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Abstract: In this study, we consider the problem of testing for a parameter change in general integer-valued
time series models whose conditional distribution belongs to the one-parameter exponential family
when the data are contaminated by outliers. In particular, we use a robust change point test based on
density power divergence (DPD) as the objective function of the minimum density power divergence
estimator (MDPDE). The results show that under regularity conditions, the limiting null distribution
of the DPD-based test is a function of a Brownian bridge. Monte Carlo simulations are conducted to
evaluate the performance of the proposed test and show that the test inherits the robust properties
of the MDPDE and DPD. Lastly, we demonstrate the proposed test using a real data analysis of the
return times of extreme events related to Goldman Sachs Group stock.

Keywords: integer-valued time series; one-parameter exponential family; minimum density power
divergence estimator; density power divergence; robust change point test

1. Introduction

Integer-valued time series models have received widespread attention from researchers and practitioners
in diverse research areas. Since the works of McKenzie [1] as well as Al-Osh and Alzaid [2],
integer-valued autoregressive (INAR) models have gained popularity in the analysis of correlated
time series of counts. Later, as an alternative, Ferland et al. [3] proposed using Poisson integer-valued
generalized autoregressive conditional heteroscedastic (INGARCH) models (see Engle [4] and
Bollerslev [5]). Since then, INGARCH models have been studied by many authors, such as
Fokianos et al. [6], who developed Poisson autoregressive (Poisson AR) models with nonlinear
specifications for their intensity processes. The Poisson assumption on INGARCH models has been
extended to include negative binomial INGARCH (NB-INGARCH) models (Davis and Wu [7] and
Christou and Fokianos [8]), zero-inflated generalized Poisson INGARCH models (Zhu [9,10] and
Lee et al. [11]), and one-parameter exponential distribution AR models (Davis and Liu [12]). The latter
are also known as general integer-valued time series models and have been studied by, among others,
Diop and Kengne [13] and Lee and Lee [14], who considered change point tests for these models.

The change point problem is a core issue in time series analysis because changes can occur in
underlying model parameters owing to critical events or policy changes, and ignoring such changes
can result in false conclusions. Numerous studies exist on change point analysis in time series models;
refer to Kang and Lee [15] and Lee and Lee [14], and the articles cited therein, for the background
and history of change points in integer-valued time series models. Lee and Lee [14] conducted a
comparison study of the performance of various cumulative sum (CUSUM) tests using score vectors
and residuals through the Monte Carlo simulations. In their work, the conditional maximum likelihood
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estimator (CMLE) is used for the parameter estimation and also the construction of the CUSUM tests.
However, the CMLE is often damaged by outliers, and so is the performance of the CMLE-based
CUSUM test. In general, outliers easily mislead the CUSUM test since they can be mistakenly taken
for abrupt changes; in the opposite, they can misidentify change points in their presence on time series.
Among the robust estimation methods, we adopt the minimum density power divergence estimator
(MDPDE) approach—proposed by Basu et al. [16]—as a remedy and propose to use the density power
divergence (DPD)-based test as a robust change point test.

The MDPDE method is well known for consistently making robust inferences in various situations,
and the trade-off between efficiency and robustness is managed via the tuning parameter. Basu et al. [16]
introduced the MDPDE using the independent and identically distributed observations, and later,
Ghosh and Basu [17] extended their method to the independent but not identically distributed samples.
For earlier works in the context of time series, see Lee and Song [18], Kim and Lee [19], Kang and
Lee [20], and Kim and Lee [21], who deal with the MDPDE for GARCH models, multivariate times
series, and (zero-inflated) Poisson AR models. Kim and Lee [22] demonstrated that the MDPDE for
general integer-valued time series models has strong robust properties, with little loss in asymptotic
efficiency relative to the CMLE. This motivates us to use the MDPDE to construct a robust change point
test for general integer-valued time series models. More precisely, we anticipate that the robust property
of the MDPDE would be inherited to the proposed change point test, so that the influence of outliers
should be reduced when performing a parameter change test in the presence of outliers. Although the
problem of testing for a parameter change in integer-valued time series models has been investigated
by many researchers, the testing procedure for observations with outliers has not been widely studied.
This motivates us to develop a MDPDE-based robust change point test for general integer-valued time
series models.

Kang and Song [23] proposed an estimate-based robust CUSUM test that uses the MDPDE to
detect parameter changes in Poisson AR models. However, this type of test is known to suffer from
severe size distortions, especially when the true parameter lies at the boundary of the parameter space.
Thus, we use the test deduced based on an empirical version of the DPD, which is the objective function
of the MDPDE. Song and Kang [24] and Kang and Song [25] applied DPD-based change point tests in
GARCH models and Poisson AR models, respectively. However, the DPD approach basically shares
the same spirit as the score-based CUSUM test of Lee and Lee [14] (see Remark 3 in Section 2.2), in that
both are based on derivatives of objective functions. Thus, the idea is easily adapted to one-parameter
exponential family AR models. As for a parameter change test for independent samples based on
divergence measures, see Batsidis et al. [26,27], who consider the φ-divergence as a measure. We also
refer to Martín and Pardo [28], who point out the importance of a Wald-type test based on DPD in
dealing with the change point problem.

Monte Carlo simulations are conducted to evaluate the performance of the proposed test. Here,
we compare the DPD-based test and the score-based CUSUM test to demonstrate the superiority of the
proposed test in the presence of outliers. Then, we provide a real data analysis of the return times of
extreme events related to Goldman Sachs Group (GS) stock to illustrate the proposed test. The paper
proceeds as follows. Section 2 constructs the DPD-based change point test for general integer-valued
time series models, and states its weak convergence theorem. Section 3 presents a simulation study
and a real data analysis. Section 4 concludes the paper. All proofs are provided in the Appendix A.

2. Construction of the MDPDE and Change Point Test

2.1. MDPDE for General Integer-Valued Time Series Models

Let Y1, Y2, . . . be the observations generated from general integer-valued time series models with
the conditional distribution of the one-parameter exponential family:

Yt|Ft−1 ∼ p(y|ηt), Xt := E(Yt|Ft−1) = fθ(Xt−1, Yt−1), (1)
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where Ft−1 is a σ-field generated by Yt−1, Yt−2, . . . and fθ(x, y) is a non-negative bivariate function
defined on [0, ∞) × N0, N0 = N ∪ {0}, depending on the parameter θ ∈ Θ ⊂ Rd, and satisfies
infθ∈Θ fθ(x, y) ≥ x∗ for some x∗ > 0 for all x, y. Here, p(·|·) is a probability mass function, given by

p(y|η) = exp{ηy− A(η)}h(y), y ≥ 0,

where η is the natural parameter and A(η) and h(y) are known functions. This distribution family
includes several famous discrete distributions, such as the Poisson, negative binomial, and binomial
distributions. If B(η) = A′(η), B(ηt) and B′(ηt) become the conditional mean and variance of Yt,
and Xt = B(ηt). The derivative of A(η) exists for the exponential family; see Lehmann and Casella [29].
Since B′(ηt) = Var(Yt|Ft−1) > 0, B(η) is strictly increasing, and since B(ηt) = E(Yt|Ft−1) > 0, A(η)

is also strictly increasing. To emphasize the role of θ, we also use Xt(θ) and ηt(θ) = B−1(Xt(θ)) to
stand for Xt and ηt, respectively.

Davis and Liu [12] showed that the assumption below ensures the strict stationarity and ergodicity
of {(Xt, Yt)}:

(A0) For all x, x′ ≥ 0 and y, y′ ∈ N0,

sup
θ∈Θ
| fθ(x, y)− fθ(x′, y′)| ≤ ω1|x− x′|+ ω2|y− y′|,

where ω1, ω2 ≥ 0 satisfy ω1 + ω2 < 1.

They also demonstrated that there exists a measurable function f θ
∞ : N∞

0 → [0, ∞), such that
Xt(θ) = f θ

∞(Yt−1, Yt−2, . . .) almost surely (a.s.).
Meanwhile, the DPD dα between two density functions g and h is defined as

dα(g, h) :=

{ ∫
{g1+α(y)− (1 + 1

α )h(y)gα(y) + 1
α h1+α(y)}dy, α > 0,∫

h(y)(log h(y)− log g(y))dy, α = 0.

For a parametric family {Gθ , θ ∈ Θ} with densities given by {gθ} and a distribution H with density
h, the minimum DPD functional Tα(H) is defined by dα(h, gTα(H)) = minθ∈Θ dα(h, gθ). In particular,
if H = Gθ0 ∈ {Gθ}, Tα(Gθ0) = θ0. Then, given a random sample Y1, . . . , Yn with unknown density h,
the MDPDE is defined by

θ̂α,n = argmin
θ∈Θ

Lα,n(θ),

where Lα,n(θ) =
1
n ∑n

t=1 lα,t(θ) and

lα,t(θ) =

{ ∫
g1+α

θ (y)dy−
(

1 + 1
α

)
gα

θ (Yt), α > 0,

− log gθ(Yt), α = 0.

When α = 0 and 1, the MDPDE becomes the MLE and the L2-distance estimator, respectively.
Basu et al. [16] revealed that θ̂α,n is consistent for Tα(H) and asymptotically normal. Furthermore,
the estimator is robust against outliers, but still exhibits high efficiency when the true distribution belongs
to a parametric family {Gθ} and α is close to zero. The tuning parameter α controls the trade-off between
robustness and asymptotic efficiency. A large α escalates the robustness while a small α yields greater
efficiency. The conditional version of the MDPDE is defined similarly (cf. Section 2 of Kim and Lee [22]).

For Y1, . . . , Yn generated from (1), the MDPDE for general integer-valued time series models is
defined as

θ̂α,n = argmin
θ∈Θ

L̃α,n(θ) = argmin
θ∈Θ

1
n

n

∑
t=1

l̃α,t(θ), (2)
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where

l̃α,t(θ) =

{
∑∞

y=0 p1+α(y|η̃t(θ))−
(

1 + 1
α

)
pα(Yt|η̃t(θ)), α > 0,

− log p(Yt|η̃t(θ)), α = 0,
(3)

and η̃t(θ) = B−1(X̃t(θ)) is updated recursively using the following equations:

X̃t(θ) = fθ(X̃t−1(θ), Yt−1), t = 2, 3, . . . , X̃1(θ) = X̃1,

with an arbitrarily chosen initial value X̃1. The MDPDE with α = 0 becomes the CMLE from (3).
Kim and Lee [22] showed that under the regularity conditions (A0)–(A9) stated below, the MDPDE

is strongly consistent and asymptotically normal. Conditions (A10) and (A11) are imposed to derive
the limiting null distribution of the DPD-based change point test in Section 2.2. Below, V and ρ ∈ (0, 1)
represent a generic integrable random variable and a constant, respectively; the symbol ‖ · ‖ denotes
the L2-norm for matrices and vectors; and E(·) is taken under θ0, where θ0 denotes the true value of θ.

(A1) θ0 is an interior point in the compact parameter space Θ ⊂ Rd.
(A2) E

(
supθ∈Θ X1(θ)

)4
< ∞.

(A3) infθ∈Θ inf0≤δ≤1 B′((1− δ)ηt(θ) + δη̃t(θ)) ≥ c for some c > 0.
(A4) EY4

1 < ∞.
(A5) If there exists t ≥ 1, such that Xt(θ) = Xt(θ0) a.s., then θ = θ0.
(A6) supθ∈Θ sup0≤δ≤1

∣∣∣ B′′((1−δ)ηt(θ)+δη̃t(θ))
B′((1−δ)ηt(θ)+δη̃t(θ))5/2

∣∣∣ ≤ K for some K > 0.

(A7) The mapping θ 7→ f θ
∞ is twice continuously differentiable with respect to θ, and satisfies

E

(
sup
θ∈Θ

∥∥∥∥∂ f θ
∞(Y0, Y−1, . . .)

∂θ

∥∥∥∥
)4

< ∞ and E

(
sup
θ∈Θ

∥∥∥∥∂2 f θ
∞(Y0, Y−1, . . .)

∂θ∂θT

∥∥∥∥
)2

< ∞.

(A8) supθ∈Θ

∥∥∥ ∂X̃t(θ)
∂θ − ∂Xt(θ)

∂θ

∥∥∥ ≤ Vρt a.s.

(A9) νT ∂Xt(θ0)
∂θ = 0 a.s. implies ν = 0.

(A10) supθ∈Θ

∥∥∥ ∂2X̃t(θ)
∂θ∂θT −

∂2Xt(θ)
∂θ∂θT

∥∥∥ ≤ Vρt a.s.

(A11) supθ∈Θ sup0≤δ≤1

∣∣∣∣ B(3)((1−δ)ηt(θ)+δη̃t(θ))
B′((1−δ)ηt(θ)+δη̃t(θ))4

∣∣∣∣ ≤ M for some M > 0.

Proposition 1. Under (A0)–(A5), θ̂α,n −→ θ0 a.s. as n→ ∞, and further, under (A0)–(A9),

√
n(θ̂α,n − θ0)

d−→ N(0, J−1
α Kα J−1

α ) as n→ ∞,

where

Jα = −E
(

∂2lα,t(θ0)

∂θ∂θT

)
, Kα = E

(
∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)
and lα,t(θ) is defined by substituting ηt(θ) for η̃t(θ) in (3).

Remark 1. In our empirical study, discussed in Section 3.2, we select an optimal α using the method of Warwick [30]
and Warwick and Jones [31]. We choose α that minimizes the trace of the estimated asymptotic mean squared
error ( ̂AMSE): ̂AMSE = (θ̂α,n − θ̂1,n)(θ̂α,n − θ̂1,n)

T + ̂As.var(θ̂α,n),

where θ̂1,n is the MDPDE with α = 1 and ̂As.var(θ̂α,n) is the estimate of the asymptotic variance of θ̂α,n,
computed as
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̂As.var(θ̂α,n) =

(
n

∑
t=1

∂2 l̃α,t(θ̂α,n)

∂θ∂θT

)−1( n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT

)(
n

∑
t=1

∂2 l̃α,t(θ̂α,n)

∂θ∂θT

)−1

.

Remark 2. Instead of (A6), Kim and Lee [22] assumed

sup
θ∈Θ

sup
0≤δ≤1

∣∣∣∣ B′′((1− δ)ηt(θ) + δη̃t(θ))

B′((1− δ)ηt(θ) + δη̃t(θ))3

∣∣∣∣ ≤ K for some K > 0

to prove Proposition 1. Note that this condition is satisfied directly if (A3) and (A6) hold. In our study, we alter
the above condition to (A6) to prove Lemma A1 in the Appendix A, which is needed to obtain the limiting null
distribution of the DPD-based change point test in Section 2.2.

The following INGARCH(1,1) models are typical examples of general integer-valued time series models:

Yt|Ft−1 ∼ p(y|ηt), Xt = d + aXt−1 + bYt−1,

where Xt = B(ηt) = E(Yt|Ft−1), θ = (d, a, b)T ∈ Θ ⊂ (0, ∞)× [0, ∞)2 with a + b < 1, and Θ is compact.
Condition (A0) trivially holds, and the process {(Xt, Yt), t ≥ 1} has a strictly stationary and ergodic
solution. Condition (A1) can be replaced with the following:

(A1)′ The true parameter θ0 lies in a compact neighborhood Θ ∈ R3
+ of θ0, where

Θ ∈ {θ = (d, a, b)T ∈ R3
+ : 0 < dL ≤ d ≤ dU , ε ≤ a + b ≤ 1− ε} for some dL, dU , ε > 0.

Moreover, we can express

Xt(θ) =
d

1− a
+ b

∞

∑
k=0

akYt−k−1 and X̃t(θ) =
d

1− a
+ b

t−2

∑
k=0

akYt−k−1,

where the initial value X̃1 is taken as d/(1− a) for simplicity. Based on the above and (A4), the conditions
(A2), (A5), and (A7)–(A10) are all satisfied for INGARCH(1,1) models, as proven by Theorem 3 of Kang
and Lee [15]. Kim and Lee [22] showed recently that the following Poisson and negative binomial
INGARCH(1,1) models satisfy (A3) and (A4). Furthermore, following the arguments presented in
Section 3.2 of their study, (A6) holds for these models as well. Below, we show that (A11) holds for
Poisson and negative binomial INGARCH(1,1) models.

• Poisson INGARCH(1,1) model:

Yt|Ft−1 ∼ Poisson(Xt), Xt = d + aXt−1 + bYt−1.

In this model, ηt(θ) = log(Xt(θ)) and A(ηt(θ)) = eηt(θ). Since B′(η) = B(3)(η), (A11) holds owing to (A3).

• NB-INGARCH(1,1) model:

Yt|Ft−1 ∼ NB(r, pt), Xt =
r(1− pt)

pt
= d + aXt−1 + bYt−1,

where NB(r, p) denotes a negative binomial distribution with parameters r ∈ N and p ∈ (0, 1). To be more
specific, it counts the number of failures before the r-th success occurs in a sequence of Bernoulli trials with
success probability p. Here, r is assumed to be known. In this model, ηt(θ) = log(Xt(θ)/(Xt(θ) + r))
and A(ηt(θ)) = r log(r/(1− eηt(θ))). From the fact that B′(η) = reη/(1− eη)2 and B(3)(η) = reη(e2η +
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4eη + 1)/(1− eη)4, we have B(3)(η)/B′(η)4 = (1− eη)4(e2η + 4eη + 1)/r3e3η , which is positive and
strictly decreasing on η < 0. Moreover, since dL/(dL + r) ≤ eηt(θ) < 1, it holds that

B(3)(ηt(θ))

B′(ηt(θ))4 ≤
6(1− dL/(dL + r))4

r3(dL/(dL + r))3 =
6r

d3
L(dL + r)

and B(3)(η̃t(θ))/B′(η̃t(θ))4 also has the same upper bound. Hence, (A11) is satisfied.
In addition to the above models, general integer-valued time series models also include nonlinear

models, such as the integer-valued threshold GARCH (INTGARCH) model:

Yt|Ft−1 ∼ Poisson(Xt), Xt = d + aXt−1 + b1 max(Yt−1 − l, 0) + b2 min(Yt−1, l),

where θ = (d, a, b1, b2)
T ∈ Θ ⊂ (0, ∞)× [0, ∞)3 with a + max(b1, b2) < 1, Θ is compact, and l is a

non-negative integer value. For more details, see Remark 3 in Kim and Lee [22].

2.2. DPD-Based Change Point Test

As a robust test for parameter changes in general integer-valued time series models, we propose
a DPD-based test for the following hypotheses:

H0 : θ does not change over Y1, · · · , Yn vs. H1 : not H0.

To construct the test, we employ the objective function of the MDPDE. That is, our test is constructed
using the empirical version of the DPD. Let L̃α,n be that in (2). To implement our test, we employ the
following test statistic:

T̂α
n := max

1≤k≤n

k2

n
∂L̃α,k(θ̂α,n)

∂θT K̂−1
α

∂L̃α,k(θ̂α,n)

∂θ
,

where

K̂α =
1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT

is a consistent estimator of Kα. For the consistency of K̂α, see Lemma A5 in Appendix A.
Using the mean value theorem (MVT), we have the following, for each s ∈ [0, 1],

[ns]√
n

∂L̃α,[ns](θ̂α,n)

∂θ
=

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
+

[ns]
n

∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT

√
n(θ̂α,n − θ0), (4)

where θ∗α,n,s is an intermediate point between θ̂α,n and θ0. From ∂L̃α,n(θ̂α,n)/∂θ = 0, we obtain that,
for s = 1,

0 =
√

n
∂L̃α,n(θ0)

∂θ
+

∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT

√
n(θ̂α,n − θ0).

Furthermore, since Jα is nonsingular (cf. proof of Lemma 7 in Kim and Lee [22]), this can be expressed as

√
n(θ̂α,n − θ0) = J−1

α

√
n

∂L̃α,n(θ0)

∂θ
+ J−1

α

∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT

√
n(θ̂α,n − θ0) +

√
n(θ̂α,n − θ0)

= J−1
α

√
n

∂L̃α,n(θ0)

∂θ
+ J−1

α

(
∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

)
√

n(θ̂α,n − θ0).
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Substituting the above into (4) yields

[ns]√
n

∂L̃α,[ns](θ̂α,n)

∂θ
=

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
+

[ns]
n

∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT J−1
α

√
n

∂L̃α,n(θ0)

∂θ

+
[ns]

n
∂2 L̃α,[ns](θ

∗
α,n,s)

∂θ∂θT J−1
α

(
∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

)
√

n(θ̂α,n − θ0). (5)

In Appendix A, we show that the first two terms on the right-hand side of (5) converge weakly to
K1/2

α Bo
d(s), where Bo

d is a d-dimensional standard Brownian bridge and the last term is asymptotically
negligible. Therefore, we obtain the following theorem.

Theorem 1. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have

K−1/2
α

[ns]√
n

∂L̃α,[ns](θ̂α,n)

∂θ

w−→ Bo
d(s).

Therefore,

T̂α
n

d−→ sup
0≤s≤1

‖Bo
d(s)‖

2.

We reject H0 if T̂α
n is large; see Table 1 of Lee et al. [32] for the critical values. When a change point

is detected, its location is estimated as

argmax
1≤k≤n

k2

n
∂L̃α,k(θ̂α,n)

∂θT K̂−1
α

∂L̃α,k(θ̂α,n)

∂θ
.

Remark 3. The proposed test T̂α
n with α = 0 is the same as the score-vector-based CUSUM test proposed by

Lee and Lee [14], given by

T̂score
n = max

1≤k≤n

1
n

(
k

∑
t=1

∂l̃0,t(θ̂0,n)

∂θT

)
Î−1
n

(
k

∑
t=1

∂l̃0,t(θ̂0,n)

∂θ

)
,

where l̃0,t(θ) is defined in (3), θ̂0,n is the CMLE, and În = n−1 ∑n
t=1 ∂2 l̃0,t(θ̂0,n)/∂θ∂θT . In the next section,

we compare the performance of T̂α
n with that of T̂score

n in the presence of outliers.

3. Empirical Studies

3.1. Simulation

In this section, we evaluate the performance of the proposed test T̂α
n (with α > 0) through

simulations, focusing on the comparison with T̂score
n . First, we consider the Poisson INGARCH models:

Yt|Ft−1 ∼ Poisson(Xt), Xt = d + aXt−1 + bYt−1, (6)

where X1 is set to 0 for the data generation and X̃1 is set as the sample mean of the data. The sample
sizes considered are n = 500 and 1000, with 1000 repetitions for each simulation. For the comparison,
we examine the empirical size and power at the nominal level of 0.05, which has a corresponding
critical value of 3.004. To calculate the empirical size and power for each test, we consider cases with
θ = (d, a, b) = (1, 0.2, 0.2), (1, 0.2, 0.4), (1, 0.2, 0.7) and those in which θ = (d, a, b) = (1, 0.2, 0.2) changes
to θ′ = (d′, a′, b′) = (1.5, 0.2, 0.2), (1, 0.4, 0.2), (1, 0.2, 0.4) at the middle time t = [n/2], respectively.
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Table 1 presents the results when the data are not contaminated by outliers, showing that both tests
(T̂score

n and T̂α
n ) exhibit reasonable size, even when a + b is close to 1. When n = 500, T̂score

n outperforms
T̂α

n in terms of power; however, as the sample size increases to n = 1000, T̂α
n exhibits similar power to

that of T̂score
n , particularly when α is small. The power of T̂α

n tends to decrease as α increases, confirming
that an MDPDE with large α results in a loss of efficiency.

Table 1. Empirical sizes and powers for Poisson integer-valued generalized autoregressive conditional
heteroscedastic (INGARCH)(1,1) models when no outliers exist.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.084 0.053 0.059 0.059 0.058 0.059
1000 0.065 0.047 0.053 0.053 0.051 0.059

Sizes (1, 0.2, 0.4) 500 0.049 0.040 0.043 0.045 0.047 0.047
1000 0.033 0.039 0.045 0.047 0.050 0.053

(1, 0.2, 0.7) 500 0.031 0.028 0.030 0.029 0.029 0.034
1000 0.050 0.051 0.047 0.044 0.046 0.051

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.836 0.776 0.764 0.741 0.687 0.525
1000 0.912 0.914 0.911 0.910 0.901 0.871

Powers (1, 0.4, 0.2) 500 0.782 0.704 0.695 0.661 0.591 0.454
1000 0.951 0.942 0.939 0.937 0.917 0.886

(1, 0.2, 0.4) 500 0.819 0.804 0.800 0.795 0.736 0.634
1000 0.996 0.996 0.996 0.993 0.991 0.978

To evaluate the robustness of the proposed test, we assume that contaminated data Yc,t are
observed instead of Yt in (6) (cf. Fried et al. [33]):

Yc,t = Yt + PtYo,t, (7)

where Pt are independent and identically distributed (iid) Bernoulli random variables with success
probability p and Yo,t are iid Poisson random variables with mean γ. We assume that Yt, Pt, and Yo,t are
all independent. In this simulation, we consider the cases p = 0.01, 0.03 and γ = 5, 10. The results
are reported in Tables 2–5, showing that T̂score

n suffers from size distortions that become more severe as
either p or γ increase. In contrast, T̂α

n compensates for this defect remarkably well, yielding comparable
power to that of T̂score

n when n = 1000. This indicates that as more data are contaminated by outliers, T̂α
n

increasingly outperforms T̂score
n .
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Table 2. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.01 and γ = 5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.108 0.048 0.046 0.046 0.052 0.057
1000 0.110 0.048 0.044 0.041 0.050 0.053

Sizes (1, 0.2, 0.4) 500 0.070 0.041 0.041 0.046 0.046 0.049
1000 0.078 0.041 0.042 0.041 0.045 0.043

(1, 0.2, 0.7) 500 0.057 0.035 0.039 0.038 0.045 0.045
1000 0.061 0.041 0.042 0.045 0.044 0.049

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.792 0.736 0.735 0.723 0.676 0.569
1000 0.901 0.898 0.903 0.903 0.896 0.856

Powers (1, 0.4, 0.2) 500 0.766 0.684 0.686 0.667 0.626 0.525
1000 0.944 0.934 0.935 0.931 0.915 0.864

(1, 0.2, 0.4) 500 0.871 0.806 0.804 0.787 0.752 0.647
1000 0.997 0.993 0.993 0.992 0.990 0.960

Table 3. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.01 and γ = 10.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.246 0.069 0.075 0.070 0.069 0.079
1000 0.317 0.071 0.062 0.070 0.070 0.062

Sizes (1, 0.2, 0.4) 500 0.234 0.053 0.060 0.061 0.052 0.051
1000 0.262 0.059 0.070 0.072 0.071 0.060

(1, 0.2, 0.7) 500 0.127 0.040 0.040 0.037 0.041 0.038
1000 0.115 0.045 0.044 0.049 0.048 0.050

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.840 0.785 0.791 0.769 0.742 0.649
1000 0.874 0.863 0.874 0.869 0.868 0.862

Powers (1, 0.4, 0.2) 500 0.835 0.743 0.759 0.740 0.694 0.590
1000 0.911 0.910 0.913 0.908 0.902 0.879

(1, 0.2, 0.4) 500 0.920 0.829 0.835 0.831 0.787 0.697
1000 0.997 0.992 0.995 0.997 0.994 0.965

Table 4. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.03 and γ = 5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.213 0.060 0.059 0.058 0.062 0.074
1000 0.229 0.052 0.055 0.063 0.062 0.061

Sizes (1, 0.2, 0.4) 500 0.176 0.052 0.057 0.064 0.066 0.060
1000 0.173 0.047 0.055 0.054 0.055 0.059

(1, 0.2, 0.7) 500 0.073 0.030 0.039 0.037 0.037 0.045
1000 0.086 0.039 0.035 0.040 0.042 0.039

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.804 0.693 0.715 0.709 0.687 0.616
1000 0.867 0.859 0.867 0.867 0.859 0.847

Powers (1, 0.4, 0.2) 500 0.786 0.662 0.693 0.681 0.634 0.561
1000 0.908 0.896 0.903 0.899 0.893 0.868

(1, 0.2, 0.4) 500 0.915 0.787 0.797 0.792 0.773 0.672
1000 0.998 0.994 0.995 0.993 0.986 0.965
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Table 5. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.03 and γ = 10.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.475 0.083 0.082 0.083 0.091 0.102
1000 0.592 0.092 0.097 0.104 0.109 0.097

Sizes (1, 0.2, 0.4) 500 0.556 0.071 0.078 0.080 0.068 0.065
1000 0.621 0.092 0.113 0.115 0.108 0.071

(1, 0.2, 0.7) 500 0.296 0.050 0.056 0.056 0.053 0.040
1000 0.289 0.060 0.062 0.057 0.060 0.055

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.834 0.760 0.800 0.801 0.782 0.719
1000 0.889 0.821 0.852 0.867 0.860 0.866

Powers (1, 0.4, 0.2) 500 0.850 0.738 0.783 0.786 0.759 0.688
1000 0.897 0.848 0.887 0.889 0.895 0.880

(1, 0.2, 0.4) 500 0.951 0.817 0.847 0.842 0.815 0.728
1000 0.997 0.991 0.992 0.992 0.983 0.969

Next, we consider the following NB-INGARCH(1,1) models:

Yt|Ft−1 ∼ NB(r, pt), Xt =
r(1− pt)

pt
= d + aXt−1 + bYt−1, (8)

where X1 and X̃1 are 0 and the sample mean of the data, respectively. We set r = 10, and use the same
parameter settings as in the Poisson INGARCH model case. In order to evaluate the robustness of the
test, we observe contaminated data Yc,t, as in (7), where Yt are generated from (8), Pt are iid Bernoulli
random variables with success probability p, and Yo,t are iid NB(10, κ) random variables. We consider
the cases p = 0.01, 0.03 and κ = 0.6, 0.5. The results are reported in Tables 6–10, showing similar
results to those in Tables 1–5. Our findings show that the DPD-based test performs reasonably well
in terms of both size and power, regardless of the existence of outliers. In addition, we confirm that the
proposed test outperforms the score-based CUSUM test when the data are contaminated by outliers.

Table 6. Empirical sizes and powers for negative binomial INGARCH (NB-INGARCH)(1,1) models
when no outliers exist.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.076 0.050 0.052 0.054 0.061 0.071
1000 0.061 0.055 0.052 0.052 0.055 0.059

Sizes (1, 0.2, 0.4) 500 0.040 0.041 0.038 0.040 0.045 0.048
1000 0.049 0.053 0.056 0.057 0.062 0.060

(1, 0.2, 0.7) 500 0.047 0.046 0.043 0.038 0.042 0.043
1000 0.041 0.044 0.048 0.048 0.047 0.043

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.821 0.759 0.735 0.706 0.640 0.505
1000 0.953 0.942 0.936 0.932 0.919 0.881

Powers (1, 0.4, 0.2) 500 0.759 0.689 0.646 0.611 0.558 0.454
1000 0.967 0.964 0.959 0.955 0.940 0.881

(1, 0.2, 0.4) 500 0.733 0.719 0.718 0.702 0.650 0.544
1000 0.984 0.984 0.981 0.975 0.961 0.908
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Table 7. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.01 and κ = 0.6.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.158 0.062 0.066 0.066 0.071 0.071
1000 0.173 0.069 0.066 0.067 0.068 0.061

Sizes (1, 0.2, 0.4) 500 0.105 0.045 0.045 0.049 0.047 0.039
1000 0.112 0.058 0.058 0.062 0.057 0.047

(1, 0.2, 0.7) 500 0.045 0.031 0.035 0.038 0.041 0.038
1000 0.065 0.042 0.045 0.044 0.041 0.045

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.803 0.705 0.714 0.695 0.647 0.516
1000 0.945 0.931 0.931 0.930 0.921 0.909

Powers (1, 0.4, 0.2) 500 0.757 0.648 0.645 0.626 0.579 0.464
1000 0.959 0.958 0.952 0.947 0.930 0.895

(1, 0.2, 0.4) 500 0.807 0.704 0.716 0.710 0.659 0.574
1000 0.985 0.978 0.980 0.979 0.969 0.935

Table 8. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.01 and κ = 0.5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.258 0.069 0.069 0.070 0.076 0.080
1000 0.292 0.061 0.061 0.057 0.058 0.068

Sizes (1, 0.2, 0.4) 500 0.177 0.048 0.048 0.052 0.057 0.058
1000 0.236 0.072 0.079 0.081 0.073 0.074

(1, 0.2, 0.7) 500 0.095 0.048 0.054 0.058 0.060 0.055
1000 0.097 0.049 0.050 0.050 0.050 0.051

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.840 0.771 0.768 0.740 0.688 0.599
1000 0.923 0.924 0.932 0.926 0.925 0.897

Powers (1, 0.4, 0.2) 500 0.808 0.704 0.709 0.673 0.634 0.536
1000 0.938 0.946 0.946 0.943 0.935 0.898

(1, 0.2, 0.4) 500 0.842 0.723 0.740 0.735 0.696 0.586
1000 0.997 0.989 0.984 0.977 0.972 0.923

Table 9. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.03 and κ = 0.6.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.289 0.079 0.077 0.076 0.086 0.069
1000 0.328 0.060 0.068 0.068 0.077 0.075

Sizes (1, 0.2, 0.4) 500 0.228 0.051 0.054 0.051 0.052 0.047
1000 0.246 0.054 0.064 0.066 0.064 0.059

(1, 0.2, 0.7) 500 0.090 0.035 0.040 0.040 0.044 0.036
1000 0.108 0.058 0.053 0.052 0.050 0.040

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.818 0.685 0.705 0.702 0.675 0.582
1000 0.925 0.892 0.900 0.899 0.905 0.909

Powers (1, 0.4, 0.2) 500 0.806 0.637 0.666 0.664 0.627 0.522
1000 0.938 0.927 0.926 0.922 0.913 0.896

(1, 0.2, 0.4) 500 0.870 0.690 0.734 0.731 0.704 0.604
1000 0.990 0.976 0.978 0.974 0.969 0.931
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Table 10. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.03 and κ = 0.5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.469 0.085 0.088 0.100 0.102 0.096
1000 0.563 0.075 0.088 0.097 0.105 0.100

Sizes (1, 0.2, 0.4) 500 0.506 0.068 0.071 0.076 0.081 0.072
1000 0.532 0.089 0.096 0.101 0.089 0.078

(1, 0.2, 0.7) 500 0.188 0.054 0.066 0.072 0.066 0.061
1000 0.207 0.053 0.051 0.064 0.069 0.059

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.879 0.749 0.784 0.797 0.758 0.687
1000 0.930 0.880 0.889 0.893 0.889 0.886

Powers (1, 0.4, 0.2) 500 0.867 0.698 0.766 0.756 0.734 0.636
1000 0.948 0.891 0.900 0.906 0.906 0.889

(1, 0.2, 0.4) 500 0.927 0.735 0.770 0.770 0.743 0.639
1000 0.995 0.977 0.984 0.981 0.971 0.944

3.2. Real Data Analysis

In this section, we demonstrate the validity of T̂α
n using a real data analysis. To this end, we analyze

the return times of extreme events related to GS stock, which are constructed based on the daily log-returns
for the period of 5 May 1999 to 15 March 2012. Davis and Liu [12] and Kim and Lee [22] previously
investigated this data set in their works on geometric INGARCH(1,1) models (i.e., NB-INGARCH(1,1)
models with r = 1).

We first compute the hitting times, τ1, τ2, . . ., for which the log-returns of GS stock fall outside the 0.05
and 0.95 quantiles of the data. The return times of these extreme events are calculated as Yt = τt − τt−1.
Figure 1 plots Yt, t = 1, . . . , 323. The figure shows that the data include large observations; for example,
a sample variance of 1106 with a sample mean of 10.01 indicates the existence of aberrant observations.
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Figure 1. Plot of the return times of extreme events for Goldman Sachs Group (GS) stock.

Since Yt ≥ 1, we consider a geometric distribution that counts the total number of trials, rather
than the number of failures, to fit the following geometric INGARCH(1,1) models to the data:

Yt|Ft−1 ∼ Geo(pt), Xt =
1
pt

= d + aXt−1 + bYt−1,
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where X̃1 is set as the sample mean of the data. Kim and Lee [22] showed that the optimal α for the
MDPDE is 0.25, using the criterion provided in Remark 1. The results for the parameter estimation are
summarized in Table 11 for α = 0 (CMLE) and 0.25 (MDPDE with optimal α); figures in parentheses
denote the standard errors of the corresponding estimates. We observe that, compared with the CMLE,
the MDPDE with α = 0.25 is quite different and has smaller standard errors.

Table 11. Parameter estimates for geometric INGARCH(1,1) models.

α d̂ â b̂ ̂AMSE

0(CMLE) 0.526(0.406) 0.490(0.175) 0.483(0.156) 0.623
0.25 0.432(0.242) 0.518(0.129) 0.418(0.115) 0.398

Next, we use T̂score
n and T̂0.25

n (T̂α
n with α = 0.25) to perform a parameter change test at the nominal

level of 0.05 (the corresponding critical value is 3.004). Let T̂score
n = max1≤k≤n SCOREk,n and T̂0.25

n =

max1≤k≤n DPDk,n. The left and right panels of Figure 2 display SCOREk,n and DPDk,n, respectively.
For most k, DPDk,n appears to be smaller than SCOREk,n, which is definitely attributed to the robustness
of the MDPDE and DPD. We obtain T̂score

n = 5.136, which suggests the existence of a parameter change.
In Figures 1 and 2, the red, vertical, dashed line represents the location of a change when T̂score

n is applied.
However, this result is not so reliable because T̂score

n can signal a change point affected by outliers as
seen in the previous section, and the change point is truly detected at the occurrence time of an outlier
in this case. In contrast, T̂0.25

n yields a value of 1.219, indicating that no change point exists. This result
clearly demonstrates that outliers can severely affect parameter estimates and change point tests by
mistakenly identifying a change point. Our findings confirm that the DPD-based change point test
provides a functional and robust alternative to the score-based CUSUM test in the presence of outliers.
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Figure 2. Plots of SCOREk,n and DPDk,n.

4. Conclusions

In this study, we developed a DPD-based robust change point test for general integer-valued time
series models with a conditional distribution that belongs to the one-parameter exponential family.
We provided regularity conditions under which the proposed test converges weakly to the function
of a Brownian bridge. The simulation study showed that the DPD-based test produces reasonable
sizes and powers regardless of the existence of outliers, whereas the score-based CUSUM test suffers
from severe size distortions when the data are contaminated by outliers. In the real data analysis using
the return times of extreme events related to GS stock, the score-based CUSUM test supported the
existence a parameter change, due to the influence of outliers, while the DPD-based test did not detect
a change point because of its robust property. This result confirms the validity of the proposed test as
a robust test in practice. It is noteworthy that the DPD-based test can be feasibly extended to other
parametric models as far as the asymptotic properties of the MDPDE for the models are validated.
We leave the issue of extension to other models as our future study.
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Appendix A

In this appendix, we prove Theorem 1 for α > 0; refer to Lee and Lee [14] for the case of α = 0.
The following properties of the probability mass function of the non-negative integer-valued exponential
family are useful for proving Lemma A1. For all y ∈ N0 and η ∈ R:

(E1) 0 < p(y|η) < 1,
(E2) ∑∞

y=0 p(y|η) = 1,
(E3) ∑∞

y=0 yp(y|η) = B(η),
(E4) ∑∞

y=0 y2 p(y|η) = B′(η) + B(η)2,
(E5) ∑∞

y=0 y3 p(y|η) = B′′(η) + 3B′(η)B(η) + B(η)3.

Throughout this section, we denote Lα,n(θ) = n−1 ∑n
t=1 lα,t(θ) and employ the notation ηt =

ηt(θ), η̃t = η̃t(θ), and η0
t = ηt(θ0) for brevity. Furthermore, if we define two functions hα(η) and

mα(η) as

hα(η) =
∞

∑
y=0

p(y|η)1+α y− B(η)
B′(η)

− p(Yt|η)α Yt − B(η)
B′(η)

,

mα(η) =
∞

∑
y=0

p(y|η)1+α

[
(1 + α)

(
y− B(η)

B′(η)

)2

− B′′(η)
B′(η)2

y− B(η)
B′(η)

− 1
B′(η)

]

−p(Yt|η)α

[
α

(
Yt − B(η)

B′(η)

)2

− B′′(η)
B′(η)2

Yt − B(η)
B′(η)

− 1
B′(η)

]
,

we obtain

∂lα,t(θ)

∂θ
= (1 + α)hα(ηt)

∂Xt(θ)

∂θ
,

∂2lα,t(θ)

∂θ∂θT = (1 + α)

(
hα(ηt)

∂2Xt(θ)

∂θ∂θT + mα(ηt)
∂Xt(θ)

∂θ

∂Xt(θ)

∂θT

)
.
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Lemma A1. Suppose that conditions (A3), (A6), and (A11) hold. Then, we have

|hα(ηt)| ≤
1
c
(Yt + 3Xt(θ)),

|hα(η̃t)| ≤
1
c
(Yt + 3Xt(θ) + 3|Xt(θ)− X̃t(θ)|),

|mα(ηt)| ≤
α

c2 Y2
t +

K
c1/2 Yt +

α

c2 Xt(θ)
2 +

3K
c1/2 Xt(θ) +

3 + α

c
,

|hα(ηt)− hα(η̃t)| ≤
[

α

c2 Y2
t +

K
c1/2 Yt +

2α

c2

(
Xt(θ)

2 + |Xt(θ)− X̃t(θ)|2
)

+
3K
c1/2

(
Xt(θ) + |Xt(θ)− X̃t(θ)|

)
+

3 + α

c

]
|Xt(θ)− X̃t(θ)|,

|mα(η̃t)| ≤
α

c2 Y2
t +

K
c1/2 Yt +

2α

c2

(
Xt(θ)

2 + |Xt(θ)− X̃t(θ)|2
)

+
3K
c1/2

(
Xt(θ) + |Xt(θ)− X̃t(θ)|

)
+

3 + α

c
,

|mα(ηt)−mα(η̃t)| ≤
[

α2

c3 Y3
t +

3αK
c3/2 Y2

t +

(
3α

c2 + M + 3K2
)

Yt

+
4(3α2 + 4α + 2)

c3

(
Xt(θ)

3 + |Xt(θ)− X̃t(θ)|3
)

+
6αK
c3/2

(
Xt(θ)

2 + |Xt(θ)− X̃t(θ)|2
)

+3
(

α2 + 5α + 3
c2 + M + 3K2

)(
Xt(θ) + |Xt(θ)− X̃t(θ)|

)
+
(α2 + 5α + 8)K

c1/2

]
|Xt(θ)− X̃t(θ)|.
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Proof. The proofs for the first four parts of the lemma can be found in Lemma 4 of Kim and Lee [22].
The fifth part is obtained directly from the third part, together with the fact that X̃t(θ) ≤ |Xt(θ)−
X̃t(θ)|+ Xt(θ).

By the MVT, (E1)–(E5), (A3), (A6), and (A11), we have

|mα(ηt)−mα(η̃t)|

=

∣∣∣∣∂mα(B−1(X∗t (θ)))
∂Xt(θ)

∣∣∣∣ |Xt(θ)− X̃t(θ)|

=

∣∣∣∣∂mα(η∗t )

∂ηt

1
B′(η∗t )

∣∣∣∣ |Xt(θ)− X̃t(θ)|

=
1

B′(η∗t )

∣∣∣∣∣ ∞

∑
y=0

p(y|η∗t )1+α

[
(1 + α)2 1

B′(η∗t )2 (y− B(η∗t ))
3 − 3(1 + α)

B′′(η∗t )
B′(η∗t )3 (y− B(η∗t ))

2

+

(
−3(1 + α)

1
B′(η∗t )

− B(3)(η∗t )

B′(η∗t )3 + 3
B′′(η∗t )

2

B′(η∗t )4

)
(y− B(η∗t )) + 2

B′′(η∗t )
B′(η∗t )2

]

−p(Yt|η∗t )α

[
α2 1

B′(η∗t )2 (Yt − B(η∗t ))
3 − 3α

B′′(η∗t )
B′(η∗t )3 (Yt − B(η∗t ))

2

+

(
−3α

1
B′(η∗t )

− B(3)(η∗t )

B′(η∗t )3 + 3
B′′(η∗t )

2

B′(η∗t )4

)
(Yt − B(η∗t )) + 2

B′′(η∗t )
B′(η∗t )2

]∣∣∣∣∣ |Xt(θ)− X̃t(θ)|

≤
[
(1 + α)2 1

B′(η∗t )3

(
B′′(η∗t ) + 3B′(η∗t )B(η∗t ) + B(η∗t )

3 + B(η∗t )
3
)
+ 3(1 + α)

∣∣∣∣ B′′(η∗t )
B′(η∗t )3

∣∣∣∣
+

(
3(1 + α)

1
B′(η∗t )2 +

∣∣∣∣∣B(3)(η∗t )

B′(η∗t )4

∣∣∣∣∣+ 3
B′′(η∗t )

2

B′(η∗t )5

)
(B(η∗t ) + B(η∗t )) + 2

∣∣∣∣ B′′(η∗t )
B′(η∗t )3

∣∣∣∣
+α2 1

B′(η∗t )3 (Y
3
t + B(η∗t )

3) + 3α

∣∣∣∣ B′′(η∗t )
B′(η∗t )4

∣∣∣∣ (Y2
t + B(η∗t )

2)

+

(
3α

1
B′(η∗t )2 +

∣∣∣∣∣B(3)(η∗t )

B′(η∗t )4

∣∣∣∣∣+ 3
B′′(η∗t )

2

B′(η∗t )5

)
(Yt + B(η∗t )) + 2

∣∣∣∣ B′′(η∗t )
B′(η∗t )3

∣∣∣∣
]
|Xt(θ)− X̃t(θ)|

≤
[

α2

c3 Y3
t +

3αK
c3/2 Y2

t +

(
3α

c2 + M + 3K2
)

Yt +
3α2 + 4α + 2

c3 B(η∗t )
3 +

3αK
c3/2 B(η∗t )

2

+

(
3α2 + 15α + 9

c2 + 3M + 9K2
)

B(η∗t ) +
(α2 + 5α + 8)K

c1/2

]
|Xt(θ)− X̃t(θ)|,

where X∗t (θ) is an intermediate point between Xt(θ) and X̃t(θ), and η∗t = B−1(X∗t (θ)). Note that since
B−1 is strictly increasing, η∗t lies between B−1(Xt(θ)) = ηt and B−1(X̃t(θ)) = η̃t. Then, because B(η∗t ) ≤
B(ηt) + |B(ηt)− B(η̃t)|, the last part of the lemma is established.

Lemma A2. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

1
n

n

∑
t=1

sup
θ∈Θ

∥∥∥∥∂2lα,t(θ)

∂θ∂θT −
∂2 l̃α,t(θ)

∂θ∂θT

∥∥∥∥ = o(1) a.s.

and
1
n

n

∑
t=1

sup
θ∈Θ

∥∥∥∥∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT

∥∥∥∥ = o(1) a.s.

Proof. It is sufficient to show that as t→ ∞,

sup
θ∈Θ

∥∥∥∥∂2lα,t(θ)

∂θ∂θT −
∂2 l̃α,t(θ)

∂θ∂θT

∥∥∥∥ = o(1) a.s.
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and

sup
θ∈Θ

∥∥∥∥∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT

∥∥∥∥ = o(1) a.s.

Note that we can write

1
1 + α

sup
θ∈Θ

∥∥∥∥ ∂2lα,t(θ)

∂θ∂θT − ∂2 l̃α,t(θ)

∂θ∂θT

∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥∥hα(η̃t)

(
∂2Xt(θ)

∂θ∂θT −
∂2X̃t(θ)

∂θ∂θT

)∥∥∥∥∥+ sup
θ∈Θ

∥∥∥∥(hα(ηt)− hα(η̃t))
∂2Xt(θ)

∂θ∂θT

∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥(mα(ηt)−mα(η̃t))
∂Xt(θ)

∂θ

∂Xt(θ)

∂θT

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∥mα(η̃t)
∂Xt(θ)

∂θ

(
∂Xt(θ)

∂θT − ∂X̃t(θ)

∂θT

)∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥mα(η̃t)

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)(
∂X̃t(θ)

∂θT − ∂Xt(θ)

∂θT

)∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥mα(η̃t)

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)
∂Xt(θ)

∂θT

∥∥∥∥∥
≤ sup

θ∈Θ
|hα(η̃t)| sup

θ∈Θ

∥∥∥∥∥ ∂2Xt(θ)

∂θ∂θT −
∂2X̃t(θ)

∂θ∂θT

∥∥∥∥∥+ sup
θ∈Θ
|hα(ηt)− hα(η̃t)| sup

θ∈Θ

∥∥∥∥ ∂2Xt(θ)

∂θ∂θT

∥∥∥∥
+ sup

θ∈Θ
|mα(ηt)−mα(η̃t)|

(
sup
θ∈Θ

∥∥∥∥ ∂Xt(θ)

∂θ

∥∥∥∥
)2

+ 2 sup
θ∈Θ
|mα(η̃t)| sup

θ∈Θ

∥∥∥∥ ∂Xt(θ)

∂θ

∥∥∥∥ sup
θ∈Θ

∥∥∥∥∥ ∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥
+ sup

θ∈Θ
|mα(η̃t)|

(
sup
θ∈Θ

∥∥∥∥∥ ∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥
)2

.

Using Lemma 2.1 of Straumann and Mikosch [34], together with Lemma A1, (A2), (A4), (A7), (A8),
(A10), and Lemma 1 of Kim and Lee [22], the right-hand side of the last inequality converges to 0 a.s.
as t→ ∞. Hence, the first part of the lemma is verified.

Similarly, we have

1
(1 + α)2 sup

θ∈Θ

∥∥∥∥∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT

∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥(hα(ηt)
2 − hα(η̃t)

2)
∂Xt(θ)

∂θ

∂Xt(θ)

∂θT

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∥hα(η̃t)
2 ∂Xt(θ)

∂θ

(
∂Xt(θ)

∂θT − ∂X̃t(θ)

∂θT

)∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥hα(η̃t)
2

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)(
∂X̃t(θ)

∂θT − ∂Xt(θ)

∂θT

)∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥hα(η̃t)
2

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)
∂Xt(θ)

∂θT

∥∥∥∥∥
≤ sup

θ∈Θ
|hα(ηt)− hα(η̃t)|

(
sup
θ∈Θ
|hα(ηt)|+ sup

θ∈Θ
|hα(η̃t)|

)(
sup
θ∈Θ

∥∥∥∥∂Xt(θ)

∂θ

∥∥∥∥
)2

+2 sup
θ∈Θ
|hα(η̃t)

2| sup
θ∈Θ

∥∥∥∥∂Xt(θ)

∂θ

∥∥∥∥ sup
θ∈Θ

∥∥∥∥∥∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥
+ sup

θ∈Θ
|hα(η̃t)

2|
(

sup
θ∈Θ

∥∥∥∥∥∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥
)2

,

and the right-hand side of the last inequality also converges to 0 a.s. from Lemma 2.1 of Straumann and
Mikosch [34]. Therefore, the lemma is asserted.
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Lemma A3. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

K−1/2
α

[ns]√
n

∂L̃α,[ns](θ0)

∂θ

w−→ Bd(s),

where Bd is a d-dimensional Brownian motion.

Proof. First, we show that Kα is nonsingular. Since Var[hα(η0
t )|Ft−1] = Var[p(Yt|η0

t )
α(Yt − B(η0

t ))/B′(η0
t )

|Ft−1] > 0, we have E(hα(η0
t )

2|Ft−1) > [E(hα(η0
t )|Ft−1)]

2 = 0. Hence, it holds that for ν ∈ Rd/{0},

νTKαν = (1 + α)2E

[
hα(η

0
t )

2
(

νT ∂Xt(θ0)

∂θ

)2
]
= (1 + α)2E

[
E(hα(η

0
t )

2|Ft−1)

(
νT ∂Xt(θ0)

∂θ

)2
]
> 0,

from (A9), which implies that Kα is nonsingular.
Note that

E
(

∂lα,t(θ0)

∂θ

∣∣∣Ft−1

)
= (1 + α)

∂Xt(θ0)

∂θ
E(hα(η

0
t )|Ft−1) = 0,

and Kα is finite from Lemma 5 of Kim and Lee [22]. Since ∂lα,t(θ0)/∂θ is stationary and ergodic, it holds
from the functional central limit theorem for martingales (cf. Section 18 in Billingsley [35]) that

K−1/2
α

[ns]√
n

∂Lα,[ns](θ0)

∂θ
= K−1/2

α
1√
n

[ns]

∑
t=1

∂lα,t(θ0)

∂θ

w−→ Bd(s).

Furthermore, we can show that

sup
0≤s≤1

[ns]√
n

∥∥∥∥∥∂Lα,[ns](θ0)

∂θ
−

∂L̃α,[ns](θ0)

∂θ

∥∥∥∥∥ ≤ 1√
n

n

∑
t=1

∥∥∥∥∂lα,t(θ0)

∂θ
− ∂l̃α,t(θ0)

∂θ

∥∥∥∥ = o(1) a.s.,

from Lemma 6 of Kim and Lee [22]. Hence, the lemma is verified.

Lemma A4. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

max
1≤k≤n

k
n

∥∥∥∥∥∂2 L̃α,k(θ̄α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.,

where {θ̄α,n,k|1 ≤ k ≤ n, n ≥ 1} is any double array of Θ-valued random vectors satisfying ‖θ̄α,n,k − θ0‖ ≤
‖θ̂α,n − θ0‖.

Proof. From Lemma 5 of Kim and Lee [22], it holds that

E

(
sup
θ∈Θ

∥∥∥∥∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥
)

< ∞.

Since ∂2lα,t(θ)/∂θ∂θT is continuous in θ, for any ε > 0, we can take a neighborhood Nε(θ0), such that

E

(
sup

θ∈Nε(θ0)

∥∥∥∥∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥
)

< ε (A1)
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by decreasing the neighborhood to θ0. Since θ̂α,n converges to θ0 a.s. by Proposition 1, we can write
that for sufficiently large n,

max
1≤k≤n

k
n

∥∥∥∥∥∂2 L̃α,k(θ̄α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥
≤ max

1≤k≤n

k
n

∥∥∥∥∥∂2 L̃α,k(θ̄α,n,k)

∂θ∂θT −
∂2Lα,k(θ̄α,n,k)

∂θ∂θT

∥∥∥∥∥+ max
1≤k≤n

k
n

∥∥∥∥∥∂2Lα,k(θ̄α,n,k)

∂θ∂θT −
∂2Lα,k(θ0)

∂θ∂θT

∥∥∥∥∥
+ max

1≤k≤n

k
n

∥∥∥∥∥∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥
≤ 1

n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥∂2 l̃α,t(θ)

∂θ∂θT −
∂2lα,t(θ)

∂θ∂θT

∥∥∥∥+ 1
n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥
+ max

1≤k≤n

k
n

∥∥∥∥∥∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥
:= In + I In + I I In a.s.

By Lemma A2, In = o(1) a.s. By using (A1) and the stationarity and ergodicity of ∂2lα,t(θ)/∂θ∂θT, we have

lim
n→∞

I In = E

(
sup

θ∈Nε(θ0)

∥∥∥∥∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥
)

< ε a.s.

Finally, since
∥∥∂2Lα,n(θ0)/∂θ∂θT + Jα

∥∥ converges to 0 a.s., we can show that

max
1≤k≤

√
n

k
n

∥∥∥∥∥∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ ≤ 1√
n

sup
1≤k

∥∥∥∥∥∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.,

and

max√
n≤k≤n

k
n

∥∥∥∥∥∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ ≤ max√
n≤k≤n

∥∥∥∥∥∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.,

which assert I I In = o(1) a.s. Therefore, the lemma is established.

Proof of Theorem 1. First, we show that

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
+

[ns]
n

∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT J−1
α

√
n

∂L̃α,n(θ0)

∂θ

w−→ K1/2
α Bo

d(s). (A2)

From Lemma A3, we have

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
− [ns]

n
√

n
∂L̃α,n(θ0)

∂θ

w−→ K1/2
α Bo

d(s).

Since
√

n∂L̃α,n(θ0)/∂θ = Op(1) by Lemma A3 with s = 1, using Lemma A4, it holds that

sup
0≤s≤1

[ns]
n

∥∥∥∥∥∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT J−1
α

√
n

∂L̃α,n(θ0)

∂θ
+
√

n
∂L̃α,n(θ0)

∂θ

∥∥∥∥∥
≤

∥∥∥∥∥J−1
α

√
n

∂L̃α,n(θ0)

∂θ

∥∥∥∥∥ max
1≤k≤n

k
n

∥∥∥∥∥∂2 L̃α,k(θ
∗
α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥
= op(1),
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where θ∗α,n,k denotes that corresponding to θ∗α,n,s when [ns] = k. Hence, (A2) is verified.
Next, from Lemma A4, we have

sup
0≤s≤1

[ns]
n

∥∥∥∥∥∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT

∥∥∥∥∥ ≤ max
1≤k≤n

k
n

∥∥∥∥∥∂2 L̃α,k(θ
∗
α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥+ ‖Jα‖ = Op(1)

and ∥∥∥∥∥∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

∥∥∥∥∥ ≤ max
1≤k≤n

k
n

∥∥∥∥∥∂2 L̃α,k(θ
∗
α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.

Then, since
√

n(θ̂α,n − θ0) = Op(1) by Proposition 1, we have

sup
0≤s≤1

[ns]
n

∥∥∥∥∥∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT

(
∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

)
√

n(θ̂α,n − θ0)

∥∥∥∥∥ = op(1). (A3)

Therefore, from (5), (A2), and (A3), the theorem is validated.

Lemma A5. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT
a.s.−→ Kα.

Proof. In a similar way to Lemma A4, from Lemma 5 of Kim and Lee [22], we can also take a neighborhood
Nε(θ0), such that

lim
n→∞

1
n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥
= E

(
sup

θ∈Nε(θ0)

∥∥∥∥∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥
)

< ε a.s. (A4)

Note that we can write ∥∥∥∥∥ 1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT − E
(

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)∥∥∥∥∥
≤

∥∥∥∥∥ 1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT − 1
n

n

∑
t=1

∂lα,t(θ̂α,n)

∂θ

∂lα,t(θ̂α,n)

∂θT

∥∥∥∥∥
+

∥∥∥∥∥ 1
n

n

∑
t=1

∂lα,t(θ̂α,n)

∂θ

∂lα,t(θ̂α,n)

∂θT − 1
n

n

∑
t=1

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥∥
+

∥∥∥∥∥ 1
n

n

∑
t=1

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT − E
(

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)∥∥∥∥∥
:= In + I In + I I In.

By Lemma A2,

In ≤
1
n

n

∑
t=1

sup
θ∈Θ

∥∥∥∥∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT − ∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT

∥∥∥∥ = o(1) a.s.
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Since θ̂α,n converges to θ0 a.s. by Proposition 1, from (A4), we have

lim
n→∞

I In ≤ lim
n→∞

1
n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥ < ε a.s.

Finally, by the ergodic theorem, I I In = o(1) a.s. Therefore, the lemma is established.
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