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Abstract: Soft-matter systems when driven out of equilibrium often give rise to structures that usually
lie in between the macroscopic scale of the material and microscopic scale of its constituents. In this
paper we review three such systems, the two-dimensional square-lattice Ising model, the Kuramoto
model and the Rayleigh–Bénard convection system which when driven out of equilibrium give rise to
emergent spatio-temporal order through self-organization. A common feature of these systems is that
the entities that self-organize are coupled to one another in some way, either through local interactions
or through a continuous media. Therefore, the general nature of non-equilibrium fluctuations of the
intrinsic variables in these systems are found to follow similar trends as order emerges. Through this
paper, we attempt to find connections between these systems, and systems in general which give
rise to emergent order when driven out of equilibrium. This study, thus acts as a foundation for
modeling a complex system as a two-state system, where the states: order and disorder can coexist as
the system is driven away from equilibrium.

Keywords: non-equilibrium thermodynamics; Ising model; Kuramoto model; Rayleigh–Bénard
convection; pattern formation

1. Introduction

A system at equilibrium is indistinguishable from its surroundings. The same system when
driven out of equilibrium gives rise to flows that force the system to relax back into its equilibrium
state. The rate of relaxation is governed by how far the system has been driven out of equilibrium [1–3].
Soft-matter systems in this respect are especially fascinating as they often give rise to order as long as the
driving field maintains it out of equilibrium [1,4,5]. Some prominent examples where self-organization
gives rise to emergent order include, liquid crystals, granular material, polymers, gels, networks, and a
wide spectrum of biological phenomena/materials [6–17]. This emergent order can vary across several
lengths and time scales, and since they are very sensitive to fluctuations (thermal) they are usually
difficult to predict.

In this paper, we discuss how coupling plays an important role in driven systems as they
self-organize to give rise to emergent order. In driven systems, the emergence of order is mediated by
the presence of numerous irreversible processes within the system through a continuous exchange
of energy between the system and the surrounding. As noted by Demirel, these interactions are
called thermodynamic couplings, which may allow a process to progress without its primary driving
force or in a direction opposite to the one imposed by its own driving force [18]. We start with the
simplest statistical model that shows phase transition—the two-dimensional square lattice Ising model.
Following which, we model the phenomena of synchronization of a large set of coupled oscillators or
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the Kuramoto model. Both of these systems are numerically modelled and the effect of mean-field
coupling on the emergence of order is discussed. The results are then compared with an experimental
system, the Rayleigh–Bénard convection for different fluid mixtures at varying Rayleigh numbers
(103–106). In all of these systems, the emergence of order is mediated by various irreversible processes
inside the system which results in a process of continuous exchange of energy with the surrounding
media. The onset of order in these systems is controlled by the critical value of the coupling strength,
for example, a critical temperature in the case of a two-dimensional Ising model exhibiting phase
transition, critical coupling strength in a collection of Kuramoto oscillators, and a critical Rayleigh
number in a Rayleigh–Bénard instability. Since the focus of this study lies in the search for simple
modeling tools to understand pattern formation in a complex system, the choice of our model systems
is not random. In our previous studies, we had shown how the mean temperature of the top layer of
the fluid film bifurcates into ‘hot’ and ‘cold’ domains as a steady-steady is achieved in a non-turbulent
Rayleigh–Bénard system [19–21]. The coexistence of two states, hot and cold, draws similarities to
the Ising model which has been successfully used to understand many two-state systems/processes.
Along similar lines, coexistence of synchronous and asynchronous oscillators in Kuramoto systems
have given rise to studies on chimera states [22]. Therefore, we use these model systems as test subjects
to understand the nature of emergent order and its connection to the second statistical moment of the
respective intrinsic variables by comparing their similarities and differences across them. For instance,
it is observed as a general result that microscopic fluctuations tend to decay as macroscopic order
emerges in these systems, however, the nature of the decay varies considerably and is often dictated
by how ‘far’ they have been driven out of equilibrium. In conclusion, this study acts as a foundation
for modeling a complex system as a two state-system, where the states: order and disorder coexist as
the system is driven away from equilibrium.

1.1. Ising Model

One of the earliest physical models that studied the emergence of order as a consequence of
interaction between agents is the Ising model [23,24]. Traditionally, the Ising system was used
to model ferromagnetism in statistical physics, where magnetic dipoles could either have a spin
‘up’ or ‘down’. Since then, it has become a prototype for many two-state model system examples
including, protein folding, ligand–receptor interactions, spin glasses, firing of neurons etc. [25–28].
The Hamiltonian for an Ising system in the presence of an external field ‘h’ is given by,

H = ∑
ij

Jijσiσj −∑
j

hjσj (1)

The spins are denoted by σ and the indices represent neighboring lattice sites. The signature of Jij
tells us the nature of interaction between the pair (i, j). While the simplest case of the Ising system is
the one-dimensional case, interesting features emerge when it is studied on a two-dimensional square
lattice. The two-dimensional square-lattice Ising model is one of the simplest statistical models that
allows for phase transition [23,24,29]. In order to numerically solve the problem, a two-dimensional
partition function is defined,

Z(m, n) = ∑
σ

exp
(

m ∑
i,j

σiσj + n ∑
i,j

σiσj

)
(2)

Here, σ assigns a value of either +1 (up) or −1 (down) for each lattice site and the variables ‘m’
and ‘n’ denote the rows and columns of the lattice (the special case being m = n = N) with periodic
boundary conditions. For the case of isotropic coupling one achieves a phase transition when,

βc =
ln(1 +

√
2)

2
≈ 0.4, βc = 1/kBTc (3)
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In the above equation, β represents the inverse temperature, kB the Boltzmann’s constant, and
Tc the Curie temperature. For large systems it is impossible to calculate statistical averages directly.
The dynamics of the model was therefore simulated using a Monte Carlo algorithm to approximate
real thermal averages while randomly assigning spin values at every lattice site. One can encounter a
practical problem if the spins are to randomly flip at every lattice site with each simulation step, and
end up eventually with a checkerboard pattern. Therefore, random walks are used to take into account
only important spins configurations by introducing a Markovian decision model where the spin state
at a site is the most probable outcome based on spin probabilities in a set of randomly chosen sites
within the lattice. The transition probability from one configuration state to another is determined
by the energy of the two configuration states. If ∆H > 0, then the transition probability takes the
form, exp(−∆H/T); however, if ∆H < 0 the transition probability is 1 as the system transitions to a
state of lower energy. While better prediction based on larger regions for decision making makes the
simulation faster, this was not really the aim of the model. Macroscopically, the system’s dynamics
is ‘equilibrium-like’, but microscopically spin outcomes at each lattice site is inherently stochastic.
The emergence of order was further analyzed when the system was externally perturbed under
conditions: h = constant and h(t) = A sin ωt (refer Equation (1)). More details on the simulation and
the codes can be found here (see supplementary files) [30].

Although the Ising model has played a central role in the study of equilibrium phase transition,
it is important to note that it provides insights which are of a general nature. The decrease in the
standard deviation of the magnetization as order emerges in an Ising model forms the basis of the
current study as it connects other driven systems where pattern emerges as fluctuations in the system
decay, for example, the coupled Kuramoto oscillators and the Rayleigh–Bénard system.

1.2. Kuramoto Model

Similar to the Ising system, one can model collective synchronization in a large population of
oscillating elements. The Kuramoto model is a mathematical model that treats a system as an ensemble
of limit-cycle oscillators described only by their phases [31–33]. In the simplest version of the model,
each oscillator in the Kuramoto system has its own intrinsic natural frequency ωi and is coupled to
every other oscillator in the system. The intrinsic natural frequencies of the oscillators are drawn from a
predefined distribution, usually a normal distribution with well-defined mean and standard deviation.
As the system collectively synchronizes, the different frequencies spontaneously locks to a common
frequency, Ω. The Kuramoto model has found several successful applications in condensed matter
physics specially in the study of biological phenomena and active matter [32,34,35]. The governing
equation for the system is given by,

dθi
dt

= ωi +
κ

N

N−1

∑
j=1

sin(θj − θi), j 6= i (4)

Here, the phase of an oscillator is given by θi and the coupling strength by κ. Through the
following transformation one can solve this nonlinear differential equation for the mean-field case,
N → ∞:

Reiφ =
1
N

N

∑
j=1

eiθj (5)

where R is the order parameter and φ the average phase, one can transform Equation (4) and rewrite it as,

dθi
dt

= ωi + κR sin(φ− θi) (6)
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Since the oscillators are randomly oriented, the sum over all oscillator phases average to zero.
Hence, Equation (6) becomes,

dθi
dt

= ωi − κR sin(θi) (7)

For sufficiently strong coupling one achieves a fully synchronized state (R → 1). At a fully
synchronized state all the oscillators share a common frequency while their phases may differ.
Under steady-state condition (dθi/dt = 0), the fully synchronized solution for Equation (7) reduces to
ωi → Ω = κ sin(θi) where Ω is the common frequency of the oscillators. In this study, the mean-field
Kuramoto model was simulated on a two-dimensional square lattice. The effect of coupling strength
was observed on the time evolution of the order parameter and simultaneously on the second statistical
moment of the angular frequencies of the oscillators. The effect of several other types of coupling
mechanisms were also studied (like distance-dependent inverse square), but are not presented in this
paper. In this context, interested readers are referred to [30].

1.3. Rayleigh–Bénard Convection

Finally, we discuss one of the simplest experimental setups to study pattern formation and
self-organization. As a thin layer of viscous fluid is heated and convection sets in, one can observe
thermal gradients on the surface of the fluid film which are stable in time. The regular pattern of
convection cells are known as Bénard cells and the phenomena, Rayleigh–Bénard convection [4,36–38].
To date, it remains one of the most actively and extensively studied physical systems. Due to its
conceptual richness, the dynamics of a Rayleigh–Bénard convection phenomena connects fundamental
ideas from both non-equilibrium thermodynamics and fluid mechanics [39–41]. The beauty of this
system lies in its simplicity, wherein the critical value of a dimensionless quantity, the Rayleigh
number (Ra), determines the onset of convection. The Rayleigh number relates the physical quantities,
g (acceleration due to gravity), β (thermal expansion coefficient), ∆T (temperature difference across
the fluid film thickness), l (fluid film thickness), ν (kinematic viscosity) and α (thermal diffusivity)
as below,

Ra =
gβ∆Tl3

να
(8)

The critical Rayleigh number, Rac of 1708 marks the onset of convection for a no-slip boundary
condition was obtained by Jeffreys in 1929 [4,38]. In our study, a simple setup for the Rayleigh–Bénard
consists of a top cover and a bottom base on which a copper pan is placed. The top cover is made
up of wood and has ducts for forced convective heat transfer. The thermocouples attached to the
ducts measure the temperature of the incoming and outgoing gas. The bottom rest, also made up
of wood has a cavity with a recess on which the copper pan sits snugly. The wooden base rests on
top of a block of foam. A thermocouple and a heater is attached to the base of the copper pan which
measures the bottom temperature of the pan. An infra-red camera is placed at a height above the
copper pan which captures the real-time thermal images of the convection cells. The temperature
scale of the camera is calibrated by heating the empty copper pan. The data obtained in this study are
grey-scale thermal images that can be converted into a temperature matrix. The temperature of the top
layer of the fluid film is obtained by averaging over the entire exposed area. With this setup in place,
two types of studies are performed: spatial and temporal. In the temporal study, thermal statistics
are recorded from a room temperature equilibrium to a non-equilibrium steady-state as the system
is thermally driven by regulating the power input through the heater. Whereas, in the spatial study
thermal statistics are obtained once the system has reached a non-equilibrium steady-state. While the
temporal study allows us to envision the evolution of order in the system, the spatial study lets us
visualize how order is spatially distributed through emergent length-scales. One can find more details
on the study: the experiments and the analyses here [20,21].
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2. Results

In this section, we compare the results from our numerical simulations and the experimental
study for the three systems. We are essentially looking at the possibility that these systems which
are distinctly different from one another exhibit characteristics that are similar when driven out of
equilibrium. It will also be interesting to discuss how they differ as well. In Figure 1, we report
our results from the simulation of the two-dimensional square lattice Ising model. Figure 1a plots
magnetization as a function of inverse temperature (β = 1/kBT). The magnetization (S/S̄) acts as
the order parameter for the system. The ferromagnetic transition happens around β ≈ 0.44 which
corresponds to the Curie temperature (see Equation (3)) [24]. The Ising system is then perturbed by an
external field, and the evolution of the order parameter is plotted as a function of time in Figure 1b
and as a function of inverse temperature in Figure 1c. In the case of no external field one can see that
the spins eventually lock into a mixed state with some of the lattice sites with, say ‘up’ spin and the
remaining with ‘down’ spin. Therefore, the system does not reach a fully spin ‘up’ or spin ‘down’ state
as seen from Figure 1b. This, however, is not the case when there is an external perturbation as the
system eventually directs itself to the direction of the external perturbation as that is energetically
more favorable. In case of a sinusoidal time varying field, some oscillations are observed because of
periodic aligning and re-aligning. The smaller the temperature, the larger the β and as theory predicts
we see phase transitions at sufficiently low enough temperature in Figure 1c. Therefore, for no external
perturbation, the transition temperature seems to be the lowest at β ≈ 0.4. In Figure 1d, we plot the
standard deviation of the spin as a function of time for the case of no external perturbation at β = 0.2.
It is observed that the standard deviation, being a measure of fluctuation, steadily decreases as order
emerges in the system.

Figure 1. (a) Figure shows phase transition in a two-dimensional square lattice Ising model.
The magnetization in the system (S/S̄) is plotted as a function of the inverse temperature (β).
Vertical dotted line denotes βc ≈ 0.44 on the abscissa. (b) Figure shows magnetization as a function
of time for three cases: h = 0 (dashed), h = A sin ωt (solid) and h = constant (dotted). (c) Figure
shows magnetization as a function of inverse temperature for the previous three cases. (d) Figure
shows magnetization (in black) and standard deviation of magnetization (σS/S̄, in red) as a function
of simulation time-steps.
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In Figure 2, we plot the scaled standard deviation of the intrinsic variable and emergent order
as a function of time for the Kuramoto system and the Rayleigh–Bénard convection. The intrinsic
variable in the Kuramoto system is the angular frequency of the oscillators (ωi) which collapses
to a common frequency (Ω) as the system achieves synchronization. In the Rayleigh–Bénard
system spatially-averaged temperature (〈T(t)〉) plays the same role. As the system approaches a
steady-state, 〈T(t)〉 → 〈T∞〉, where 〈T∞〉 is the spatially-averaged steady-state temperature of the
system. In Figure 2a, we plot the scaled standard deviation for the Kuramoto model as a function of
time for two values of the coupling strength, κ = 1.5 and κ = 2. It is evident from the theory and the
plot in Figure 2e that order (R, defined in Equation (5)) emerges faster in the case of higher coupling
strength. At time-step, t = 100 one can observe that atleast more than half of the oscillators present in
the system are synchronized (from Figure 2e) and therefore one observes a sharp decline in the scaled
standard deviation plot in Figure 2a. Later one can notice that as t ≥ 110 there is a sudden spike in the
standard deviation as order increases further. The reason for this could be attributed to a mixture of
synchronized and unsynchronized oscillators as R < 1. As time progresses, the natural frequencies of
all the oscillators approach closer to mean-field common frequency. However, due to their equally
random phase orientations, some of the oscillators reach the common frequency and lock themselves
in that state earlier than the other. A situation like this although reduces the standard deviation when
compared to the randomized initial state it however increases the standard deviation at an instant
when these two groups of oscillators start oscillating simultaneously, one with low fluctuations and
the other with higher fluctuations. As one would expect, this scenario appears to last longer in the
case of lower coupling strength among the oscillators because of more unsynchronized oscillators than
synchronized ones at any given instant in time.

Figure 2. (a) Figure shows the scaled standard deviation (σ/σmax) of the angular frequency as a
function of time (log-scale) in a two-dimensional Kuramoto system on a lattice for different coupling
strengths (κ). (b–d) Figures show scaled standard deviation of the temperature as a function of time
(log-scale) for different fluid samples in a Rayleigh–Bénard convection system. Note that the Rayleigh
number (Ra) changes from non-turbulent to turbulent. (e–h) Figures show the evolution of the order
parameter (R) as a function of time (log-scale) for the four systems. Note that time is in seconds.

Following our results from the Kuramoto system, we look at the Rayleigh–Bénard convection
in the remaining panels of Figure 2. In our experiments we use three fluid samples: silicone oil,
glycerol and glycerol-water mixture (1:4 and 1:2 by volume). The three fluid samples allow us to explore
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a wide range of Rayleigh numbers. There is no well-defined order parameter in a Rayleigh–Bénard
system, therefore we define one based on the thermal profile at steady-state as,

R =
〈T(t)〉 − 〈T0〉
〈T∞〉 − 〈T0〉

, such that 0 ≤ R ≤ 1, when 〈T0〉 ≤ 〈T(t)〉 ≤ 〈T∞〉 (9)

Here, 〈T(t)〉 represents spatially-averaged temperature at any instant in time, 〈T0〉 represents
spatially-averaged temperature at initial equilibrium state (room temperature) and 〈T∞〉 represents
spatially-averaged temperature at a non-equilibrium steady-state. For each of the fluid samples,
we look at the scaled standard deviation plots as order emerges. In Figure 2b, we plot the results
from our studies on the silicone oil sample with viscosity ν = 150 cSt, and low Rayleigh numbers for
∆T ≈ 30◦–60 ◦C. From the figure, we can observe that the thermal fluctuations increase gradually upto
t ∼ 100 s, and then gradually decrease from t ∼ 10–103 s. Following which, they keep increasing till the
system reaches a steady-state. We have discussed this aspect of decline in thermal fluctuations at the
onset of emergent patterns in our previous studies on the Rayleigh–Bénard system [20,21]. It was found,
that these fluctuations reach a minima when a certain number of cells start to nucleate at the center of
the copper pan. The decline continues until a stable emergent pattern, consisting of convection cells and
rolls covers the entire top layer of the fluid film. As the fluid sample is highly viscous, these convection
cells are stable in time and space in the non-turbulent regime. Therefore, they do not nucleate or
divide any further. From Figure 2f, we can see that the system takes another ∼103 time-steps to reach
a steady-state, thus the bulk temperature and fluctuations due to thermal agitation continue to rise
further. With Rayleigh numbers in the similar range, we however see a very different characteristic
when glycerol is our working fluid. As glycerol is a fluid whose viscosity is one-tenth that of silicone
oil, we observe that the nucleation and subsequent emergence of the first set of convection cells is
immediately followed by rapid division into smaller cells. This two-step process of division results into
two declining trends in the standard deviation plot as shown in Figure 2c, first between t ∼ 300–700 s
and the second between t ∼ 2000–8000 s. The magnitude of the fluctuation is visibly higher during the
second decay as the system is still approaching a state-steady which is inline with our observations on
the silicone oil sample. In Figure 2d, we study the thermal fluctuations in glycerol-water mixtures.
It is observed that the decline in the standard deviation is much more rapid as compared to the
earlier cases. Quite interestingly, the onset of convection with the appearance of the first few cells
and the subsequent spread throughout the top layer of the fluid film happens within a span of 100 s,
between t ∼ 100–200 s. The reason for this appears to be very low viscosities (∼10−2 cSt) which yields
very higher Rayleigh numbers. Therefore, nucleation not only happens early but also spreads at a
faster rate throughout the pan. Following which, they break down into smaller and smaller domains
and start dissipating heat chaotically as the system enters a turbulent regime. One can observe this
from the amount of noise in the standard deviation plots (almost immediately after t ∼ 200 s). As the
system asymptotically reaches a steady-state (see Figure 2h), the magnitude of this thermal noise due
to chaotic thermal agitation keeps growing with time.

One quick look at the plots is enough to highlight the differences between the three convection
systems and the Kuramoto model. However, what is striking is the presence of one common feature
in the standard deviation plots across all the systems. The observation that there is a decline in the
standard deviation is the common feature that connects them. The dissimilarities such as, the presence
of multiple peaks and troughs, different rates of nucleation/synchronization etc. originate from the fact
that there exist multiple time-scales in these systems. There is one global time-scale that dictates the
bulk equilibration (steady-state) or global synchrony, and there are multiple local time-scales such as,
individual frequencies of the oscillators or the time taken by convective cells/rolls to locally equilibrate.
Neither are these time-scales comparable across systems, nor do they overlap within a particular
system. Therefore, these are systems at steady-states that have been locally equilibrated far away
from equilibrium. The emergence of spatial ordering of convection cells in the case of non-turbulent
Rayleigh–Bénard system implies the presence of an emergent work that drives a volume of fluid
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from the bottom of the pan to the top while dissipating heat laterally. These stable spatial structures
are a set of locally equilibrated convection cells that are synchronous with a common frequency,
ω = dθ/dt = 2u∞/l where l/2 is the half thickness of the fluid film and the steady-state velocity,
~u∞ ∝ ∇T where ∇T is the thermal gradient across the fluid film thickness.

In Figure 3, we plot the probability densities of the scaled fluctuation of the intensive
variables for the initial randomized state and compare them with the final synchronized state for
the Kuramoto model and the Rayleigh–Bénard system. Fluctuation in the Kuramoto system is
measured by the deviation of the natural frequency of an oscillator from the mean frequency of
the system, δω = ω(t)− 〈ω〉. This deviation in the natural frequencies of the oscillator is scaled
by the mean frequency of the system, which we define as scaled fluctuation for the Kuramoto
system, δω? = δω/〈ω〉. Once the oscillators are fully synchronized, 〈ω〉 → Ω. Similarly, in the
Rayleigh–Bénard convection we define thermal fluctuation as δT = T(t)− 〈T〉, and δT? = δT/〈T〉.
At room-temperature equilibrium, 〈T〉 → T0 and at steady-state, 〈T〉 → T∞. As an equilibrium
state corresponds to symmetry conservation, one expects to obtain normal fluctuations in the initial
state. In Figure 3a,b, we plot the scaled fluctuation distribution for the Kuramoto oscillators and the
Rayleigh–Bénard convection respectively in their initial state. We can clearly see that the data obeys
very well with the Gaussian fits centered around the origin. For the final fully synchronized state of
the oscillators one would expect that a probability density function which would take the form of a
delta function sharply centered at the origin such that,

δ(x) =

{
0 x 6= 0

inf x = 0
and

∫ +ε

−ε
dxδ(x) = 1 if 0 ∈ [−ε,+ε] (10)

Note that in the above equation, x = δω?. A realistic approximation to such a distribution when
there are tails in the data is a Lorentzian function,

δ(x) = lim
ε→0

1
π

ε

x2 + ε2 (11)

Figure 3. (a) Figure shows the probability density functions (log-scale) for the scaled angular frequency
fluctuation (δω?). The initial randomized state data is fit with a Gaussian (in black) and the final state
data is fit with a Lorentzian (in red). (b) Figure shows the probability density functions (log-scale) for
the scaled thermal fluctuation (δT?) for two different fluid samples at room temperature along with
respective Gaussian fits. (c) Figure shows the probability density functions (log-scale) for the scaled
thermal fluctuation for two different fluid samples at steady-state along with kernel density estimates
(KDE). Note that in the final state the two samples correspond to two separate Rayleigh numbers.
(d) Figure shows the probability density functions (log-scale) for the scaled thermal fluctuation for two
different fluid samples at steady-state along with respective Gaussian (in black) and Lorentzian (in red)
tails. The absence of sufficient data points prevent us from fitting the final state data of the Ra = 1790
sample with a Lorentzian function.
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Therefore, a Lorentzian function of the form shown in Equation (11) fitted to the Kuramoto data
for the final synchronized state is in good agreement as seen from Figure 3a. The tail present in the
data is captured by the functional part which decays as, 1/x2 in the neighborhood of 0 ∈ [−ε,+ε].
In the case of the Rayleigh–Bénard convection we cannot expect to see a single sharply peaked
distribution centered around the origin for the scaled thermal fluctuations. As we can see from
Figure 3c,d, the data shows the presence of two peaks (or bimodality). The bimodal distribution in the
thermal fluctuations originates from the fact that there are upward and downward drafts as the fluid
element completes a convection cycle between the bottom hot and the top cold surface. In Figure 3c,
we plot the kernel density estimates to determine the shape of the probability density function for
the two experimental trials with different Rayleigh numbers. In Figure 3d, we proceed to fit the data
piece-wise. We choose individual tails and fit them with a pair of Gaussian fit functions (in black)
and then with a pair of Lorentzian fit functions (in red). As we can see from our plots in Figure 3d,
both Gaussian and Lorentzian fits superimpose over one another. The difference between the center
of the two peaks is about 0.04 units with one peaking in the positive domain and the other in the
negative. Therefore, one peak signifies the contribution of the upward plumes and the other of the
the downward plumes. We are still unsure of the fact that how the fit functions from the two tails
merge into one another. In some of our recent works we discuss the presence of a mixture of local
equilibrium regions in the Rayleigh–Bénard convection which describes the bimodal nature of the
thermal fluctuations [19–21]. To conclude, in the mean-field Kuramoto model the final synchronous
state being unique allows for the existence of a sharply peaked delta-type distribution, which in reality
is best illustrated by a Lorentizian fit. In the case of a non-turbulent Rayleigh–Bénard convection
at steady-state we find that there exist two possible states due to the existence of spatial thermal
gradients which are stable in time. These stable spatial gradients lead to the emergence of two local
equilibrium-like regions, fluctuations within which can be best represented by respective Gaussian
distributions [21].

In Figure 4, we plot the lattice entropy as a function of time for a two-dimensional Kuramoto
model with high coupling strength. We have previously seen that evolution of order in the system
is inversely related to the fluctuations of the intrinsic variables. By calculating the Shannon entropy
summed over every lattice site at every instant in time, we look at the relationship between entropy
reduction and fluctuation decay as order emerges in the system. The notation, ωij denotes the frequency
of the ith oscillator at the jth lattice site.

S(ρ) = −∑
i

∑
j

ρ(ωij) ln ρ(ωij) (12)

Figure 4. Figure shows scaled standard deviation (σ/σmax) of the angular frequency and lattice entropy
(S/Smax) as a function of time in a two-dimensional Kuramoto system on a lattice.
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Therefore, to make sure that the Kuramoto system reaches a fully synchronized state, a high
enough coupling between the oscillators is chosen and the simulation is run for a very long duration.
It is not surprising that at κ = 5, the model achieves complete synchronization after just 500 time-steps.
The Shannon entropy is calculated from Equation (12) and is scaled by its maximum value, such that
0 < S/S̄ ≤ 1 [27,42]. As order emerges, one can clearly see from Figure 4 that a reduction in system’s
entropy is accompanied by a reduction in the fluctuation of the intrinsic variable.

3. Conclusions

In this paper, we consider three systems that can be externally perturbed and driven out
of equilibrium. While the Ising model and the Kuramoto oscillators are numerically solved,
the Rayleigh–Bénard convection on the other hand was experimentally probed. The common feature
of all the three systems is the emergence of order as they are driven out of equilibrium. The Ising
and the Kuramoto models self-organize by ordering their spins and synchronizing their natural
frequencies. On the other hand, the spatio-temporal order that emerges in the case of a Rayleigh–Bénard
convection is a result of the competing forces between viscosity and buoyancy which gives rise to
convective instabilities. Conceptually, the Rayleigh–Bénard system is richer and much more difficult
to model than the other systems that were studied. However, it holds a prominent place in the
study of complex systems, and in general systems that show pattern formation when driven out of
equilibrium. Our goal of this study is to propose a general framework that can be used to connect
these seemingly different systems by a common thread. An observation, that was found to be
consistent across the three systems, was that the fluctuations of the intensive variables decay as
order emerges. This observation is non-trivial because if a system is driven out of equilibrium,
say thermally, the natural outcome is to expect the fluctuations to grow as a function of time due to
thermal agitation/collision and momenta exchange. In this study, as well as in our previous works,
we have shown that emergence of order is followed by a decline in fluctuation. In the light of our
experimental results we believe this is an important result because we have obtained experimental
evidence that shows how far-from-equilibrium fluctuations dictate pattern formation. When the
Rayleigh–Bénard system is driven out of equilibrium but the Rayleigh number is below the critical
value we see no emergent spatio-temporal patterns accompanied by a growth in the magnitude of
the non-equilibrium fluctuations. However, when the Rayleigh number exceeds the critical value,
we observe the emergence of macroscopic patterns and a simultaneous decrease in non-equilibrium
fluctuation [21].

It is also important to note that the Ising model has been very successful in describing many
two-state systems. The fact that multiple states can coexist (Rayleigh–Bénard: hot/cold and
Kuramoto model: synchronous/asynchronous) when the system has been macroscopically driven
out of equilibrium naturally allows us to frame the problem of pattern formation as a two-state
problem. Infact, there are examples of oscillator based Ising machines and Ising models of turbulence
in fluid [43,44]. Also, in our experimental studies we found that for high Rayleigh numbers,
we enter the turbulent regime which gives rise to structures that are found to be unstable in time.
We imagine that a system can only give rise to stable patterns when it is not driven too far away.
This brings us to a more pertinent question as to how far away are these systems from equilibrium?
Although we do not yet have a metric to define that but we can anticipate that these systems,
even when driven out of equilibrium, are in a state of quasi-equilibrium where the local equilibrium
hypothesis is satisfied [45,46]. Therefore, the end states are either stable equilibrium states or they
are ‘equilibrium-like’ states which show equilibrium-like fluctuations. The sole focuses of this study
are the end states: the room temperature equilibrium state and the out-of-equilibrium steady-state,
therefore, the effect of the boundary condition is inconsequential. An extension to this study would be
to consider boundary conditions that can give rise to transport properties in an Ising model such as,
uphill diffusion which can then be compared to the dynamics of the Rayleigh–Bénard system while it
is being driven between the end states [47].
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