improved maximum correlated kurtosis deconvolution method based on quantum genetic algorithm
to diagnose compound fault. Miao et al. [17] developed an improved parameter-adaptive variational
mode decomposition for identification of compound fault. Pan et al. [18] utilized symplectic geometry
mode decomposition to decompose complex signal and got a good result.

Singular value decomposition (SVD) is a nonlinear filtering method widely used in signal denoising
and fault diagnosis [19–21]. Conventional noise reduction methods based on SVD require the feature
signal to be the main component of the signal. In this way, the prominent singular values obtained
by singular value decomposition correspond to the signal space, while the smaller singular values
correspond to the noise space. As long as the dimensionality reduction matrix corresponding to the
more prominent singular values of the first few orders is retained, the signal after noise reduction can
be obtained. However, when the background noise is very strong, the characteristic signal is completely
submerged by the noise, and the singular value cannot be obtained after singular value decomposition,
the number of useful component signals cannot be determined by singular value difference spectrum
method. In order to overcome this problem, singular negentropy difference spectrum (SNDS) was
proposed in this paper.

Cyclostationarity is a widespread physical phenomenon in rotating machinery, which is manifested
by the correlation between the spectrum lines of vibration signals [22]. The vibration signal of rolling
bearing is a typical cycle stationary signal and its characteristic cyclic frequency with harmonic
frequency components. According to the different statistical characteristic parameters, cyclostationary
stochastic processes can be divided into first, second and higher order cyclostationary processes.
Spectral correlation (SC) is the main tool of second-order cyclostationary analysis. SC shows the
whole structure of modulation and carrier in the signal in the form of bispectrum [23]. Fast spectral
correlation (FSC) is a compromised algorithm between performance and computational efficiency
which is an improved version of spectral correlation based on short time Fourier transform [24]. FSC
can effectively identify the periodic impact components in the bearing, and has a high calculation
efficiency. Therefore, FSC is chosen as the fault feature extraction method in this paper. However, FSC
can only extract the composite fault features together, it can not separate the composite fault features.
Based on FSC, integrated fast spectral correlation (IFSC) is proposed. It can identify the resonance
band through the fourth order energy, and separate the composite fault. In the research of bearing
composite fault diagnosis, it is found that the existence of noise affects the separation of composite
fault. Therefore, in this paper, SNDS was used to de-noise the composite fault signal, and then IFSC
separated the de-noised signal.

The rest of the paper is organized as follows. Section 2 describes the principles of SVD, SNDS and
IFSC. Section 3 shows the specific process of the proposed method. In Sections 4 and 5, the effectiveness
of the proposed method is verified by simulation signal and experimental signal, respectively. The
conclusions are presented in Section 6.
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2. Basic Theory

2.1. Singular Negentropy Difference Spectrum

2.1.1. SVD

Assuming that the original discrete signal X = [x(1), x(2), . . . , x(N)], based on the theory of phase
space reconstruction, the Hankel matrix A is constructed as follows [19]:

A =


x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

...
...

x(N − n + 1) x(N − n + 2) · · · x(N)

, (1)

where N is the length of the signal X, 1 < n < N. Let m = N-n+1, A∈Rm×n which is the reconstructed
attractor orbital matrix, and then perform singular value decomposition on it.

Perform singular value decomposition (SVD) on the matrix A, then the following equation can be
obtained:

A = USVT =
k∑

i=1

uiλivT
i =

k∑
i=1

Ai, (2)

where U = [u1, u2, . . . , um]∈Rm×m, V = [v1, v2, . . . , vn]∈Rn×n and i = 1, 2, . . . , k, k = min(m, n). S
= diag(λ1, λ2,..., λk) is a diagonal matrix arranged in descending order, and its diagonal element is
the singular value of matrix A. Ai is the submatrix corresponding to singular value λi obtained via
SVD decomposition.

The submatrix Ai is inversely transformed to obtain the component signal Pi. The result of linear
superposition of k component signals obtained in this way is the original discrete signal X, that is:

X = P1 + P2 + . . .+ Pk, (3)

2.1.2. Singular Negentropy Difference Spectrum

Shannon Entropy is an effective index to quantitatively evaluate the uncertainties of signal or
system state [25]. When the impact component appears, the Shannon entropy becomes smaller. The
negentropy was defined, which is the negative value of the Shannon entropy, in order to keep the two
changing regularities.

The definition of negentropy is as follows:

Ey =
n∑

i=1

(
pi log2 pi

)
, (4)

where y = (y1, y2, . . . , yn) denotes a random variable, pi is the probability of yi.
In order to effectively preserve useful fault features and minimize the impact of noise, the singular

negentropy difference spectrum (SNDS) based on SVD was introduced in this paper. The definition of
SNDS is as follows:

SNDSi = Ey(i) − Ey(i + 1), (5)

where Ey(i) means the negentropy of the first i-order reconstructed signal, i denotes the number of
singular values.

The schematic diagram of SNDS is shown in Figure 2. When the negentropy of two reconstructed
signals are quite different, a significant peak will appear in the difference spectrum. There will inevitably
be a maximum peak in the whole difference spectrum, that is, the position SNDSq of the maximum
mutation of the peak degree. The maximum break point SNDSq not only shows that there are abundant
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fault impact characteristics in the reconstructed signal, but also shows the boundary between the useful
signal and the noise component. Thus, the first q-order reconstructed signal is selected.

Figure 2. The schematic diagram of singular negentropy difference spectrum (SNDS).

2.2. Integrated Fast Spectral Correlation

2.2.1. Fast Spectral Correlation

For a non-stationary random signal x(tn), its spectral correlation is given by [24]:

SCx(α, f ) =
1

Fs2

∞∑
n=−∞

∞∑
τ=−∞

Rx(tn, τ)e− j2παn 1
Fs e− j2π fτ 1

Fs , (6)

where Fs denotes the sampling frequency, tn means the sampling time, tn = n /Fs, Rx(tn, τ) denotes
the cyclic autocorrelation function of x(tn), τ denotes time delay, α means the cyclic frequency, f
means frequency.

Fast spectral correlation (FSC) is an improved version of spectral correlation, which shorten the
calculation time and improve the efficiency by short-time Fourier transform (STFT) [24]. STFT of signal
x(tn) is as follows:

XSTFT(i, fk) =
Nw−1∑
n=0

x[iR + n]w[n]e− j2πn
fk
Fs , (7)

The phase-corrected STFT might be presented as follows:

Xw(i, fk) =
L−1∑
n=0

x[n]w[n− iR]e− j2πn
fk
Fs = XSTFT(i, fk)e

− j2πiR
fk
Fs (8)
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where Nw is the window length of STFT, R denotes the block shift, w[n] means the function of time
index n, fk denotes the k-th discrete frequency and fk = k∆f (∆f is the frequency resolution and it is
expressed as ∆f = Fs/Nw), L is the length of signal x(tn).

Assume f = fk = k∆f and α = p∆f + δ, then f -α = fk-α ≈ fk-p, hence α ≈ p∆f. Substitute these results
into Equation (8)

Xw(i, fk − α) ≈ Xw(i, fk−p)e
j2π( αFs −p ∆ f

Fs )(iR+N0), (9)

Substituting Equation (9) into Equation (6), the following equation is described as:

Sx(α, fk; p) = 1
K‖w‖2Fs

K−1∑
i=0

Xw(i, fk)Xw(i, fk−p)
∗e− j2π( αFs −

p
Nw )(iR+N0)

= 1
K‖w‖2Fs

DFT
i→α

{
XSTFT(i, fk)XSTFT(i, fk−p)

∗
}
e− j2πN0(

α
Fs −

p
Nw )

(10)

If p = 0, the band [fk-∆f /2, fk+∆f /2] is flowed by the energy. Otherwise, the energy will flow
between bands [fk-∆f /2, fk+∆f /2] and [fk-p-∆f /2, fk-p+∆f /2].

Therefore, the expression of fast spectral correlation is given by [24]:

SFast
x (α, f ) =

p∑
p=0

Sx(α, f ; p)

p∑
p=0

Rw(α− p∆ f )
Rw(0), (11)

where Rw(α) =
Nw−1∑
n=0

∣∣∣w[n]
∣∣∣2e− j2π(n−N0)

α
Fs represents the kernel function, and when α=0 the expression

of kernel function is as Rw(0) = ‖w‖2.

2.2.2. Integrated Fast Spectral Correlation

In order to effectively separate the fault features, the integrated fast spectral correlation (IFSC)
theory was proposed in this paper. The spectral correlation matrix S obtained by fast spectral correlation
is an I×J matrix, whose dimension is expressed as frequencies × cyclic frequencies. After the spectral
correlation matrix is obtained, the fourth-order energy at all the cyclic frequencies is added together,
and the resonance band can be identified by observing the distribution of the accumulated energy
along the frequency axis. In general, different resonance bands in complex faults represent different
characteristics of faults. By observing the resonance band, the frequency range [f 1, f 2] of the resonance
band is determined, and the spectral correlation matrix is integrated to obtain the integrated fast
spectral correlation results. The expression of fourth-order energy is given by:

E(i) =
J∑

j=1

S4
(i, j)

, (12)

3. The Proposed Method

Since the actual collected rolling bearing signal is usually covered by many noise components
which have an interference effect on the extraction of fault features. In order to effectively improve
signal-to-noise ratio and separate composite faults, the following steps are taken:

Step 1: Collect the composite fault signal.
Step 2: Singular negentropy difference spectrum is applied to separate the trend component which

contains the fault feature information from the interference component.
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Step 3: Fast spectral correlation is utilized to obtain the fast spectral correlation spectrum, the
fourth-order energy of whose frequency axis is added together. As the result, the resonance band can
be identified.

Step 4: Fast spectral correlation is used to separate different faults and obtain the enhanced
envelope spectrum of each fault frequency band.

The flow chart of the method presented in this paper is shown in Figure 3.

Figure 3. The flow chart of the proposed method.

4. Simulation Analysis

In order to verify the effectiveness of the proposed method, a simulated composite fault signal of
inner and outer ring is performed.

x1(t) = 3e−350t1 · sin(2π f1t), t1 = mod(t, 1/ fi)
x2(t) = 2.5e−400t2 · sin(2π f2t), t2 = mod(t, 1/ fo)
x3(t) = x1(t) + x2(t)
x(t) = x3(t) + n(t)

. (13)

where x1(t) is the simulation signal of rolling bearing with inner ring fault whose inner ring fault
characteristic frequency is expressed as f i = 130 Hz and natural frequency f 1 is expressed as f 1 =

3000 Hz. x2(t) is the simulation signal of rolling bearing with outer ring fault whose outer ring fault
characteristic frequency is expressed as f o = 90 Hz and natural frequency f 2 is expressed as f 2 = 1000
Hz. n(t) is white noise. In the simulation, the sampling frequency of the example signal is f s = 8192 Hz
and the sampling number is N = 4096.

Figure 4a shows the time domain waveform of the simulation signal. It can be seen from Figure 4a
that the simulation signals x1(t), x2(t) and x3(t) all contain periodic impulse components, while the
periodic impulse components in x(t) have been submerged by noise. Figure 4b shows that the envelope
spectrum of x(t) has no prominent frequency components. The Hankel matrix is constructed from
the original signal and processed by SVD. The negentropy of first 50 points and singular negentropy
difference spectrum are shown in Figure 5. It can be found that the 42th point is the maximum mutation
points of the difference spectrum, retaining the first 42 singular values obtained by SVD processing,
and the other singular values are all set to 0. The reconstruction signal shown in Figure 6 is obtained
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by singular value reconstruction. Compared with Figures 6 and 4a, the periodic impulse components
are more obvious in the time domain waveform after SVD reconstruction.

Figure 4. (a) Time domain waveform of the simulation signals; (b) the envelope spectrum of x(t).

Figure 5. Negentropy of first 50 points and the singular negentropy difference spectrum (SNDS).

Figure 6. Time domain waveform of the reconstructed signal.

Then, the fast spectral correlation is performed on the reconstructed signal, and the fast spectral
correlation spectrum shown in Figure 7 is obtained. Two resonance bands are found in Figure 7, among
which the red box area means the resonance band of the inner ring fault and the green box area is the
resonance band of the outer ring fault. Next, the fourth-order energy of the ordinate in Figure 7 is
carried out to obtain the resonance band screening diagram shown in Figure 8. According to Figure 8,
the two resonance bands are 512–1408 Hz and 2304–3712 Hz, respectively. Fast spectral correlation
is conducted for the frequency ranges of the two resonance bands respectively, the outer and inner
ring faults after separation are finally obtained as shown in Figures 9 and 10. Figure 9 describes the
fast spectral correlation and enhanced envelope spectrum of outer ring fault, from which f o, 2f o, 3f o,
4f o, 5f o, 6f o and 7f o can be recognized obviously. Figure 10 describes the fast spectral correlation and
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enhanced envelope spectrum of inner ring fault. f i and its 2X, 3X, 4X, 5X frequency doubling can be
clearly identified from Figure 10.

Figure 7. The fast spectral correlation spectrum of the reconstructed signal.

Figure 8. Screening of resonance bands

Figure 9. Outer ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

Figure 10. Inner ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

In order to show the superiority of the proposed method, the integrated fast spectral correlation
based on singular difference spectrum and spectral kurtosis based on wavelet [26] are used to analyze
the simulation signal. Figure 11 shows the singular difference spectrum of the simulation signal. As
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shown in Figure 11, i = 44 is the mutation point. The singular values after i= 44 are set to 0, and the
time domain diagram of the reconstructed signal is shown in Figure 12. While the periodic impulse in
the reconstructed signal is more obvious than that in the simulation signal, it still contains some noise
components. The fast spectral correlation spectrum is shown in Figure 13. Compared with Figure 7,
the resonance bands of outer and inner ring faults cannot be clearly identified.

Figure 11. Singular value of first 50 points and singular difference spectrum (SDS).

Figure 12. Time domain waveform of the reconstructed signal.

Figure 13. The fast spectral correlation spectrum of the reconstructed signal.

Figure 14 shows the separation of resonance bands, from which, the inner fault resonance
band can be accurately identified, while the outer fault resonance band cannot be clearly identified.
Figure 15 shows the fast spectral correlation and enhanced envelope spectrum of outer ring fault. From
Figure 15a,b, only f o, 2f o, 3f o, 6f o and 7f o can be recognized. It can be also found from Figure 15b
that there are many interference components. The fast spectral correlation and enhanced envelope
spectrum of inner ring fault is shown in Figure 16. f i and its 2X, 3X, 4X, 5X frequency doubling
can be clearly identified from Figure 16. Compared with Figures 9 and 10, the separation effect of
the proposed method is better than that of the integrated fast spectral correlation based on singular
difference spectrum.
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Figure 14. Screening of resonance bands

Figure 15. Outer ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

Figure 16. Inner ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

As shown in Figure 17, periodic impact components cannot be noticed in the time-domain
waveform after wavelet denoising. Kurtogram of the denoised signal is shown in Figure 18, and
two frequency bands was selected according to it. It can be seen from Figure 19a,b, the envelope
spectrums contain the characteristic frequency of inner ring and outer ring, but the composite fault is
not separated into single ones. The results show that the proposed method has a better separation
performance than the method combing wavelet transform and spectral kurtosis.
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Figure 17. Time-domain waveform after wavelet denoising.

Figure 18. Kurtogram of the denoised signal.

Figure 19. The results of separation: (a) the envelope spectrum of band 1; (b) the envelope spectrum of
band 2.

5. Experimental Analysis

5.1. Introduction of Experiment

In order to prove the effectiveness of the proposed method in practical application, QPZZ model
test-bed is applied to simulate the composite fault of inner and outer rings of rolling bearings. Figure 20a,
b and c show the experimental devices, sensor distribution and composite faults of inner and outer
rings, respectively. The test bench is mainly composed of a motor, a shaft support, coupling, bearings,
block and accelerometers. The geometric parameters of rolling bearings are shown in Table 1. The
speed of motor is 1470 r/min during the experiment. The sampling frequency fs is 12,800 Hz, the
sampling point N is 6400 and the rotating frequency fr is 24.5 Hz. The characteristic frequency of inner
ring fault f i is 132 Hz and the outer ring fault characteristic frequency f o is 88 Hz.



Entropy 2020, 22, 367 12 of 18

Figure 20. (a) Experiment stand; (b) sensors distribution and (c) rolling bearing with inner ring fault
and outer ring fault.

Table 1. Specific information about the experiment bearings.

Type
Diameter
of Balls,
d (mm)

Pith
Diameter, D

(mm)

Number of
Balls, z

Contact
Angle, α (◦)

Damage Size of
Inner Ring,

(mm)

Damage Size of
Outer Ring,

(mm)

SKF6205 7.5 38.5 9 0 0.008 0.059

5.2. Compound Fault Diagnosis

Figure 21a,b are the time domain waveform and envelope spectrogram of the original signal,
respectively. From the time-domain waveform of the original signal, we can see that it contains
many noise components, which cannot be identified from the envelope spectrum. What is more,
the fault type cannot be determined from Figure 21b. Figure 22 shows the negentropy and singular
negentropy difference spectrum of the signal reconstructed from the first i-th singular values after SVD
decomposition. From Figure 22, we can see that i = 47 is the mutation position of negentropy value.
Hence, the negentropy values after i= 47 are set to 0. The signal is reconstructed, then the time domain
waveform of Figure 23 is obtained.
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Figure 21. (a) Time domain waveform of the original signal; (b) the envelope spectrum of the
original signal.

Figure 22. Negentropy of the first 50 points and singular negentropy difference spectrum (SNDS).

Figure 23. Time domain waveform of the reconstructed signal.

The fast spectral correlation analysis of the reconstructed signal is carried out, and the fast
spectral correlation spectrum of Figure 24 is obtained. From Figure 24, two resonance bands are
found, among which the green rectangular frame denotes the resonance band of the outer ring fault
and the red rectangular frame means the resonance band of the inner ring fault. By calculating the
fourth-order energy of the frequency of Figure 24, the resonance bands of the outer and inner ring
faults can be separated. It can be seen from Figure 25 that the resonance band of outer ring fault is
1600 Hz–2600 Hz and the inner ring fault is 3200 Hz–6400 Hz. Fast spectral correlation analysis of the
two resonance bands is carried out, and then the fast spectral correlation results shown in Figures 26
and 27 are obtained.

Figure 24. The fast spectral correlation spectrum of the reconstructed signal.
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Figure 25. Screening of resonance bands.

Figure 26. Outer ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

Figure 27. Inner ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

The result of integrated fast spectral correlation method based on singular difference spectrum
is compared to show the superiority of SNDS. Figure 28 shows the singular difference spectrum of
the reconstructed signals which is composed of the first i-th singular values. As shown in Figure 28,
i=44 is the mutation point. The singular values after i = 44 are set to 0, and the time domain diagram
of reconstructed signal is shown in Figure 29. Although the periodic pulse in reconstructed signal is
more obvious than that in simulated signal, it still contains some noise components. The fast spectral
correlation spectrum is shown in Figure 30. Compared with Figure 24, the resonance bands of outer and
inner ring faults cannot be clearly identified. Figure 31 shows the separation of the resonance band. It
can be seen from Figure 31 that the internal fault resonance band can be accurately identified, while the
external fault resonance band cannot be clearly identified. Figure 32 shows the fast spectral correlation
and enhanced envelope spectrum of the outer ring fault. From Figure 32a,b, we can only identify f o,
2f o, 3f o and 4f o. Figure 33 describes the fast spectral correlation and enhanced envelope spectra of
inner ring faults. f i and its 2X, 3X, 4X and 5X multiples can be clearly identified in Figure 33. Compared
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with Figures 26 and 27, the separation effect of this method is better than that of the integrated fast
spectral correlation method based on singular difference spectrum.

Figure 28. Singular value of the first 50 points and singular difference spectrum (SDS).

Figure 29. Time domain waveform of the reconstructed signal.

Figure 30. The fast spectral correlation spectrum of the reconstructed signal.

Figure 31. Screening of resonance bands.
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Figure 32. Outer ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

Figure 33. Inner ring fault after separation: (a) the fast spectral correlation spectrum; (b) the enhanced
envelope spectrum.

Similar to simulation analysis, the method based on wavelet transform and spectral kurtosis
was performed to compare with the proposed method. It can be seen from Figure 34 that the period
impact components are more obvious after wavelet denoising. The two frequency bands with the
strongest impact were selected from Kurtogram shown in Figure 35. The fault with weak impact is
easy to be submerged by the fault with strong impact. Hence, as shown in Figure 36, only the outer
ring fault is separated. The frequency of inner ring fault cannot be identified from both Figure 36a,b.
Comparing Figures 26 and 27 with Figure 36, the proposed method has superior capability to separate
the composite faults than the method based on wavelet transform and spectral kurtosis.

Figure 34. Time-domain waveform after wavelet denoising.

Figure 35. Kurtogram of denoised signal.
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Figure 36. The results of separation: (a) the envelope spectrum of band 1; (b) the envelope spectrum of
band 2.

6. Conclusions

In this paper, a compound fault feature separation method based on singular negentropy difference
spectrum and integrated fast spectral correlation was proposed. Singular negentropy difference
spectrum was applied to de-noise and then integrated fast spectral correlation was performed. The
results show that the composite fault signal can be separated effectively and accurately. The following
conclusions can be drawn:

(1) Singular negentropy difference spectrum (SNDS) can adaptively determine the effective singular
value, effectively remove the noise components and retain useful fault information. What is more,
the comparison between SNDS and the singular difference spectrum shows that SNDS has better
denoising performance.

(2) The fourth-order energy was used as the index by integrated fast spectrum correlation (IFSC) to
select different resonance bands, so as to realize the separation of different faults. The method
combining wavelet transform and spectral kurtosis was used to compare with the proposed
method in this paper, the results show that the proposed method can separate the composite
faults better.

(3) Limited to the experimental conditions, the composite fault diagnosis of rolling bearing is only
discussed in this paper. There are many other composite faults of rotating machines, such as
compound fault of gear, compound fault of gear and rolling bearing. In the future, we will
continue to study the difficult problem of fault diagnosis of other fault modes.
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