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Abstract: Forecasting market risk lies at the core of modern empirical finance. We propose a new
self-exciting probability peaks-over-threshold (SEP-POT) model for forecasting the extreme loss
probability and the value at risk. The model draws from the point-process approach to the POT
methodology but is built under a discrete-time framework. Thus, time is treated as an integer value
and the days of extreme loss could occur upon a sequence of indivisible time units. The SEP-POT
model can capture the self-exciting nature of extreme event arrival, and hence, the strong clustering
of large drops in financial prices. The triggering effect of recent events on the probability of extreme
losses is specified using a discrete weighting function based on the at-zero-truncated Negative
Binomial (NegBin) distribution. The serial correlation in the magnitudes of extreme losses is also
taken into consideration using the generalized Pareto distribution enriched with the time-varying
scale parameter. In this way, recent events affect the size of extreme losses more than distant events.
The accuracy of SEP-POT value at risk (VaR) forecasts is backtested on seven stock indexes and
three currency pairs and is compared with existing well-recognized methods. The results remain in
favor of our model, showing that it constitutes a real alternative for forecasting extreme quantiles of
financial returns.

Keywords: forecasting market risk; value at risk; extreme returns; peaks over threshold; self-exciting
point process; discrete-time models; generalized Pareto distribution

1. Introduction

Forecasting extreme losses is at the forefront of quantitative management of market risk. More and
more statistical methods are being released with the objective of adequately monitoring and predicting
large downturns in financial markets, which is a safeguard against severe price swings and helps to
manage regulatory capital requirements. We aim to contribute to this strand of research by proposing
a new self-exciting probability peaks-over-threshold (SEP-POT) model with the prerogative of being
adequately tailored to the dynamics of real-world extreme events in financial markets. Our model
can capture the strong clustering phenomenon and the discreteness of times between the days of
extreme events.

Market risk models that account for catastrophic movements in security prices are the focal point
in the practice of risk management, which can clearly be demonstrated by repetitive downturns in
financial markets. The truth of this statement cannot be more convincing nowadays as global equity
markets have very recently reacted to the COVID-19 pandemic with a plunge in prices and extreme
volatility. The coronavirus fear resulted in panic sell-outs of equities and the U.S. S&P 500 index
plummeted 9.5% on 12 March 2020, experiencing its worst loss since the famous Black Monday crash
in 1987. Directly 2, 4, 6, and 7 business days later, the S&P 500 index registered additional huge price
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drops amounting to, correspondingly, 12%, 5.2%, 4.3%, and 2.9%, respectively. At the same time,
the toll that the COVID-19 pandemic took on European markets was also unprecedented. For example,
the German bluechip index DAX 30 plunged 12.2% on 12 March 2020, which was followed by a further
5.3%, 5.6%, 2.1% losses, correspondingly, 2, 4, and 7 business days later. The COVID-19 aftermath is a
real example that highlights the strong clustering property of extreme losses.

One of the most well-recognized and widely used measures of exposure to market risk is the
value at risk (VaR). VaR summarizes the quantile of the gains and losses distribution and can be
intuitively understood as the worst expected loss over a given investment horizon at a given level
of confidence [1]. VaR can be derived as a quantile of an unconditional distribution of financial
returns, but it is much more advisable to model VaR as the conditional quantile, so that it can
capture the strongly time-varying nature of volatility inherent to financial markets. The volatility
clustering phenomenon provides the reason for using the generalized autoregressive conditional
heteroskedasticity (GARCH) models to derive the conditional VaR measure [2]. However, over the
last decade, the conventional VaR models have been subject to massive criticism, as they failed to
predict huge repetitive losses that devastated financial institutions during the global crisis of 2007–2008.
Therefore, special focus and emphasis is now placed on adequate modeling of extreme quantiles for
the conditional distribution of financial returns rather than the distribution itself.

One of the relatively recent and intensively explored approaches to modeling extreme price
movements is a dynamic version of the POT model which relies on the concept of the marked
self-exciting point process. Unlike the GARCH-family models, POT-family models do not act on
the entire conditional distribution of financial returns. Instead, their focus moves to the distribution
tails where—in order to account for their heaviness—the probability mass is usually approximated
with the generalized Pareto distribution. Early POT models described the occurrence of extreme
returns as realizations of an independent and identically distributed (i.i.d.) variable, which led to
VaR estimates in the form of unconditional quantiles. One of the first dynamic specifications of
POT models that took into account the volatility clustering phenomenon and allowed economists
to perceive VaR as a conditional quantile was a two-stage method developed in [3]. This method
required estimating an appropriately specified GARCH-family model in the first stage and fitting
the POT model to GARCH residuals. A new avenue for forecasting VaR was opened up when the
point-process approach to POT models was released in [4]. This methodology was later extended in
several publications [5–14]. The benefit of this model is that it does not require prefiltering returns using
GARCH-family estimates while at the same time it can capture the clustering effects of extreme losses
and maintain the merits of the extreme value theory. The point-process POT model approximates the
time-varying conditional probability of an extreme loss over a given day with the help of a conditional
intensity function that characterizes the arrival rate of such extreme events. The intensity function can
either be formulated in the spirit of the self-exciting Hawkes process [4,5,10–12] (which is extensively
used in geophysics and seismology), in the form of the observation-driven autoregressive conditional
intensity (ACI) model [13], or using the autoregressive conditional duration (ACD) models [6–8]
(the last two methodologies were very popular in the area of market microstructure and the modeling
of financial ultra-high-frequency data [15–17]). In all cases, the timing of extreme losses depends on
the timing of extreme losses observed in the past.

This study does not strictly rely on the above mentioned point process approach to POT models.
The discrete-time framework of our SEP-POT model is motivated by observation of real-world financial
data measured daily, which is the most common frequency used in POT models of risk. The empirical
analysis put forward in this paper is based on the daily log returns of seven international stock indexes
(i.e., CAC 40 (France), DAX 30 (Germany), FTSE 100 (United Kingdom), Hang Seng (Hong Kong),
KOSPI (Korea), NIKKEI (Japan), and S&P 500 (U.S.)) as well as the daily log returns of three currency
pairs (JPY/USD, USD/GBP, USD/NZD). The daily log returns for the equity market were calculated
from the adjusted daily closing prices downloaded from the Refinitiv Datastream database. The foreign
exchange (FX) rates were obtained from the Federal Reserve Economic Data repository and are
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measured in following units: Japanese Yen to one U.S. Dollar (JPY/USD), U.S. Dollars to one British
Pound (USD/GBP), U.S. Dollars to one New Zealand Dollar (USD/NZD). Extreme losses are defined
as the daily negated log returns (log returns pre-multiplied by −1) whose magnitudes (in absolute
terms) are larger than a sufficiently large threshold, u. Figure 1 shows that for u corresponding to
the 0.95-quantile of the unconditional distribution of negated log returns, the daily measurement
frequency, and the broad set of financial instruments, the relative frequency mass of the time interval
between subsequent extreme losses is concentrated on small integer values. Indeed, about 45% of all
such durations is distributed on distinct discrete values of 1–5 days, and the most frequent time span
between subsequent extreme losses is one day (about 12–13% of cases).

Figure 1. Frequency histogram for the time intervals (in number of days) between subsequent extreme
losses for seven equity indexes and three FX rates between January 1981 and March 2020.

The SEP-POT model relates to the published work on the point-process approach to POT models
but is consistent with the observed discreteness of threshold exceedance durations. Thus, in our
model, the values of the time variable are treated as indivisible time units upon which extreme
losses can be observed. As a result that the extreme losses are clustered, the model incorporates
the self-exciting component. Accordingly, the extreme loss probability is affected by the series of
time spans (in number of days) that have elapsed since all past extreme loss events. We apply the
weighting function in the form of the at-zero-truncated Negative Binomial (NegBin) distribution
that allows the influence of previous extreme losses to decay over time. The functional form of the
extreme loss probability in our SEP-POT model is drawn from [18], where a very similar specification
was proposed to depict the self-exciting nature of terrorist attacks in Indonesia and forecasted the
probability of future terrorist attacks as a function of attacks observed in the past. Inspired by this
work, we check the adequacy of such a discrete-time approach in the framework of POT models of
risk. To this end, we perform an extensive validation of the SEP-POT model both in and out of sample
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and compare it with three widely-recognized VaR measures: one based on the self-exciting intensity
(Hawkes) POT model, one derived from the exponential GARCH model with skewed Student’s t
distribution (skewed-t-EGARCH) model, and the last one was delivered by the Gaussian GARCH
model. The results for VaR at high confidence levels (>99%) remain in favor of the SEP-POT model,
and hence, the model constitutes a real alternative for measuring the risk of large losses.

Section 2 outlines the point process approach to POT models, introduces the SEP-POT model,
and outlines the backtesting methods used for model validation. Section 3 presents the empirical
findings and discusses the extensive backtesting results. Finally, Section 4 concludes the paper and
proposes areas for future research.

2. Methods

2.1. Self-Exciting Intensity POT Model

Consider {Yt} (Yt ∈ R) denoting the stochastic process that characterizes the evolution of negated
daily log returns on a financial asset, being the daily log returns pre-multiplied by −1. The convention
of using negated log returns legitimizes treating extreme losses as observations that fall into the right
tail of distribution. More precisely, the extreme losses are defined as such positive realizations of Yt

that are larger than a sufficiently large threshold u. The magnitudes of extreme losses over a threshold
u, (i.e., Ȳt = Yt − u) will be referred to as the threshold exceedances. The time intervals between
subsequent threshold exceedances will be referred to as threshold exceedance durations.

Let {ti, Yti}i∈{1,2,...,n} denote an observed sample path of (1) the times when extreme losses are
observed (i.e., 0 < ti < ti+1) and (2) the corresponding magnitudes of such losses (i.e., Yti ). If one
pursued a continuous-time approach (i.e., assuming t ∈ R+), the realized sequence {ti, Yti}i∈{1,2,...,n}
of extreme returns with their locations in time can be treated as an observed trajectory of the marked
point process. Treating these instances of threshold exceedance as realizations of a random variable
allows us to model the occurrence rate of extreme losses Yti at different time points {ti}, for example,
days. An excellent introduction to the theory and statistical properties of point processes can be found
in [19].

The crucial concept in the point process theory is the conditional intensity function that
characterizes the time structure of event locations, and hence, the evolution of the point process.
The conditional intensity function is defined as follows:

λ(t|Ft) = lim
∆↓0

Pr
[(

N(t, t + ∆]
)
> 0|Ft

]
∆

, (1)

where N(t, s] denotes a number of events in (t, s]. Note that the conditional intensity function can
intuitively be treated as the instantaneous conditional probability of an event (per unit of time)
immediately after time t. To account for the clustering of extreme losses, λ(t|Ft) depends on Ft being
an information set available at t, consisting of the complete history of event time locations and their
marks, (i.e., Ft ≡ σ{(ti, Yti ), ∀i : ti ≤ t}). If λ(t|Ft) was constant over time (i.e., λ(t|Ft) = λ) then
for ti ∈ [0, ∞) the point process would correspond to a homogeneous Poisson point process with an
arrival rate λ.

The notion of the conditional intensity facilitates the derivation of the conditional VaR measure.
The VaR at a confidence level 1− q, (i.e., q ∈ (0, 1) denotes a VaR coverage level), represents a qth
quantile in the conditional distribution of financial returns. After taking advantage of working with
the negated log returns and based on the notation introduced so far, the VaR (for a coverage level q)
estimated for a day t + 1 can be derived from the following equation:

Pr(Yt+1 > yq,t+1|Ft) = q. (2)
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Hence, the VaR for a coverage rate q is equal to yq,t+1, because the probability that a (negated) return
exceeds the threshold value yq,t+1 over a day t + 1 is equal to q. This probability can be further
rewritten as a product of: (1) the probability of an extreme loss arrival (i.e., a threshold exceedance)
over day t + 1 (given Ft), and (2) the conditional probability that the size of this extreme loss is larger
than yq,t+1 (given that an extreme loss was observed over day t + 1):

Pr(Yt+1 > u|Ft)Pr(Yt+1 > yq,t+1
∣∣Yt+1 > u;Ft) = q. (3)

The early, classical POT model of the extreme value theory (EVT) (The EVT offers two major
classes of models for extreme events in finance: (1) the block maxima method, which uses the largest
observations from samples of i.i.d. data, and (2) the POT method, which is more efficient for practical
application because it uses all large realizations of variables, provided that they exceed a sufficiently
high threshold. A detailed exposition of these methods can be found in [20].) assumes that the financial
return data is i.i.d. Hence, threshold exceedances are also i.i.d homogeneous Poisson distributed in
time. Accordingly, the probability of observing a threshold exceedance over given day t is constant
and can be estimated as a proportion of threshold exceedances in the sample (i.e., n/T, where n is the
number of threshold exceedances and T denotes the length of time series of financial returns). By this
logic, the standard POT model neglects repeated episodes of increased volatility and therefore also
ignores the clustering property of extreme losses. As noted in [20], the standard POT model is not
directly applicable to financial return data.

The more recent dynamic versions of the classical POT model found in several studies (i.e., [4–14]),
are directly motivated by the behavior of the non-homogeneous Poisson point process, where the
intensity rate of threshold exceedances, λ(t|Ft), can vary over time due to the temporal bursts in
volatility. According to such a point process approach to POT models, the first factor on the left-hand
side of Equation (3) (i.e., the conditional probability of a threshold exceedance over day t + 1) can be
derived based on the (time varying) conditional intensity function as follows:

Pr(Yt+1 > u|Ft) = Pr [N(t, t + 1] > 0|Ft]

= 1− Pr [N(t, t + 1] = 0|Ft]

= 1− exp
(
−
∫ t+1

t
λ(v|Fv) dv

)
, (4)

because the probability of no events in (t, s] (i.e., N(t, s] = 0) can be given as Pr(N(t, s] = 0|Ft) =

exp
(
−
∫ s

t λ(v|Fv) dv
)

[21].
The POT models use the Pickands–Balkema–de Haan’s theorem of EVT, which allows us to

approximate the second factor on the left-hand side of Equation (3) (i.e., the conditional probability that
Yt+1 exceeds yq,t+1, given that it surpassed the threshold u) using the generalized Pareto distribution,
as follows:

Pr(Yt+1 − u > yq,t+1 − u|Yt+1 > u;Ft) = 1− Pr(Yt+1 − u ≤ yq,t+1 − u|Yt+1 > u;Ft)

≈ 1− FGP(yq,t+1 − u|Yt+1 > u;Ft)

=

(
1 + ξ

yq,t+1 − u
σ

)−1/ξ

+
, (5)

where FGP(·) denotes the cumulative distribution function of the generalized Pareto (GP) distribution
with the scale parameter σ ∈ R>0 and the shape parameter ξ ∈ R 6=0. If ξ → 0, FGP(·) tends to the
cumulative distribution function of an exponential distribution.
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Equations (3)–(5) provide the grounds for the derivation of VaRq,t+1, as follows:

VaRq,t+1 =


 q

1− exp
(
−
∫ t+1

t λ(v|Fv)dv
)
−ξ

− 1

 · σ

ξ
+ u. (6)

The dynamic versions of the POT models benefit from both (1) the point process theory,
which allows for the time-varying intensity rate of threshold exceedances, and hence, the clustering of
extreme losses, and (2) the EVT, which allows us to account for the tail risk of financial instruments.
Thus, the forecasts of daily VaR can be time-varying and react to the new information. (The early,
classical POT models of EVT assume a constant intensity, λ, and a constant scale parameter of the
GP distribution for threshold exceedances, σ. Accordingly, the VaR level is constant over time:

VaRq =

[(
qT
n

)−ξ
− 1
]
· σ

ξ + u.) In empirical applications, appropriate dynamic specifications of

selected components in Equation (6) are needed. One possible way of specifying the time-varying
conditional intensity function λ(t|Ft) is provided by the Hawkes process [19]. The Hawkes process
belongs to the class of so called self-exciting processes where past events can accelerate the occurrence
of future events. Accordingly, the conditional intensity function is defined as follows:

λ(t|Ft−) = µ +
∫ t

−∞
w(t− v) dN(v)

= µ + ∑
ti<t

w(t− ti), (7)

where µ ∈ R>0 denotes a constant and w(·) refers to a non-negative weighting function that captures
the impact of past events, (i.e., extreme-loss days). Accordingly, each threshold exceedance at ti < t
contributes an amount w(t − ti) to the risk of an extreme loss at t. This is necessary to provide a
convenient parametric functional form for w(·). The well-recognized weighting function that we apply
in the empirical portion of this paper is an exponential kernel function, given as follows:

w(x) = α exp(−β x), (8)

where α ∈ R≥0, β ∈ R≥0 are the parameters to be estimated. Accordingly, λ(t|Ft−) is based on the
summation of exponential kernel functions evaluated at the time intervals that start at the times of
previous extreme losses (i.e., ti) and last up to time t. The parameters α and β capture, correspondingly,
the scale (i.e., the amplitude) and the rate of decay characterizing an influence of past events on
the current intensity. The point process features the self-excitation property because the conditional
intensity function rises instantaneously after an extreme loss is registered, which, in the aftermath,
triggers the arrival of next events. This mechanism results in the clustering effect, characterizing the
location of extreme losses in time. The time-varying nature of the conditional intensity function results
in the fluctuations of VaR (see Equation (6)). On top of the clustering feature, the self-exciting intensity
POT (i.e., SEI-POT) model for VaR (c.f., Equation (6)) can be further extended to account for the serial
correlation in the magnitudes of the threshold exceedances. This can be achieved by providing an
appropriate dynamic model for the scale parameter of the GP distribution in Equation (5). In the
empirical portion of this paper we use the following specification:

σt = σ(Ȳt|Ft−) = µs + ∑
ti<t

αsȲti exp(−βs(t− ti)), (9)

where µs ∈ R>0, αs ∈ R≥0, βs ∈ R≥0 denote the parameters to be estimated. Accordingly, the threshold
exceedance magnitude is affected by the sizes and times of past threshold exceedances.

Unlike standard POT models, where the times of threshold exceedances are assumed to be
i.i.d distributed according to the homogeneous Poisson process and the magnitudes of threshold
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exceedances are assumed to be i.i.d. GP distributed, the dynamic point-process-based variants of
the POT models allow for a time-varying intensity rate of threshold exceedances and a time-varying
expected magnitude of these threshold exceedances. Accordingly, the VaR is also time-varying.
The interplay of fluctuations in λ(t|Ft) and in the scale parameter of the GP distribution for the
threshold exceedances, σt, elevates VaR in turbulent periods of financial turmoil and decreases its level
during calm periods. Hence, the VaR adjusts to observed market conditions.

2.2. Self-Exciting Probability POT Model

In this section we introduce the self-exciting probability POT model that obeys the natural
distinction between the processes defined in discrete and continuous time. The structure of our model
still draws from Equation (3), but we treat time as if it was composed of indivisible distinct units
(days). Therefore, we refrain from approximating the conditional extreme loss probability using
the conditional intensity function that characterizes the evolution of point process in continuous
time. As a result that we formulate our model in discrete time, we directly describe the conditional
probability of an extreme loss over day t, as follows:

pt = Pr(Yt > u|Ft−1) = g(λ̃t), (10)

where g(·) ∈ (0, 1) denotes a link function. One possible choice of specifying g(·) (cf., [18]) is:

pt = 1− exp(−λ̃t), (11)

where pt ∈ (0, 1) if λ̃t > 0.
Based on [18], the conditional probability of an extreme loss arrival over day t can be described in

a dynamic fashion that exposes the self-exciting nature of the SEP-POT model as follows:

λ̃t = µ + α ∑
ti<t

g(t− ti), (12)

where µ ∈ R>0 denotes a constant determining a baseline probability, α ∈ R≥0 determines the
scale (amplitude) of the impact that the time location of the ith past extreme-loss event exerts on
pt, and g(·) ≥ 0 denotes the weighting function (i.e., discrete kernel function) that makes the past
extreme-loss events less impactful than the more recent events. We specify g(·) as the probability
function of the at-zero-truncated negative binomial (NegBin) distribution.

A probability function of a NegBin distribution is:

f (x; ω, κ) =
Γ(κ + x)

Γ(κ)Γ(x + 1)

(
κ

κ + ω

)κ ( ω

ω + κ

)x
, x = 0, 1, 2, · · · , (13)

where ω ∈ R>0 and κ ∈ R>0 are the parameters of the distribution and E(u) = ω and Var(u) =

ω + ω2/κ. For κ → ∞, the NegBin distribution converges to a Poisson distribution. For κ = 1,
the geometric distribution is obtained.

The at-zero-truncated NegBin distribution was formerly used in high-frequency-finance for
modeling the non-zero price changes of financial instruments [22,23]. The probability function of
at-zero-truncated NegBin distribution is given as g(x; ω, κ) = f (x; ω, κ)/(1− f (0; ω, κ)) (for x =

1, 2, ...), where f (0; ω, κ) = (κ/(κ + ω))κ :

g(x; ω, κ) =
Γ(κ + x)

Γ(κ)Γ(x + 1)

[(
κ + ω

κ

)κ

− 1
]−1 (

ω

ω + κ

)x
, x = 1, 2, · · · , (14)

Figure 2 illustrates the self-exciting property of the SEP-POT model. The plots shown in the upper
row depict the at-zero-truncated NegBin kernel functions evaluated at the time distances to previously
observed events (i.e., g(t− ti) ∀i : ti < t). The impact of past events on pt diminishes with time and
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the shape of decay is determined by parameters ω and κ. The scale of this impact is determined by
α. The resulting conditional probability function of an extreme loss arrival is therefore based on the
summation of the weighted kernel functions based on all the backward recurrence times. The choice
of an at-zero-truncated NegBin distribution guarantees flexibility in feasible shapes of the weighting
function to properly reflect the dynamic properties of the data.
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Figure 2. Illustration of the self-exciting probability model for eight events. Upper rows: Feasible
shapes of the weighting functions g(t− ti), ∀i ti < t, at µ = 0.01, α = 0.5 (red lines indicate times of
events). Lower row: The resulting probability pt.

Like in existing dynamic extensions of the POT methodology, the threshold exceedance
magnitudes in the SEP-POT model are described using the generalized Pareto distribution with
the time-varying scale parameter. We specify this parameter as follows:

σt = σ(Ȳt|Ft−1) = µs + αs ∑
ti<t

Ȳti gs(t− ti; ωs), (15)

where µs ∈ R>0 is a constant, αs ∈ R≥0 is a scale parameter, and gs(x; ωs) (for x = 1, 2, ...,)
denotes the nonnegative discrete weighting (kernel) function. For this purpose, we use a PDF
of a geometric distribution with parameter ωs ∈ R>0, because it constitutes a natural discrete
counterpart to an exponential distribution used in the continuous-time framework of the SEI-POT
model (see Equation (9)). Hence, the magnitude of the threshold exceedance awaited at t is affected by
the times and sizes of all previously observed threshold exceedances. The monotonically decaying
weighting function allows distant events to affect the magnitudes of losses less than the recent
events do.

The SEP-POT model assumes that the density function f u
Yt
(yt|Ft−1), depicting the right tail of the

distribution of the negated financial returns, has the following form:

f u
Yt
(yt|Ft−1) = p

1{t=ti}
t · (1− pt)

(1−1{t=ti}
) (16)

·
(

1
σt

(
1 + ξ

yt − u
σt

)−1/ξ−1

+

)1{t=ti}

,
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which means that Yt either surpasses the threshold u, i.e., belongs to the right tail of distribution
(1{t=ti} = 1), and hence, is drawn from the generalized Pareto distribution with probability pt, or does
not belong to the distribution tail (1{t=ti} = 0) with probability 1− pt.

This reasoning allows us to formulate the log-likelihood function of the SEP-POT model as the
sum of two log-likelihoods as follows:

lnL = lnL1 + lnL2, (17)

where:

lnL1 =
T

∑
t=1

[
1{t=ti} ln(pt) + (1− 1{t=ti}) ln(1− pt)

]
(18)

=
T

∑
t=1

[
1{t=ti} ln(exp(λ̃t)− 1)− λ̃t

]
,

and

lnL2 = −(1/ξ + 1)
n

∑
i=1

ln
(

1 + ξ
yti − u

σt

)
−

n

∑
i=1

ln(σt). (19)

The VaR for a coverage rate q forecasted for day t (based on the information up to and including day
t− 1) can be derived from the SEP-POT model as follows:

q = Pr(Yt > u|Ft−1)Pr(Yt > yq,t
∣∣Yt > u;Ft−1) (20)

= pt

(
1 + ξ

yq,t − u
σt

)−1/ξ

.

Hence:

VaRq,t =

[(
q

1− exp(−λ̃t)

)−ξ

− 1

]
· σt

ξ
+ u. (21)

The SEP-POT model provides the grounds not only to derive the VaR, but also the expected
shortfall (ES). Unlike the VaR, the ES is a coherent risk measure. It represents the conditional expectation
of loss given that the loss lies beyond the VaR [24]. Accordingly, the ES corresponding to a coverage
rate q, forecasted for a day t based on the information set up to and including day t− 1 is defined
as following:

ESq,t = E(Yt
∣∣Yt > VaRq,t;Ft−1). (22)

Equation (22) can be also rewritten as follows:

ESq,t = VaRq,t + E(Yt −VaRq,t
∣∣Yt > VaRq,t;Ft−1). (23)

The ES can be derived based on the standard definition of the mean excess function for the GP
distribution. For u′ > u, the mean excess function e(u′) corresponding to the GP distribution (where
σ > 0, 0 < ξ < 1) is defined as:

e(u′) = E(Yt − u′
∣∣Yt > u′) =

σ + ξ(u′ − u)
1− ξ

. (24)

Hence, the expected size of losses exceeding the threshold u′ is a linear function of u′ − u. The ES
forecasts from the SEP-POT model can be derived by applying the definition of e(u′) to Equation (23)
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and by specifying the scale parameter of the GP distribution, σ, according to Equation (15). This leads
to the formula for ES as follows:

ESq,t = VaRq,t +
σt + ξ(VaRq,t − u)

1− ξ
(25)

=
VaRq,t + σt − ξu

1− ξ
.

2.3. Backtesting Methods

We use four backtesting procedures to assess the accuracy of the VaR delivered by the SEP-POT
model. Each of these methods refer to the notion of a VaR exceedance or a VaR violation, being a
binary indicator function, It, defined as follows:

It =

{
1, for Yt > VaRq,t

0, for Yt ≤ VaRq,t.

The backtesting is based on the comparison of forecasted daily VaR numbers with observed
daily returns over a given period. A VaR exceedance occurs when an actual loss is larger than
the VaR predicted for that day. If the SEP-POT model were a true data generating process,
than, ∀t Pr(It = 1|Ft−1) = q, which implies that the VaR violations would be i.i.d.

2.3.1. Unconditional Coverage Test

The first test that we consider is a widely used unconditional coverage (UC) test [25] where
the null hypothesis states that the proportion of VaR exceedances according to a risk model (i.e., π)
matches with the assumed coverage level for VaR (i.e., q): H0 : π = q. The UC test is formulated as a
likelihood ratio test which compares two Bernoulli likelihood functions. Asymptotically, as the number
of observations T goes to infinity, the test statistic is distributed as χ2 with one degree of freedom:

LRUC = −2 ln
{

qT1(1− q)1−T1 /
[
(T1/T)T1(1− T1/T)1−T1

]}
∼ χ2

1, (26)

where T1 denotes the number of VaR violations in the sample of T returns.

2.3.2. Conditional Coverage Test

The second test is the conditional coverage (CC) that not only verifies the correct coverage but
also sheds light on the independence of VaR violations over time [26]. This test was established in such
a way that it aims to reject the VaR models when a risk model produces either the incorrect proportions
or the clusters of exceedances. To this end, the process of VaR violations is described by a first-order
Markov model and the CC test is based on the estimated transition matrix, as follows:[

π̂00 π̂01

π̂10 π̂11

]
=

[
T00/(T00 + T01) T01/(T00 + T01)

T10/(T10 + T11) T11/(T10 + T11),

]
(27)

where π00 and π01 denote, correspondingly, the conditional probability of no VaR violation and a
VaR violation (today), given that yesterday there was no VaR violation. Analogously, π11 and π10

denote, correspondingly, the conditional probability of a VaR violation and no VaR violation (today)
directly after a VaR violation yesterday. As given in Equation (27), the elements of the transition matrix
are estimated with the actual proportions of VaR violations, where Tij, for i ∈ {0, 1}, j ∈ {0, 1} is the
number of (negated) returns with the indicator function It equal to j directly following an indicator’s
value i. The CC null hypothesis states that the conditional probability of a VaR violation directly after
another VaR violation is the same as the conditional probability of a VaR violation after no violation
and, at the same time, it is equal to the assumed coverage level for VaR (i.e., H0 : π01 = π11 = q).
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Asymptotically, as the number of observations T goes to infinity, the test statistic LRCC is distributed
as a χ2 with two degrees of freedom:

LRCC = −2 ln
{

qT1(1− q)1−T1 /
[
(1− π̂01)

T00 π̂
T01
01 (1− π̂11)

T10 π̂T11
11

]}
∼ χ2

2 (28)

However, because the CC test is established on the Markov property of the violation process, it is
sensitive to the dependence of order one only. Therefore, the CC test cannot be used to verify whether
the current VaR exceedance depends on the sequence of states that preceded the last one.

2.3.3. Dynamic Quantile Conditional Coverage Test

The next two backtesting methods shed more light on the higher-order autocorrelation in the
process of VaR violations. They also allow us to conclude whether the violations are affected by some
previously observed explanatory variables. The first test is a dynamic quantile (DQ) test [27] that is
based on a hit function, as follows:

Hitt = It − q. (29)

The correctly specified VaR model should form the Hitt sequence with a mean value insignificantly
different from 0, because Hitt equals 1− q, each time Yt is larger than the daily VaR and −q, otherwise.
Moreover, there should be no correlation between the current and the lagged values of the Hitt

sequence or between the current values of the Hitt sequence and the current VaR. If the risk model
corresponds to the true data generating process, the conditional expectation of Hitt should be 0 given
any information known at t− 1. The DQ test that we use in the empirical section of our paper can be
derived as the Wald statistic from an auxiliary regression, as follows:

Hitt = φ0 +
4

∑
j=1

φj Hitt−j + φ5VaRq,t + εt. (30)

The null hypothesis states that the current value of a hit function (i.e., Hitt) is not correlated with
its four lags and the forecasted VaR (i.e., VaRq,t which is based on information known at t − 1).
Thus H0 : φj = 0 ∀j ∈ {0, ..., 5}. Hence, the null hypothesis states that the coverage probability
produced by a risk model is correct (i.e., φ0 = 0) and none of the five explanatory variables affects Hitt.
Hence, the DQ test statistic is asymptotically χ2 distributed with six degrees of freedom:

DQ =
Hit′X(X′X)−1X′Hit

q(1− q)
∼ χ2

6, (31)

where Hit denotes a T × 1 vector with observations of Hitt variable and X denotes the standard
T × 6 matrix containing a column of ones and observations on the five explanatory variables at times
t = 1, ..., T, according to the regression given in Equation (30).

2.3.4. Dynamic Logit Conditional Coverage Test

The dynamic logit test of conditional coverage might be treated as an extension of the DQ
conditional coverage test [28]. This method considers the dichotomous nature of VaR violations.
Accordingly, instead of the linear regression given by Equation (30), this test is established based on
the dynamic logit model for It: E[It|Ft−1] = Pr(It|Ft−1) = F(at), where F(·) denotes the cumulative
distribution function of a logistic distribution and at is specified as follows:

at = φ0 + φ1at−1 + φ2 It−1 + φ3VaRq,t, (32)

The autoregressive structure of Equation (32) allows us to better capture the dependence of a VaR
violation probability upon possible explanatory factors. The null hypothesis is H0 : φ0 = F−1(q),
φ1 = φ2 = φ3 = 0. Thus, the null states that the coverage probability delivered by a risk model
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corresponds to the assumed coverage rate for VaR (i.e., φ0 = F−1(q)) and none of regressors used in
Equation (32) causes an incidence of VaR violation. The test statistic can be established as a likelihood
ratio test statistic. Accordingly, it requires estimating the model given by Equation (32) and comparing
its empirical log likelihood, lnLF, with the restricted log likelihood under the null lnLR. Under the
null, the LR test statistic is χ2 distributed with four degrees of freedom:

LRDL = −2 {lnLR − lnLF} ∼ χ2
4. (33)

3. Results and Discussion

In our empirical study we use daily log-returns from seven major stock indexes worldwide
(CAC 40, DAX 30, FTSE 100, Hang Seng, KOSPI, NIKKEI, and S&P 500) and three currency pairs
(JPY/USD, USD/GBP, USD/NZD). The CAC 40, DAX 30, and FTSE 100 are the major equity
indexes in France, Germany, and U.K., respectively, and they are often perceived as the proxies
or the real-time indicators for a much broader European stock market. The Hang Seng, KOSPI,
and NIKKEI demonstrate the investment opportunity on the largest Asian equity markets in Hong
Kong, South Korea, and Japan, respectively. S&P 500 constitutes a widely-investigated benchmark
stock index reflecting the state of the overall U.S. economy. These seven indices monitor the state of
the international equity market in its three global financial centers—western Europe, eastern Asia,
and the U.S. As far as selection of the FX rates is concerned, according to [29], the JPY/USD and
USD/GBP are the second and third most traded currency pair in the world, after EUR/USD (We did
not investigate the EUR/USD currency pair due to a much smaller number of observations when
comparing to the other time series; the euro was launched on 1 January 1999). The NZD/USD, often
nicknamed as the Kiwi by FX traders, is a classical example of the commodity currency pair that
co-fluctuates with the world prices of primary commodities (i.e., New Zealand exports oil, metals,
dairy, and meat products). The New Zealand Dollar is also treated by international investors as a
carry trade currency—therefore, it is very sensitive to interest rate risk. For each of these financial
instruments we split the data spanning over a four-decades-long period into: (1) the in-sample data
(i.e., 2 January 1981–31 December 2014) dedicated to the estimation and evaluation of our models and
(2) the out-of-sample data (i.e., 2 January 2015–31 March 2020) which is reserved for VaR backtesting
purposes. For each of the time series, the initial threshold u was set as the 95%-quantile of the in-sample
unconditional distribution of negated log returns. Hence, the 5% largest negated returns were defined
as extreme losses, which means that, on average, an extreme loss can be observed with probability
0.05. The selection of the threshold value u was a compromise between (1) the desired number of
observations in the tail of the distribution to reduce noise and to ensure stability in parameter estimates
(i.e., the lower the u, the more observations used for estimation) and (2) the goodness-of-approximation
of the threshold exceedance distribution with the GP distribution (i.e., the higher the u, the better
the approximation with the GP distribution). The latter issue was solved using two diagnostic tools,
that confirmed the adequate goodness-of-fit of the conditional GP distribution. We used the D-test
proposed in Ref. [30] and the χ2 test for uniformity of probability integral transforms (PIT) based
on the GP density estimates. Figure 3 illustrates extreme losses corresponding to the German DAX
30 index between January 1981 and March 2020. The examination of panels [a] and [b] allows us to
conclude that the periodic volatility bursts are paralleled with the strong clustering effects for both (1)
the magnitudes of extreme losses and (2) the days that they occur. Indeed, the quantile-quantile (QQ)
plot (panel [c]) comparing empirical quantiles of the time intervals between subsequent extreme-loss
days against the quantiles of an exponential distribution proves that the times of extreme losses are
not distributed according to the homogeneous Poisson point process. Clustering of extreme events is
also demonstrated by the shape of the autocorrelation function (ACF), indicating significant positive
autocorrelations in both time intervals between successive threshold exceedances and the observed
magnitudes of such exceedances.
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Figure 3. Panel (a) presents the daily log returns for the DAX index between Jan. 1981 and March 2020,
panel (b) shows the corresponding ground-up threshold exceedances (i.e., the magnitudes of losses
over the threshold u), panel (c) illustrates the quantile-quantile plot of inter-exceedance durations
(in number of days) against the exponential distributions, and panels (d,e) present the autocorrelation
functions for the inter-exceedance durations and the threshold exceedances, respectively.

The descriptive statistics of the CAC 40, DAX 30, and FTSE 100 data are summarized in Table 1
(analogical results for the remaining time series can be obtained from the author upon request).
We see that for the CAC 40, DAX 30, and FTSE 100, the threshold exceedances were obtained as the
losses surpassing u that is equal to 0.021, 0.021, and 0.017, respectively. Out of 8574 (CAC 40), 8563
(DAX 30), and 7826 (FTSE 100) daily log returns in-sample, these threshold values allow us to expose,
correspondingly, 429, 428, and 391 extreme losses that were used for the model estimation purposes.
For the FTSE 100 index, we have less observations (corresponding to three years: 1981–1983), because
the in-sample period starts on 3 January 1984, when the FTSE 100 index was established. Although the
official base date for the DAX 30 index is 31 December 1987, the DAX 30 index was linked with the
former DAX index which dates back to 1959. The official base date for the CAC 40 also begins on
31 December 1987, but between 2 January 1981 and 30 December 1987 it could be measured as the
“Insee de la Bourse de Paris.” The threshold-exceedance durations cover a very wide range of observed
values. For example, for the FTSE 100 index, the range spans from one day (with the relative frequency
equal to 12.8% in-sample and 11.3% out-of-sample) up to 304 days in-sample or 205 days out-of-sample.
In-sample, the largest threshold exceedance, equal to 0.114, was observed on the Black Monday of
20 October 1987 and it corresponded to a 12.22% decrease of the index. Out-of-sample, the maximum
threshold exceedance is equal to 0.099 (a 10.87% plunge in the index) and was observed on the Black
Thursday of 12 March 2020, being a single day in a chain of stock market crashes induced by the
COVID-19 pandemic.

Realized gains and losses are measured over distinct days, and hence, the time spans between
extreme losses are comprised of discrete time units (i.e., days). The scale of this phenomenon can be
seen by looking at the considerable proportion of threshold exceedance durations equal to one, two,
or three (business) days. Moreover, about 45% of such durations is less than or equal to five days and
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over 60% are less than or equal to ten days. Another striking observation from Table 1 is the clustering
of extreme losses. Large losses tend to occur in waves, which is seen from the Ljung-Box test statistics
Q(k) (where k ∈ {5, 10, 15}) for the lack of up to kth-order serial correlation. These test statistics are
significantly different from zero, and hence, the null hypothesis of no autocorrelation in threshold
exceedance durations must be rejected. Indeed, due to the COVID-19 outbreak, between 24 Februry
and 31 March 2020 (i.e., over 27 business days) the CAC 40, DAX 30, and FTSE 100 suffered from as
many as 10 (CAC40 and DAX 30) or 11 (FTSE 100) extreme losses (with the shortest and the longest
threshold exceedance durations equal to one and five business days only, respectively). Extreme loss
days tended to occur very close to each other, but this phenomenon is paralleled by the significant
autocorrelation in the magnitudes of observed threshold exceedances. Based on the Ljung-Box test
results, the null hypothesis of no autocorrelation in the threshold exceedance sizes needs to be rejected.
The observed threshold exceedance durations are by their very nature discrete and feature strong
positive autocorrelation. Therefore, our SEP-POT model is suitably tailored to this data.

Table 1. Descriptive statistics for the threshold exceedance durations and the threshold exceedance
magnitudes for the CAC 40, DAX 30, and FTSE 100 indexes. (Q(k) denotes the Ljung-Box test statistics
for the lack of autocorrelation up to k-th order; Q(k) ***, Q(k) **, and Q(k) * denote the statistics
significant at the 1%, 5%, and 10% levels).

CAC 40 DAX 30 FTSE 100

In-Sample Out-of-Sample In-Sample Out-of-Sample In-Sample Out-of-Sample

no. of
daily returns 8574 1342 8563 1326 7826 1327
threshold value 0.021 0.021 0.021 0.021 0.017 0.017

no. of
exceedances (n) 429 48 428 59 391 53

threshold exceedance durations

Min 1 1 1 1 1 1
Max 397 414 378 345 304 205
#1{ti−ti−1=1}

n 0.121 0.104 0.135 0.119 0.128 0.113
#1{ti−ti−1=2}

n 0.128 0.104 0.138 0.085 0.110 0.132
#1{ti−ti−1=3}

n 0.086 0.145 0.096 0.153 0.087 0.132
#1{ti−ti−1<=5}

n 0.441 0.438 0.486 0.424 0.455 0.453
#1{ti−ti−1<=10}

n 0.629 0.625 0.645 0.610 0.652 0.566
Mean 19.965 27.917 19.988 22.441 19.992 25
SD 40.002 66.572 41.786 49.212 40.245 42.287
Q(5) 83.307 *** 10.304 * 101.787 *** 5.688 69.617 *** 15.757 ***
Q(10) 91.822 *** 11.844 125.821 *** 9.206 108.4010 *** 20.790 **
Q(15) 95.692 *** 15.182 131.185 *** 11.796 134.1770 *** 31.453 ***

threshold exceedance magnitudes

Min <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Max 0.130 0.110 0.116 0.109 0.114 0.099
Mean 0.011 0.015 0.012 0.012 0.010 0.012
SD 0.014 0.020 0.014 0.017 0.012 0.016
Q(5) 92.293 *** 14.309 ** 51.668 *** 16.47251 *** 174.289 *** 27.924 ***
Q(10) 95.931 *** 16.093 * 61.467 *** 17.225 * 198.963 *** 28.375 ***
Q(15) 97.429 *** 17.579 66.683 *** 18.845 200.149 *** 28.954 **

The SEP-POT model was estimated by maximizing the log likelihood function given in
Equations (17)–(19). To this end, we used the constrained maximum likelihood (CML) library of
the Gauss mathematical and statistical system. The standard errors of the parameter estimates were
derived from the asymptotic covariance matrix based on the (inverse) of a computed Hessian. Table 2
presents the estimation results for the CAC 40, DAX 30, and FTSE 100 (analogical results for the
remaining time series can be obtained from the author upon request). The parameter estimates
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responsible for the self-excitement mechanism, both in the probability of threshold exceedances (i.e.,
α̂, ω̂, κ̂) and the magnitudes of these exceedances (i.e., α̂s, ω̂s) are highly statistically significant.
The parameter estimates for DAX 30 and CAC 40 indices look very much alike, especially for the
conditional probability of threshold exceedances, which means that these two stock markets are closely
related to each other.

Table 2. Maximum likelihood (ML) parameter estimates of the self-exciting probability peaks-over-
threshold (SEP-POT) for the CAC 40 and DAX 30 indices. Standard errors given in brackets.

Parameter CAC 40 DAX 30 FTSE 100

model for the probability of threshold exceedances

µ 0.017 (0.002) 0.014 (0.002) 0.012 (0.002)
α 0.710 (0.052) 0.776 (0.053) 0.823 (0.063)
ω 13.452 (1.583) 13.919 (1.531) 20.923 (4.831)
κ 0.719 (0.086) 0.751 (2.806) 1.655 (0.490)

model for the sizes of threshold exceedances

µs 0.006 (0.000) 0.006 (0.001) 0.005 (0.001)
αs 2.225 (0.389) 2.242 (0.388) 2.583 (0.457)
ωs 7.161 (2.272) 10.439 (3.793) 12.624 (4.075)
ξ 0.122 (0.044) 0.110 (0.042) 0.070 (0.038)
AIC 16.001 15.997 15.978
BIC 72.454 72.439 71.701

Obtained series for p̂t, σ̂t, and ˆVaR0.01,t are illustrated in Figure 4. The extreme loss probability
(i.e., p̂t) features a strong self-excitation property because it reacts to extreme-loss days with abrupt
increases and, if there are no further intervening events, it slowly wanders in the downward direction.
In calm and prosperous periods of the stock market history, the path of p̂t rests on very low levels.
However, in turbulent periods, when the location of extreme-loss days is very dense, p̂t tends to
involve very high numbers. More specifically, persistently elevated p̂t levels can be seen during
the market downturn of 2002–2003 and the global crisis of 2008–2009. For the CAC 40 and FTSE
100, the highest in-sample p̂t level, equal to 0.2834 (CAC 40) and 0.3082 (FTSE 100), was reached on
Monday, 24 November 2008. Both maximum values were triggered by a self-excitation mechanism
during the prevailing stock market turmoil. Directly before 24 November 2008 the market suffered
three consecutive extreme-loss days–November 19. (Wednesday), 20. (Thursday) and 21. (Friday).
For the DAX 30 index, the in-sample p̂t peaked to its highest level (0.3126) on 11 November 1987,
in the aftermath of 10 steep losses that started on the Black Monday of 19 October. The last three
were observed on three business days, 6–10 November 1987. Out-of-sample, the highest p̂t levels of
0.2298 (CAC 40), 0.2416 (DAX 30), and 0.2339 (FTSE 100) corresponded to 24 March 2020 (CAC 40 and
DAX 30) and 19 March 2020 (FTSE 100). COVID-19-induced anxiety before 24 March, resulted in the
concentration of six threshold exceedances for CAC 40 and DAX 30 in March 2020 alone, where the
last of these threshold exceedances took place just one day before the highest p̂t level was reached on
23 March 2020.

Observed fluctuations of p̂t are accompanied with the strongly time-varying behavior of σ̂t (i.e.,
the estimate of the dispersion parameter in the conditional distribution of threshold exceedances).
The losses exceeding u trigger upward jumps in both numbers, boosting the awaited probability
and the size of a threshold exceedance. For the CAC 40 index, σ̂t peaked to its highest level (0.059)
on 15 May 1981, due to enormous panic and sell-offs on the Paris Bourse just days before Francois
Mitterand announced hostile reforms for the stocks quoted at the Bourse. Indeed, the preceding days
saw the CAC 30 index plunge by over 30%. The UK and German markets were mostly untouched by
these French policy-oriented events, and the highest σ̂t was registered on 27 October 1987 (FTSE 100)
and 29 October 1987 (DAX 30) at the levels of 0.051 (FTSE 100) and 0.042 (DAX 30), just after a few
huge price drops were observed including the famous Black Monday on 19 October 1987. Note, that
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the maximum σ̂t levels do not have to coincide with those of p̂t. This is because σ̂t is also affected by
the magnitude of past threshold exceedances. For all data in this study, the highest out-of-sample σ̂t

levels were registered in the second half of March 2020.
The self-triggering nature of p̂t and σ̂t give rise to variations in daily VaR, as shown in the panel

[c] of Figure 4. What catches special attention is that the obtained path of VaR estimates tends to adjust
to both periods of calm and turmoil in the history of equity markets—it quickly reacts to price jumps
and bursts in volatility and accounts for persistent swings in stock prices.
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Figure 4. Estimation results from the SEP-POT models: the conditional probability of a threshold
exceedance (i.e., pt, panel (a)); the time-varying scale parameter of the generalized Pareto (GP)
distribution for the magnitudes of threshold exceedances (i.e., st panel (b)); the daily value at risk (VaR)
at the confidence level 99 % (in blue color) that overlays the (negated) log returns (panel (c)). The days
of extreme losses were marked in red. The shadowed area corresponds to the out-of-sample period.

We verified whether the SEP-POT model is appropriate for forecasting the daily VaR. To ensure a
big-picture perspective over its usefulness in diverse practical applications, we derived the daily VaR
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levels for six assumed theoretical coverage rates (i.e., for q ∈ {0.05, 0.025, 0.01, 0.005, 0.0025, 0.001}),
and compared them with corresponding VaR numbers from three competing risk models (i.e.,
the self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model with the skewed-t
distributed innovations and the standard GARCH(1,1) model with normally-distributed innovations).
For the sake of fair comparison between the four risk models under study, the accuracy of VaR forecasts
was validated with four backtesting procedures. Moreover, each of these statistical routines was
distinctly applied to examine the following: (1) the in-sample goodness-of-fit and (2) the out-of-sample
accuracy. Considering ten financial instruments under study, six coverage levels for VaR (q) and
four models (SEP-POT VaR, SEI-POT VaR, skewed-t-EGARCH VaR, and Gaussian GARCH VaR),
we ended up with 240 VaR series in-sample and 240 series out-of-sample. Therefore, for clarity of
exposition, the backtesting results were summarized in the form of heatmap graphs (cf., Figures 5–8).
Heatmaps use a grid of colored rectangles across two axes where the horizontal axis corresponds to
the assumed VaR coverage level and the vertical axis corresponds to the financial instrument under
study. The color of each little rectangle (in shades of red and green) reflects the p-value of a backtesting
procedure. The white colour corresponds to a p-value equal to 0.05. The darker the red color indicates
an increasingly smaller p-value, one that it is less than 0.05. The darker the tone of green indicates
an increasingly higher p-value, one that it is larger than 0.05. For example, panel [a] of Figure 5
presents the p-values corresponding to the UC test statistics. Each of the four heatmaps in panel [a]
refers to the VaR delivered from a different model: the SEP-POT, SEI-POT, skewed-t-EGARCH, and
Gaussian GARCH.

According to the UC test results, the VaR based on the SEP-POT, SEI-POT, and skewed-t-EGARCH
models produce, in-sample, a rather accurate proportion of violations. The best in-sample results were
delivered by the skewed-t-EGARCH model; however, its superiority diminishes out-of-sample, where
the skewed-t-EGARCH model failed in 13 out of 60 instances. Out-of-sample, the SEP-POT VaR and
SEI-POT VaR models rejected the null of correct coverage only three times. The EGARCH model seems
to produce good VaR forecasts for high coverage levels (i.e., q = 0.05). For q < 0.05, the EGARCH VaR
model is left behind the SEI-POT VaR model and SEP-POT VaR model. As expected, the advantage
of VaR models based on POT methodology is most visible for the extreme quantiles. As far as the
Gaussian GARCH VaR model is concerned, its performance is dramatically worse than other risk
models both in-sample and out-of-sample. The model produces incorrect VaR forecasts for small q (i.e.,
q ≤ 0.025), which can be explained by insufficient probability mass in the tails of Gaussian distribution.

The results of the CC test checking both the correct coverage and the lack of dependence of
order one in VaR violations seem to support the SEP-POT VaR model (cf., Figure 6). The poorest
fit corresponds to the highest q levels (i.e., q = 0.05) because in such cases, the null of proper
specification had to be rejected both in-sample and out-of-sample for FTSE 100, KOSPI, NIKKIEI, and
S&P 500. However, the SEP-POT VaR model seems to be slightly superior than the SEI-POT VaR model.
In sample, only in six instances out of 60 did the SEP-POT VaR model fail. For the SEI-POT VaR model,
the number of failures was 10 and for the skewed-t-EGARCH VaR model it was nine. As in the case
of the UC test, the CC test results indicate that the Gaussian GARCH VaR model rendered the worst
fit—the null was not rejected in only seven cases, mainly for the lowest quantiles (i.e., for q = 0.05).
Out-of-sample, the SEP-POT and the SEI-POT models deliver the similar quality of daily VaR forecasts
and both win over GARCH-family models.
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Figure 5. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for unconditional coverage (UC) tests. VaR series was calculated from the self-exciting probability POT
model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model
with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model with normally-distributed
innovations (GARCH). The squares of the heatmaps in the shades of red correspond to p-value < 0.05.
The rectangles in turquoise color correspond to no VaR exceedances.
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Figure 6. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for conditional coverage (CC) tests. VaR series was calculated from the self-exciting probability POT
model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model
with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model with normally-distributed
innovations (GARCH). The squares of the heatmaps in the shades of red correspond to p-value < 0.05.
The rectangles in turquoise color correspond to no VaR exceedances.
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Figure 7. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for dynamic quantile (DQ) conditional coverage tests. VaR series was calculated from the self-exciting
probability POT model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the
EGARCH(1,1) model with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model
with normally-distributed innovations (GARCH). The rectangles of the heatmaps in the shades of red
correspond to p-value < 0.05. The rectangles in turquoise color correspond to no VaR exceedances.
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Figure 8. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for dynamic logit conditional coverage tests. VaR series was calculated from the self-exciting probability
POT model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model
with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model with normally-distributed
innovations (GARCH). The rectangles of the heatmaps in the shades of red correspond to p-value < 0.05.
The rectangles in turquoise color correspond to no VaR exceedances.
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Turning our attention to Figure 7, which illustrates the results of the DQ test, the first striking
observation is that a much larger area of all heatmaps is marked with shades of red when compared to
the results of the CC tests. Indeed, the DQ test is more demanding than the CC test because checks
not only whether a VaR violation today is uncorrelated with the fact of a VaR violation yesterday but
it also checks whether VaR violations are affected by some covariates from a wider information set,
where we used the current VaR and the Hit variable observations from one to four days ago (as in
original work [27]). The superiority of the SEP-POT VaR model over its competitors is clearly visible.
Although the SEP-POT VaR model has a clear tendency to mis-specify VaR at the highest q levels
(i.e., q = 0.05), the DQ test results for the SEI-POT VaR and the VaR based on the GARCH family
models are inferior. In-sample, the DQ test rejected 14 SEP-POT VaR models, 21 SEI-POT VaR models,
26 skewed-t-EGARCH VaR and 57 (i.e., nearly all) Gaussian GARCH VaR models. Out-of-sample,
the advantage of the SEP-POT VaR model over the SEI-POT VaR model is less vivid—the first model
failed in 12 instances and the latter failed in 14.

Figure 8 illustrates the results of the dynamic logit CC test. We can observe a systematic pattern as
far as the SEP-POT VaR and SEI-POT VaR models are concerned. The area marked in red concentrates
on the left-hand side of the heatmaps both in and out-of-sample, which means that VaR is mis-specified
if derived for high coverage rates (i.e., q = 0.05). This deficit of POT VaR models is recouped by their
accuracy at low q levels. Indeed, for q ≤ 0.005 in-sample and for q ≤ 0.01 out-of-sample, both POT
models are not able to reject the null. The SEP-POT VaR model was still slightly more successful
than the remaining risk models. In-sample, it failed only 10 times (mainly for q = 0.05), whereas the
SEI-POT VaR model failed 18 times, the skewed-t-GARCH model failed ten times, yet the Gaussian
GARCH VaR model managed to pass this test only two times. Out-of-sample, both POT VaR models
were equally correct. For the SEP-POT and SEI-POT VaR model, the null of correct conditional coverage
was rejected nine times. The dynamic logit CC test rejected the skewed-t-EGARCH model in 16 and
the Gaussian GARCH in majority of cases.

The practical implications of the SEP-POT model stem from its suitability to provide adequate
VaR and ES predictions. The VaR forecasts can be used by financial institutions as internal control
measures of market risk. The adequacy of risk models used by financial institutions is of utmost
importance for the market regulator. Commercial banks have used VaR models for several years to
calculate regulatory capital charges using the internal model-based approach of the Basel II regulatory
framework. According to the more recent recommendations of the Basel Committee on Banking
Supervision (BCBS), banks should use ES to ensure a more prudent capture of “tail risk” and capital
adequacy during periods of significant stress in the financial markets [31]. This attitude remains in line
with the core objective of the dynamic POT models (including the SEP-POT model), as they focus on
the quantification of both the forecasted probability and the awaited size of huge losses, also producing
the time-varying ES forecasts. The recent Basel III accord, comprising a set of regulations developed by
the BCBS, further reinforces the role of bank units responsible for internal model validations. For more
about the current regulatory framework of market risk management see [32]. Despite the recent shift
from VaR to ES models in the calculation of capital requirements, ES forecasts remain highly sensitive
to the quality of VaR predictions.

All in all, our findings pinpoint that the SEP-POT model constitutes a reasonable promising
alternative for forecasting extreme quantiles of financial returns and the daily VaR, especially for very
small coverage rates. Undoubtedly, further examination of the theoretical properties of the SEP-POT
model and its forecasting accuracy is needed. The model should be backtested using other classes of
financial instruments and compared against other extreme risk models. However, there is a plethora of
VaR models in the literature—therefore, there are no two or three candidate specifications against which
the SEP-POT model should be benchmarked and compared. Only among the point process-based POT
models there have been variants put forward, including the ACD-POT model (which is based on the
dynamic specifications of time, i.e., duration, that elapses between consecutive extreme losses [6–8])
or the ACI-POT model (with its multivariate extensions) that provides an explicit autoregressive
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specification for the intensity function [13]. All these dynamic versions of POT models exploit both
strands of the literature: the point process theory and the EVT, accounting for the clustering of extreme
losses and the heavy-tailness of the loss distribution. The SEP-POT model is also suitable tailored
to these features but also explicitly accounts for the discreteness of times between extreme losses.
The empirical findings in this paper provide much support for our SEP-POT model. However, further
efforts should be focused on benchmarking and comparison with a broader range of methods under
the same settings (i.e., the same data and the same period).

4. Conclusions

We proposed a new self-exciting probability POT model for forecasting the risk of extreme
losses. Existing methods within the point process approach to POT models pursue a continuous-time
framework and therefore involve specification of an intensity function. Our model is inspired by
leading research in this area but is based on observation of the real-world data as we built our model
for discrete time. Hence, our model is a dynamic version of a POT model where extreme losses might
occur upon a sequence of indivisible time units (i.e., days). Instead of delivering a new functional form
for a conditional intensity of the point process, we propose its natural discrete counterpart being the
conditional probability of experiencing an extreme event on a given day. This conditional probability is
described in a dynamic fashion, allowing the recent events to have a greater effect than the distant ones.
Thus, extreme losses arrive according to a self-exciting process, which allows for a realistic capturing
of their clustering properties. The functional form of the conditional probability in the SEP-POT model
resembles the conditional intensity function used in ETAS models. However, we rely on discrete
weighting functions based on at-zero-truncated negative binomial (NegBin) distribution to provide a
weight for the influence of past events.

Our move toward the discrete-time setup is backed up by the descriptive analysis of the data.
On average, the probability mass for nearly 45% of the time intervals between extreme-loss days is
distributed upon a set of discrete values ranging from one up to five days, and the shortest one-day-long
duration has a relative frequency of 12% (for the threshold u set equal to the 95%-quantile of the
unconditional distribution for negated returns). Accordingly, the motivation of the SEP-POT model lies
in allowing the data to speak for itself. Using the at-zero-truncated NegBin distribution as a weighting
function in the equation for the conditional probability of extreme loss, we try to tailor the method
to the data specificity. The conditional distribution for the magnitudes of threshold exceedances also
remain in line with this approach. We specify the evolution of the threshold exceedance magnitudes
in a self-exciting fashion utilizing the weighting scheme based on the geometric probability density
function. Accordingly, the sizes of more distant threshold exceedances have less effect on the current
magnitudes of extreme losses than the more recent events do.

The backtesting results stay in favour of the SEP-POT VaR model. We used four backtesting
procedures to check the practical utility of our approach for seven major stock indexes and three
currency pairs both in- and out-of-sample. The out-of-sample period covered as much as over
five years involving the series of catastrophic downswings in equity prices due to the COVID-19
pandemic in March 2020. We compared VaR forecasts delivered by the SEP-POT model with three
widely recognized alternatives: self-exciting intensity (Hawkes) POT-VaR, skewed-t-GARCH VaR and
Gaussian GARCH VaR model. Outcomes of backtesting procedures pinpoint that the SEP-POT model
for VaR is a good alternative to existing methods.

The standard structure of the SEP-POT model offers several interesting generalizations.
For example, it is possible to explain the conditional probability of an extreme loss with some covariates.
Some potential candidate explanatory variables include price volatility measures such as high-low
price ranges and measures of realized volatility. For stock indexes, some valuable information can
be found in volatility indexes such as the CBOE volatility (VIX) index for the U.S. equity market.
Unlike existing point process-based POT models, the merits of the SEP-POT model seem to lie in its
discrete-time nature. Indeed, the Bernoulli log-likelihood function given in Equation (18) makes it easy
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to update an information set in the SEP-POT model on a regular, day-by-day basis. Another interesting
generalization of the SEP-POT model could be to add the multi-excitation effect caused by different
types of events. For example, the conditional probability of an extreme loss on one market could
be additionally co-triggered by crashes observed in another market. Finally, the contemporaneous
spillover effect between different markets can be captured using multivariate extensions of the SEP-POT
model, for example based on extreme copula functions. These issues are left for further research.
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