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Abstract: Based on the foundations of thermodynamics and the equilibrium conditions for the coexistence
of two phases in a magnetic Ising-like system, we show, first, that there is a critical point where the
isothermal susceptibility diverges and the specific heat may remain finite, and second, that near the
critical point the entropy of the system, and therefore all free energies, do obey scaling. Although we
limit ourselves to such a system, we elaborate about the possibilities of finding universality, as well as the
precise values of the critical exponents using thermodynamics only.
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The scaling hypothesis (SH), introduced by Widom in 1965 [1], marked the turning point in the
modern description of critical phenomena. It lead to the development of the renormalization group (RG)
theory [2,3], which gave an explanation both to SH and to its deep underlying physics in terms of general
concepts such as phenomena at all length scales and symmetry breaking. The trascendental roles of SH
and RG cannot be exaggerated, pervading not only the physics and chemistry of phase transitions and
condensed matter in general, but also influencing many other fields, from the then emerging field of
complex systems to high energy physics. As it is now common knowledge, and expressed in too many
articles and monographies, see e.g., Refs. [4–7], the scaling hypothesis has remained as such, namely as a
hypothesis that leads to the equalities of the different critical exponents, and that its validation and the
actual calculation of the exponents are the success of RG. The purpose of this article is to show that the
scaling hypothesis follows directly from the laws of thermodynamics and the equilibrium conditions in
a magnetic-like system with a coexistence curve of different thermodynamic states. We show first that
the existence of such a curve implies that there is a point, the critical point of the phase transition, where
the thermodynamic properties may or may not be analytic, and where the isothermal susceptibility must
diverge, while the specific heat may remain finite. These results suggest power law dependences of the
thermodynamic properties on the natural variables, energy and magnetization, near the critical point.
As a consequence, the equilibrium conditions at coexistence imply that the entropy function obeys scaling.
As we will comment at the end of the text, there may be a way to go further to, first, show that the two
critical exponents of the scaling form are not independent of each other, and second, to calculate them
without resorting to RG.

To be succinct, we consider the fundamental form of the entropy s, per unit of volume, of a very
general “magnetic” system, with a scalar magnetization m per unit of volume, that can be both positive
and negative, and with energy e per unit of volume. That is, we consider the function s = s(e, m) which
gives all the thermodynamics of such a system. Thermodynamics asserts [8–10] that s is a concave single
valued function of e and m, with its first derivatives yielding the temperature T and the magnetic field H,
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ds = βde− hdm, (1)

where β = 1/T and h = H/T,

β =

(
∂s
∂e

)
m

h = −
(

∂s
∂m

)
e

. (2)

We consider dimensionless variables [11]. The fact that s is a concave function of e and m follows
from the second law and it is expressed through the inequalities [8,9]

−βχ−1 =
∂2s
∂m2 −

(
∂2s

∂m∂e

)
∂2s
∂e2

< 0

−β2c−1
m =

∂2s
∂e2 < 0, (3)

which imply ∂2s/∂m2 < 0. In the above inequalities we have already identified the isothermal magnetic
susceptibility,

χ =

(
∂m
∂H

)
T

(4)

and the specific heat at constant magnetization,

cm =

(
∂e
∂T

)
m

. (5)

The inequalities and the third law, β > 0, give rise to the well known stability conditions χ > 0 and
cm > 0.

Before proceeding with our demonstration, it is worth making here a brief review of the scaling
hypothesis, as it is now described in many article and textbooks [5–7]. Let the system show a second
order phase transition, say, a para-ferromagnetic transition. This occurs at zero magnetic field H: if the
temperature is above a certain critical value T > Tc, the magnetization is zero, while below, T < Tc

the system spontaneously acquires a finite magnetization different from zero, at an arbitrary direction.
As the critical transition is approached, several quantities behave in the form of power law dependences,
with universal critical exponents which obey so-called exponent equalities. For instance, with H = 0,
the specific heat behaves as cm ∼ |T− Tc|−α, the magnetic susceptibility always diverge as χ ∼ |T− Tc|−γ,
and for T ≤ Tc, the magnetization grows as m ∼ ±(Tc − T)β. Along the critical isotherm T = Tc,
the magnetic field vanishes as the magnetization does so, with the law H ∼ mδ.

In the Landau and van der Waals mean-field models the exponents are known [5], as well as in
the exact 2D Ising model [12]. Moreover, the corresponding exponents obey the mentioned equalities.
The validity of the equalities was further supported by rigorous thermodynamic bounds [13–16],
that indicated that those were inequalities at least. It was Widom [1] who showed that if the free energies
had a certain parametric dependence on their variables, now called scaling form, the inequalities were
exact equalities. For example, if the Helmholtz free energy per volume, in the vicinity of the critical point,
had the form,

f (m, T) ≈ |T − Tc|2−αF
(

m
|T − Tc|β

)
(6)

with F a scaling function with assumed asymptotic limits [5], the exponents can be shown to obey the
equalities α + 2β + γ = 2 and β(1 + δ) = 2− α, independently of the dimension of space, d = 2, 3,
or 4. This scaling hypothesis was the remarkable achievement mentioned above that opened the door for
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the modern understanding of critical phenomena. Although the scaling hypothesis in Equation (6) was
extended to the behavior of the magnetization correlation function, yielding further equalities involving
the exponents η and ν and the space dimension d [4], here we will limit ourselves to the derivation of the
scaling form of the free energies, such as Equation (6), from pure thermodynamics. As it was mentioned
already, the renormalization group formalism [3], based on the use of the Ginzburg–Landau theory [5–7,17],
not only yielded the scaling form but a systematic path to the calculation of the exponents; yet, such a
formalism requires the use of statistical physics and of microscopic models of the systems, a procedure
that goes beyond general considerations of thermodynamics.

Let us now return, then, to general aspects of thermodynamics, in terms of the entropy function
s = s(e, m), introduced above. We now consider properties of a magnetic’ system. The main consideration
is that s = s(e, m) is an even function of m, s(e, m) = s(e,−m). Therefore, the magnetic field h is an odd
function of m, h(e, m) = −h(e,−m). Hence, if m = 0 it follows that h = 0. Since there are no restrictions
in the energy dependence, and using the third law β > 0, we find that for constant m the entropy is a
monotonic, increasing, concave function of e; thus, β decreases as e increases for fixed m. On the the other
hand, for fixed energy e, s has a maximum at m = 0, then decreases monotonically in a concave fashion as
|m| increases.

Now we analyze the geometrical characteristics that the entropy surface s = s(e, m) should have in
order to allow for a two-phase coexistence region. First, for the present system and due to its assumed
symmetry, we consider the existence of two phases with magnetizations of opposite signs but same entropy
and energy [18], namely, the coexistence of states (m, e, s) with (−m, e, s). From the usual considerations of
the coexistence of two thermodynamic states [8], the strong requirement is that their temperature β and
their magnetic field h are the same. Since h is an odd function of m, it must then be true that h = 0 for all
coexistence states. In addition, we assume that the entropy surface represents stable thermodynamic states
only. Hence, these considerations imply that there exists a void region on the entropy surface s = s(e, m)

whose edge define a coexistence curve; see Figure 1 for a qualitative rendering of this consideration.
This curve is symmetric with respect to m = 0 and, aside the point at m = 0, the rest of the points on the
curve represent two coexisting different phases whose magnetizations m have opposite signs. As we will
see below, the introduction of such a curve is so disruptive in an otherwise smooth concave surface, that it
forces the point m = 0 on the curve to be “critical”, in the sense that χ must diverge and that the function
s = s(e, m) must obey scaling in its neighborhood. The point m = 0 on the coexistence curve is identified
as the critical point, with energy ec, entropy sc, temperature βc, and critical field h = 0. It is very important
to emphasize again that the piece of surface inside the coexistence curve simply does not exist: it is a “hole”
or a “cut” on the entropy surface. It is one of the greatest results of statistical physics that such a type of
cut can be shown to exist in interacting atomic systems in the thermodynamic limit [19].

Let us now see the consequences of the coexistence curve. Such a curve can be written quite generally
as a relationship between e and m,

e = ec + ecoex(m2), (7)

where ecoex(m2) ≤ 0, even in m and vanishing at the critical point. As indicated above h(ec +

ecoex(m2), m) = 0. Below we will propose an explicit form of such a curve in the neighborhood of
the critical point but, first, we can show an important very general result, namely, the vanishing of the
inverse of the susceptibility χ−1 at the critical point, see Equation (3). For this, let us introduce the
vector field ~n normal to the entropy surface. By considering the vector (m, e, s) oriented in right-hand
Cartesian axes, a vector normal to the surface at such a point is given by~n(m, e, s) = (h,−β, 1). From the
equilibrium conditions one can conclude that at any pair of coexistence points, s(m, e = ec + ecoex(m2))

and s(−m, e = ec + ecoex(m2)), with m 6= 0, the corresponding normal vectors are equal. Now consider a
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point (m, e, s) not on the coexistence curve but near to the critical point (0, ec, sc). The normal to such a
point can be written as~n(m, e, s) ≈ ~nc + (δh,−δβ, 0), where,

δh =

(
∂h
∂m

)
c

δm +

(
∂h
∂e

)
c

δe (8)

and

δβ =

(
∂β

∂m

)
c

δm +

(
∂β

∂e

)
c

δe, (9)

with the subscript c meaning evaluation at the critical point. Consider also the symmetrical point of the
above, namely at (−m, e, s); it can be obtained from the previous one by changing δm→ −δm and leaving
δe the same. Now we let those two arbitrary points move to the coexistence curve, keeping their symmetry.
At coexistence, ~n(δm, ec + δe, s) = ~n(−δm, ec + δe, s), δh = 0 and δe = ecoex(δm2). Therefore, from the
above expressions, Equations (8) and (9), we conclude that at the critical point,(

∂h
∂m

)
c
= −

(
∂2s
∂m2

)
c
= 0 (10)

and (
∂β

∂m

)
c
= −

(
∂h
∂e

)
c
=

(
∂2s

∂m∂e

)
c
= 0, (11)

while there is no restriction on (∂β/∂e)c = (∂2s/∂e2)c, but to remain negative. By using the concavity
conditions, Equation (3), and the above critical values, Equations (10) and (11), one finds the severe result
that χ−1 → 0 as the critical point is approached, equivalent to assert that χ diverges there, and that there
is no restriction on the (inverse) specific heat c−1

m , that is, it may remain finite or not at the critical point.
These results are the usual observed behavior at actual phase transitions at the critical point. While the
previous derivation makes use of the geometrical properties of the entropy surface, one can visualize this
result by noting that the normal vectors at both sides of the coexistence curve must approach the normal at
the critical point remaining parallel throughout: intuitively, this can be achieved if the surface at the critical
point is flat. Since the gaussian curvature K = (∂2s/∂e2)(∂2s/∂m2)− (∂2s/∂e∂m)2 necessarily vanishes
at the critical point, as shown above, the surface at such a point is cylindrical when (∂2s/∂e2)c 6= 0 or
definitely flat if (∂2s/∂e2)c = 0.

We can now show that the scaling hypothesis is no longer a hypothesis and that it follows from
the strong conditions at the coexistence curve. Since the presence of the coexistence curve implies a
discontinuity in, at least, one of the variables, there is no reason to expect full analyticity at such a curve.
Thus, while we do not assume analyticity of the entropy function at the coexistence curve and, in particular,
at the critical point, we do assume that s = s(e, m) is indeed analytic elsewhere. In any case, using as the
origin the critical point (e = ec, m = 0), we can write the entropy in the form,

s(e, m) = sc + βc(e− ec) + ssing(e− ec, m), (12)

where the function ssing(e− ec, m) may be singular at e− ec = 0 and m = 0, but still ssing(0, 0) = 0. Since
at other points on ssing(e, m) is analytic, we can expand it around the point e− ec = 0 but arbitrary m 6= 0,
shown as point (A) in Figure 1,

ssing(e− ec, m) =
∞

∑
n=0

fn(m2) (e− ec)
n , (13)
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where fn(m2) are not necessarily analytic at m = 0 and, therefore, we cannot make a Taylor expansion
around that point. The powerful insight in proposing Equation (13) was introduced by Widom in his
seminal paper [1]. The above expression is valid above and at the coexistence curve, such as point (B) in
Figure 1, but not at points such as (C). Thus, we can calculate the isothermal susceptibility χ and specific
heat cm, using Equations (3), and the magnetic field h, Equation (2) at any of the valid points. Of particular
relevance is their evaluation at the coexistence curve, using Equation (7), where we find,

−βχ−1 =
∞

∑
n=0

d2 fn(m2)

dm2 (ecoex(m2))n −

(
∑∞

n=1 n d fn(m2)
dm (ecoex(m2))n−1

)2

∑∞
n=2 n(n− 1) fn(m2)(ecoex(m2))n−2 .

−β2c−1
m =

∞

∑
n=2

n(n− 1) fn(m2)(ecoex(m2))n−2. (14)

The first expression must vanish as m2 → 0, while the second one may or may not. At coexistence,
the magnetic field is zero, h = 0, yielding the condition,

0 =
∞

∑
n=0

d fn(m2)

dm
(ecoex(m2))n (15)

for all values of m.

The previous expressions, Equation (14) and (15), and their limits, being functions of m2 only, pose
very stringent demands on the form of the coexisting curve and on the functions fn(m2). First, one can
safely and very generally assume that very near the critical point the coexistence curve is given by

e− ec ≈ −B (m2)∆, (16)

where B > 0 is a constant and the exponent ∆ is arbitrary. The only reasonable restriction on the exponent
is that ∆ ≥ 1, otherwise it would have a cusp, see Figure 1. This algebraic dependence and the conditions
on the susceptibility at coexistence, indicate that very near m = 0 one can asymptotically write

fn(m2) ≈ An(m2)Γn , (17)

with An constants and the exponents Γn to be determined. It is important to realize that, even in the
asymptotic regime m → 0, due to the possible nonanaliticity of ssing(e, m), in principle one cannot cut
the expansion Equation (13) at any order n in the sum; that is, the whole sum must vanish in the joint
limit e → ec first, then m → 0. Hence, expression Equation (17) is the statement that all the functions
fn(m2) are of equal importance in the expansion and, therefore, that they behave similarly with a (possible
nonanalytic) power law behavior near m = 0. One cannot make any compromise on the coefficients An,
except their contribution to the limiting behaviors of the sums. As it will also be discussed below, there is
still room for additional logarithmic terms not considered above.
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Figure 1. (Color online) Qualitative level-curve graph of the entropy s(e, m) in the vicinity of the critical
point e = ec and m = 0. The dashed (blue) curves are at constant entropy with s2 < sc < s1. The
coexistence curve e− ec ≈ −B(m2)∆ is the solid (red) line where the isentropic curves end for e < ec and
the magnetic field vanishes h = 0. The labels −mcoex and mcoex represent two coexisting states with the
same entropy, energy, temperature, field h = 0, but different magnetizations ±mcoex. Within the coexistence
curve there is no surface. The point A is at (e = ec, m 6= 0); point B is at the coexistence curve; and point C
at (e > ec, m = 0). The dotted (magenta) curve is the critical isothermal βc. Although the figure is meant to
be qualitative, the coexistence curve was drawn assuming B = 3 in dimensionless units, with the exponent
∆ = 1.36315, corresponding to the 3D Ising model.

By substituting the asymptotic expressions given by Equations (16) and (17) into the h = 0 condition
at coexistence, Equation (15), one finds,

0 ≈
∞

∑
n=0

Γn Anm2Γn−1−2n∆(−B)n. (18)

Since this quantity must be zero for any finite value of the magnetization m 6= 0 near m = 0, it can
only be so if the exponents at all orders in n are equal, namely, if

Γn − n∆ = Γ0 (19)

for all n = 1, 2, 3, . . . , and the following sum vanishes,

∞

∑
n=0

(−1)nΓn AnBn = 0. (20)

The condition Equation (19) for the exponents Γn yields a scaling form for the entropy function.
That is, near the critical point, gathering Equations (13), (17), and (19), one finds,

ssing(e, m) ≈ m2Γ0
∞

∑
n=0

An

(
e− ec

m2∆

)n

≡ m2Γ0F
(

e− ec

m2∆

)
. (21)

The singular part of the entropy is thus expressed in terms of two exponents only, Γ0 > 1 and ∆ ≥ 1,
with a scaling function F (x). The condition Γ0 > 1 follows from the vanishing of χ−1 at criticality, see
Equation (14). Obviously F (0) = A0, a constant, and, by continuity, limx→∞ F (x) must reach C0xΓ0/∆,
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with C0 a constant. This is a usual argument in dealing with scaling functions [7], namely, since the form
Equation (21) is valid everywhere near the critical point, it must also be valid for a point such as (C) in
Figure 1, where e > ec strictly and m = 0, and can depend on (e− ec) only. Therefore, the limit m → 0
must cancel any dependence on m, forcing the mentioned limit. Hence, for e− ec > 0, one can expand in
powers of m2, yielding,

ssing(e, m) ≈ (e− ec)
Γ0/∆

∞

∑
k=0

Ck

(
m2

(e− ec)1/∆

)k

, (22)

with Ck constants that depend on the coefficients An.
With the forms given by Equations (21) and (22) all the scaling results for the thermodynamic

quantities near the critical point, including the exponent equalities, follow. See Ref. [7] for a thorough
analysis of results following scaling. Since most of the critical properties are typically given in terms of the
temperature, one can first find it using Equation (2); we quote the final results below. Before, we believe it
is instructive to find the critical isotherm curve in the present variables (e, m). For this, let us calculate the
temperature near the coexisting curve using Equation (21); one finds

β− βc ≈ (m2)Γ0−∆
∞

∑
n=1

nAn

(
e− ec

m2∆

)n
. (23)

By setting β = βc, e > ec and m 6= 0, the solution is a curve with the same exponent as the coexistence
curve, that is e− ec ≈ Dm2∆ but D 6= −B the factor of the coexistence curve, see Equation (16). See Figure 1.
Using Equation (23), it is then a simple exercise to find the usual scaling results in terms of Γ0 and ∆,

|m| ≈ A (Tc − T)1/2(Γ0−∆) h = 0 T ≤ Tc

h ≈ B m2Γ0−1 T = Tc

χ−1 ≈ C± |T − Tc|(Γ0−1)/(Γ0−∆) h = 0

c−1
m ≈ D± |T − Tc|(Γ0−2∆)/(Γ0−∆) h = 0, (24)

where A, B, C±, and D± are constants and the signs ± indicate h = 0 and T > Tc, and h = 0 and T < Tc

at coexistence. One reads off the usual critical exponents α = (Γ0 − 2∆)/(Γ0 − ∆), β = 1/2(Γ0 − ∆),
γ = (Γ0 − 1)/(Γ0 − ∆), and δ = 2Γ0 − 1, obeying the Rushbrooke [13] α + 2β + γ = 2 and Griffiths [14]
β(1 + δ) = 2− α equalities. Two additional comments. If ssing(e, m) is analytic at the critical point, then
Γ0 = 2 and ∆ = 1, the series can be cut at second order and one recovers the usual classical Landau–van
der Waals exponents. In general, if Γ0/∆ = M, with M an integer, the series in Equations (21) and (22) can
be cut at the M-th order. For Γ0/∆ = 2 but ssing(e, m) non-analytic, Widom [1] showed that there could
still be a logarithm divergence in the specific heat, as in the two-dimensional Ising model [12], that we
have certainly not considered. If Γ0 > 2∆, the logarithmic divergence can be ignored and the specific heat
diverges algebraically at the critical point, see Equation (14).

Summarizing, we first highlight the fact that the scaling form of the entropy near the critical point,
as given by Equation (21), follows directly from the laws of thermodynamics and its restrictions on the
entropy surface. One does not need to introduce it as a hypothesis. On the other hand, as thermodynamics
is an empirical theory that does not explicitly include the dimensionality d of space, it is certainly unable
to access the exponents η and ν of the density correlation function [5], and whose relationship to the other
exponents is given by the Fisher equality [15] γ = (2− η)ν and the hyperscaling Josephson relation [16]
α = 2− dν. Their elucidation is one of the greatest achievement of RG. However, the present result may
open a novel approach to find, in a practical way, the values of the critical exponents, a procedure that we
have not been able to materialize. The point being that the exponent ∆ is at our disposal, that is, we can give
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it any value ∆ ≥ 1. It is our guess that, again, since the inclusion of the coexistence curve seriously disrupts
the otherwise continuous and smooth entropy surface, it may result that such a distortion necessarily
requires that the exponent Γ0 is a function of ∆, i.e., Γ0 = Γ0(∆). Thus, if one were able to find such
a relationship, then, by scanning the value of ∆ one could find the value of all the other exponents.
The further obvious condition is that the exponent ∆ should be a continuous function of the dimensionality
d, but at the moment this appears out of context. Finally, the other profound issue of critical phenomena,
which adds to the discussion of the thermodynamic origin of the supposed relationship Γ0 = Γ0(∆), is the
universal character of the critical exponents. The present discussion has been limited to a magnetic system
with its concomitant assumed symmetries. However, as it is well known, the critical exponents of an
Ising-magnetic system are the same as those of the critical point of the liquid–vapor transition [4–6]. As we
will discuss elsewhere [20], one finds that locally the corresponding entropy surface shows the same
properties as the present one, once one includes a coexisting curve. Hence, if Γ0 is a function of ∆, then,
for the same ∆ the exponents will be the same in both physical systems.

To conclude, we believe the present study shows a way to reanalyze all the known critical phenomena
in terms of thermodynamics only, without statistical physics models. That is, to reevaluate them using
general differential geometric properties of the entropy function, in terms of the corresponding extensive
variables, to find relevant constraints on its shape and on the form of the coexistence lines, such that
one can, not only show that scaling is obeyed, but to investigate into finding a further relationship
between the, so far, independent two exponents. Here, we approached the Ising critical point, to which
para-ferromagnetic and liquid-vapor transitions belong, but this procedure should be extended to study
the normal to superfluid transition in which the critical transition is not a point but a whole line, such as
the lambda critical transition in Helium [21] and the Bose–Einstein condensation in ultracold gases [22],
fields of active current interest.
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