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Abstract: We studied the mutual information and quantum discord that Alice and Bob share when
Bob implements a discrimination with a fixed rate of inconclusive outcomes (FRIO) onto two pure
non-orthogonal quantum states, generated with arbitrary a priori probabilities. FRIO discrimination
interpolates between minimum error (ME) and unambiguous state discrimination (UD). ME and
UD are well known discrimination protocols with several applications in quantum information
theory. FRIO discrimination provides a more general framework where the discrimination process
together with its applications can be studied. In this setting, we compared the performance of
optimum probability of discrimination, mutual information, and quantum discord. We found that the
accessible information is obtained when Bob implements the ME strategy. The most (least) efficient
discrimination scheme is ME (UD), from the point of view of correlations that are lost in the initial
state and remain in the final state, after Bob’s measurement.

Keywords: quantum state discrimination; accessible information; quantum discord

1. Introduction

During the last few decades, the classical and quantum correlations [1,2] present in
quantum communication protocols have been an important subject of study [3–6]. In a
quantum communication protocol, Alice typically sends information to Bob that is encoded
in quantum states [7]. In order to access the information, Bob must implement a quan-
tum measurement. This quantum measurement is, in general, an irreversible process [8]
that changes the quantum state, produces decoherence and also entropy [9]. However,
Bob could choose a particular quantum measurement in order to optimize some figure of
merit, for instance, the mutual information, the Bayes cost, or the quantum correlations,
among others [2,10,11]. These quantities allow us to evaluate the performance of a signal-
detection process [11], and, in this context, the study of quantum state discrimination
strategies becomes crucial.

One of the most important problems in quantum information theory, with application
in quantum cryptography [12,13], is to find the accessible information which corresponds to
the maximum of mutual information [14–16]. This is a hard mathematical problem in which
only the results for some lower and upper bounds [11,17,18] are known. The Bayes cost
problem is associated with the minimization of an average cost function [19], for example,
to find the minimum probability of error in a scheme of quantum state discrimination [20].
In particular, if Alice uses two non-orthogonal pure states, it is known that the minimum
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error discrimination implemented by Bob maximizes the mutual information and min-
imizes the error probability [11,16,21]. On the other hand, quantum correlations [3–6]
can be used as a criteria of quantumness of the states [22,23] and also these correlations
allow us to quantify the resources that are required to carry out quantum communication
protocols [24–26]. Some of the most studied quantum correlations are: entanglement [27],
quantum discord [2,28], thermal discord [29,30], and global discord [31,32].

If the set of states used by Alice, in the quantum discrimination scenario, contains two
or more non-orthogonal states, then it is impossible for Bob to distinguish them determin-
istically [33]. In the literature, there are several strategies that can be used to distinguish
or discriminate between these states [16,20]. The strategy we need to use will depend
on the particular application. Two of the most known strategies are the minimum error
discrimination (ME) [34,35] and the unambiguous state discrimination (UD) [36–38]. In ME,
the discrimination of the non-orthogonal states is carried out in such a way that the prob-
ability of mistaking a retrodiction is minimized [9,16,33]. In UD, the discrimination of
non-orthogonal states is carried out without error, but we must introduce an inconclusive
result [39]. These schemes of discrimination are required to implement quantum teleporta-
tion [40,41], entanglement swapping [42,43], quantum cryptography [44], dense coding [45],
and entanglement concentration [46]. Some of the experimental realizations by these meth-
ods can be found in [12,47–49] for ME and in [50,51] for UD. The ME and UD schemes can
be studied simultaneously in a single protocol of discrimination [52,53]. This protocol is
known by the name of fixed rate of inconclusive outcomes (FRIO), where we minimize the
error probability in the discrimination of the non-orthogonal states, under the constraint of
a fixed rate of the inconclusive outcomes [54–56]. As we already said, FRIO interpolates
continuously between ME and UD. Another process with this characteristic is parametric
separation [57], where a set of pure states is transformed into another set which is more
distinguishable. FRIO discrimination and parametric separation allow us to study quan-
tum state discrimination in a more general framework. A complete analysis for FRIO
discrimination was done by Bagan et al. [58], in terms of the optimal probabilities in the
discrimination for two pure non-orthogonal states with arbitrary a priori probabilities.

Usually, the state discrimination processes are studied only in terms of the optimum
probability of success of the protocol [16,20,33]. The aim of this work is to study the success
probability, and also the mutual information (MI) that Alice and Bob share as well as the
quantum discord (QD) involved in the scheme of FRIO discrimination. This was done
for two pure non-orthogonal states with arbitrary a priori probabilities, and it allows us
to compare simultaneously the performance of ME, UD, and intermediate cases of FRIO
discrimination using the aforementioned quantities. In particular, we consider quantum
discord as a quantum correlation because it is directly related with the loss of quantum
information produced by FRIO discrimination. This is a generalization of a previous
work [9], where we considered only the strategy of ME as a subject of study. In this work,
we consider the cases in which Alice and Bob share a separable quantum channel. We found
that the most (least) efficient discrimination scheme is ME (UD), from the point of view
of QD that is lost in the initial state and the MI that remains in the final state after the
measurement.

This article is organized as follows: In Section 2, we review the FRIO discrimination for
two non-orthogonal states. In Section 3, we describe the initial and final Alice’s and Bob’s
states after the measurement implemented by Bob, according to FRIO. In Sections 4 and 5,
we study the mutual information and the quantum discord, respectively, when Bob imple-
ments FRIO discrimination. Finally, in Section 6, we summarize our results and show our
conclusions.

2. FRIO Discrimination

We consider a scheme in which Alice sends Bob a state from the set of two pure
non-orthogonal states {|φ1〉, |φ2〉}, generated with arbitrary a priori probabilities η1 and
η2, respectively, such that η1 + η2 = 1. The overlap between the non-orthogonal states is
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denoted by α = 〈φ1|φ2〉, which we consider as a real parameter in the interval α ∈ [0, 1].
In this scenario, Bob must implement the discrimination by FRIO. In the scheme of FRIO,
the probability of error Pe is minimized under the constraint of a fixed rate of inconclusive
outcomes Q [52–56]. The present study follows the results found in Ref. [58] for the
discrimination of two pure non-orthogonal states with arbitrary a priori probabilities.
The process of FRIO discrimination is carried out by Bob using a positive operator valued
measure (POVM) with three elements, such that

Π1 + Π2 + Π0 = 1, (1)

with 1 being the identity operator on the two-dimensional Hilbert space spanned by
the states {|φ1〉, |φ2〉}. Here, Π1(2) corresponds to the element of POVM that identifies
|φ1(2)〉 and Π0 corresponds to the operator associated with the inconclusive outcomes [58].
The average probabilities of success Ps, error Pe, and inconclusive outcomes Q are given by

Ps = tr(η1ρ1Π1) + tr(η2ρ2Π2) = η1 p1 + η2 p2, (2)

Pe = tr(η1ρ1Π2) + tr(η2ρ2Π1) = η1r1 + η2r2, (3)

Q = tr(ρΠ0) = η1q1 + η2q2, (4)

where ρ1(2) = |φ1(2)〉〈φ1(2)| and ρ = η1ρ1 + η2ρ2. Here, p1(2), r1(2), and q1(2) represent the
probabilities of success, error, and inconclusive outcomes in the discrimination of non-
orthogonal states |φ1(2)〉, respectively. These probabilities satisfy the following conditions:

pi + ri + qi = 1, for i = 1, 2, (5)

which implies that the average probabilities, in Equations (2)–(4), meet the condition

Ps + Pe + Q = 1. (6)

The optimal strategy in the FRIO discrimination minimizes Pe under the constraint
that Q is fixed. Given the symmetry, we consider the cases where η1 ≤ η2, or, equivalently,
0 ≤ η1 ≤ 1/2. This implies that the optimal probabilities, for inconclusive outcomes,
error, and success, are given respectively by [58,59]

qi =
Q

2ηi
, (7)

ri =
1
2

1− qi −
(1− qi)Q− (Q0−Q)2

2ηi√
Q2 − (Q0 −Q)2

, (8)

pi = 1− qi − ri, (9)

with Q = 1− Q and Q0 = 2
√

η1η2α. From these expressions, the optimal average error
probability Pe in Equation (3) is

Pe =
1
2

(
Q−

√
Q2 − (Q0 −Q)2

)
. (10)

Equations (7)–(10) are valid in the intervals I and II, where the interval I is defined by

α2

1 + α2 ≤ η1 ≤ 1/2, (11)

0 ≤ Q ≤ Q0, (12)
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and the interval II is defined by

0 ≤ η1 ≤ α2

1 + α2 , (13)

0 ≤ Q ≤ Qth, (14)

where the threshold rate Qth = 2η1η2(1−α2)
1−Q0

separates the intervals II and III. In the inter-
val III, defined by

0 ≤ η1 ≤ α2

1 + α2 , (15)

Qth ≤ Q ≤ η1 + η2α2, (16)

the optimal FRIO discrimination is obtained when we consider the following expressions:

r1 =
Pe

η1
, p1 = 0, q1 = 1− r1, (17)

r2 = 0, p2 =

[
α
√

r1 +
√
(1− r1)(1− α2)

]2
, q2 = 1− p2. (18)

In interval III, the average probability of error Pe is given by

Pe =
1

1− 4c

(
η1Q + c(1− 2η1 − 2Q)−Q0

√
c(QQ− c)

)
, (19)

where c = η1η2(1− α2). In interval III, the optimum strategy is a two-element projec-
tive measurement [58]. The FRIO discrimination interpolates between ME discrimination
(Q = 0) and UD when Q takes its maximum possible value (given by Qmax = Q0 in the
interval I and Qmax = η1 + η2α2 in the interval III). In our analysis, we considered two
intermediate cases for the rate of inconclusive outcomes Q, which are Q = Q0/3 and
Q = 2Q0/3. The three intervals and the four cases for Q are shown in Figure 1. The in-
tervals I, II, and III are associated with the regions in yellow, gray, and cyan, respectively.
On the other hand, the cases of Q = Qmax, Q = 2Q0/3, Q = Q0/3, and Q = 0, which
appear in all the figures throughout this work, are associated with a dashed black line, a
dashed-dotted blue line, a dotted red line, and a solid green line, respectively. In the scheme
of FRIO discrimination, we have three free parameters which are the overlap between the
non-orthogonal states α, the a priori probability η1, and the rate of inconclusive outcomes
Q. In the following, we have identified the case Q = 0 with the ME and the case Q = Qmax
with UD.

Figure 1 shows the intervals I, II, and III defined above for three fixed values of η1.
We see that the region size of each interval depends on the value of the parameter η1.
For instance, if the value of η1 = 0.5 (η1 = 0), only interval I (III) exists. For other values of
η1, there are three intervals as shown in Figure 1b,c. Moreover, from Figure 1, it is clear
that, when the states are orthogonal (α = 0), there is a single value possible for Q which is
Q = 0. On the other hand, if the states are equal (α = 1), the value of Q can assume any
value in the range 0 ≤ Q ≤ 1.

Figure 2 shows the success probability Ps (Equation (2)) in the discrimination of the
non-orthogonal states {|φ1〉, |φ2〉} as a function of α for several values of Q and η1. The suc-
cess probability is defined in the three intervals and can be obtained from Equation (6),
i.e., Ps = 1− Pe −Q. For a fixed value of Q and η1, the maximum value of success probabil-
ity is Ps = 1, when the states {|φ1〉, |φ2〉} are orthogonal (α = 0). If we increase the value of
α, the success probability decreases until its minimum value which depends on Q and η1.
In general, for any value of α and η1, the biggest value of Ps is obtained when Q = 0, which
corresponds to the case of ME. If we increase the rate of inconclusive outcomes, the success
probability of discrimination decreases until it adopts its minimum value when Q = Qmax,
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which is associated with the case of UD. Moreover, for a fixed value of Q and α, the success
probability is higher when we decrease the value of η1.

Figure 1. Intervals in FRIO discrimination as a function of α and Q, for: (a) η1 = 0.5, (b) η1 = 0.2 and (c) η1 = 0.05.
Intervals I, II, and III are represented by the yellow, gray, and cyan regions, respectively. The rate of inconclusive outcomes
Q = Qmax is the dashed black line, Q = 2Q0/3 is the dashed-dotted blue line, Q = Q0/3 is the dotted red line, and Q = 0
is the solid green line.
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Figure 2. The success probability Ps as a function of the overlap α in the discrimination by: ME Q = 0 (solid green line),
FRIO with Q = Q0/3 (dotted red line), FRIO with Q = 2Q0/3 (dashed-dotted blue line) and UD Q = Qmax (dashed black
line) for: (a) η1 = 0.5, (b) η1 = 0.2, and (c) η1 = 0.05.

In order to implement FRIO discrimination, we need to increase the initial two-
dimensional Hilbert spaceH spanned by the states {|φ1〉, |φ2〉}. This can be done by the
method of direct sum extension [60], K = H⊕A, where A represents a one-dimensional
ancillary subspace, spanned by the |0〉 state. We assume that there is a unitary transforma-
tion U acting on K in such a way that it generates the following transformation [59–61]:

U|φ1〉 =
√

p1|1〉+
√

r1|2〉+
√

q1|0〉, (20)

U|φ2〉 =
√

r2|1〉+
√

p2|2〉+
√

q2|0〉. (21)
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Therefore, the elements of the POVM for implementing FRIO discrimination are
rank-one orthogonal projections {Πi = |i〉〈i|} in a three-dimensional Hilbert space. The in-
conclusive result, Π0, is associated with the state |0〉 of the ancilla. In this case, the non-
orthogonal states {|φ1〉, |φ2〉} are projected to the same state |0〉 with probabilities {q1, q2},
respectively. On the other hand, the POVM elements Π1(2) are associated with the detection
of the states |1(2)〉 in the original Hilbert space. In this form, the projection in |1(2)〉 is
associated with success (failure), with probabilities p1(r1), in the discrimination of the state
|φ1〉 and with failure (success), with probabilities r2(p2), in the discrimination of the state
|φ2〉. In this way, when we consider the probabilities given by Equations (7)–(9) for the
intervals I and I I, and Equations (17) and (18) for the interval I I I, we are implementing the
FRIO discrimination. Given that U in Equations (20) and (21) is a unitary transformation,
the respective probabilities must satisfy the following condition:

α =
√

p1r2 +
√

r1 p2 +
√

q1q2. (22)

In expressions of Equations (20)–(22), for instance, implementation of ME discrimina-
tion requires one to consider q1 = q2 = 0, whereas implementation of UD demands one to
take r1 = r2 = 0.

3. Channel without Entanglement

As it was done in Ref. [9], let us consider that the communicating parties, Alice and
Bob, initially share the following separable joint quantum state:

ρAB =
2

∑
i=1

ηi|i〉A〈i| ⊗ |φi〉B〈φi|, (23)

where states {|1〉A, |2〉A} form an orthonormal base for Alice’s two-dimensional quan-
tum system, and {|φ1〉B, |φ2〉B} are two non-orthogonal states of Bob’s quantum system,
given by

|φ1〉B = a|1〉B + b|2〉B, (24)

|φ2〉B = b|1〉B + a|2〉B. (25)

From the normalization condition, the real coefficients a and b satisfy, a2 + b2 = 1,
and the overlap between the non-orthogonal states is α = 〈φ1|φ2〉 = 2ab. We consider,
for simplicity, that b ∈ [0, 1/

√
2] and therefore α ∈ [0, 1]. Alice prepares a single copy

of a quantum system in the state |φi〉B and sends it to Bob with an a priori probability
ηi. Thereby, Alice and Bob share quantum and classical correlations encoded in the joint
state ρAB of Equation (23). Alice’s and Bob’s initial states ρA and ρB, prior to the appli-
cation of any transformation or measurement, are ρA = trB(ρAB) and ρB = trA(ρAB),
respectively, where

ρA =
2

∑
i=1

ηi|i〉A〈i|, (26)

ρB =
2

∑
i=1

ηi|φi〉B〈φi|. (27)

Here, we consider that, once Bob has received the single copy of the quantum system
in the state |φi〉B, he implements the FRIO discrimination. Next, we studied the mutual
information that Alice and Bob share, and the quantum discord or the quantum correlation
that are lost when Bob implements FRIO discrimination onto his states.

To implement FRIO discrimination, Bob first applies the unitary transformation UB,
given by Equations (20) and (21) , onto his quantum system. Thereby, the initial joint state
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ρAB between Alice and Bob of Equation (23) changes to ρ̂AB = (1A ⊗UB)ρAB(1A ⊗U†
B),

where

ρ̂AB =
2

∑
i=1

ηi|i〉A〈i| ⊗ |φ̂i〉B〈φ̂i|, (28)

with |φ̂i〉B = UB|φi〉B. The unitary transformation UB of Equations (20) and (21), applied
by Bob onto his quantum system, is a reversible process [8]. Therefore, the quantum
correlations between Alice and Bob are not changed by this transformation. Now, we
assume that Bob can implement his measurement with an arbitrary POVM {Πi

b = |ψi〉〈ψi|}
in a three-dimensional Hilbert space spanned by the basis {|ψi〉}. This basis is defined by
the following states [62,63]:

|ψ1〉 = eiρ[c1c2|1〉+ s1eiδ|2〉+ c1s2eiβ|0〉], (29)

|ψ2〉 = eiσ[−(s1c2c3e−iδ + s2s3ei(γ−β))|1〉+ c1c3|2〉+ (c2s3eiγ − s1s2c3eβ−δ)|0〉], (30)

|ψ0〉 = eiτ [(s1c2s3e−i(δ+γ) − s2c3e−iβ)|1〉 − c1s3e−iγ|2〉+ (c2c3 + s1s2s3ei(β−δ−γ))|0〉], (31)

where ci = cos θi and si = sin θi. In particular, FRIO discrimination corresponds to
the case where the measurement basis is given by {|1〉, |2〉, |0〉}, that is, for ci = 1 and
all the phases in Equations (29)–(31) are equal to zero, which means that {|ψi〉 = |i〉}.
The measurement carried out by Bob on his quantum system generates three conditional
post-measurement states ρi

A|b for Alice’s quantum system. If Bob found the state |ψi〉
with probability pb

i = tr(Πi
bρ̂AB), Alice’s conditional state will be ρi

A|b = trB(Πi
bρ̂AB)/pb

i .
Therefore, Alice’s post-measurement states are

ρi
A|b =

1
pb

i
(|ti1|2|1〉A〈1|+ |ti2|2|2〉A〈2|), for i = 0, 1, 2, (32)

where

|tij|2 = ηj|〈ψi|UB|φj〉|2, for j = 1, 2, (33)

pb
i = |ti1|2 + |ti2|2, (34)

with
2

∑
i=0

pb
i = 1. (35)

The quantum measurement implemented by Bob, in general, changes the initial joint
state from ρAB in a composite Hilbert space of 2⊗ 2 to the final average joint state ρ′AB in a
Hilbert space of 2⊗ 3, which is given by [9,28]

ρ′AB =
2

∑
i=0

pb
i ρi

A|b ⊗Πi
b, (36)

where Πi
b are the projectors |ψi〉B〈ψi| in the three-dimensional Hilbert space K. The final

joint state ρ′AB in Equation (36) is a classical state because there are local measurements in
Alice’s and Bob’s systems that do not perturb it [28]. The average final reduced states for
Alice’s and Bob’s quantum systems are given by

ρ′A =
2

∑
i=0

pb
i ρi

A|b, (37)

ρ′B =
2

∑
i=0

pb
i |ψi〉B〈ψi|. (38)
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Then, the final reduced state for Alice’s system does not change because

2

∑
i=0
|tij|2 = ηj. (39)

This implies that ρ′A = η1|1〉A〈1|+ η2|2〉A〈2| = ρA. On the other hand, in general,
the reduced state for Bob’s system changes.

4. Mutual Information

In a bipartite state ρAB, the total amount of correlations, in the many copies sce-
nario [64], is given by the quantum mutual information, which is defined as [1,2,28,64]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (40)

where S(ρ) is the von Neumann entropy of the state ρ, given by S(ρ) = −∑i λi log2 λi,
where λi are the eigenvalues of ρ. Hence, in the protocol of FRIO discrimination, we con-
sider that Alice emits many copies of independent identically distributed (i.i.d.) data.
In this scenario, the global quantum state is given by σ = ρ⊗n

AB for some large n [9,65] and
Bob implements his measurement on each single copy that he has, using a POVM with
elements {Πi

b = |ψi〉〈ψi|}. The entropy of the joint initial state ρAB, given by Equation (23),
is S(ρAB) = S(ρA) + ∑ ηiS(|φi〉B〈φi|) = S(ρA). Therefore, the initial quantum mutual
information between Alice and Bob is equal to I(ρAB) = S(ρB), where the eigenvalues of
Bob’s states ρB are

λb
1 =

1
2

(
1 +

√
1− 4η1η2(1− α2)

)
, (41)

and λb
2 = 1− λb

1. The quantum mutual quantum information can be written as [2,28]

I(ρAB) = J(A|{Πb}) + D(A|{Πb}), (42)

where J(A|{Πb}) are the classical correlations or the classical mutual information between
Alice and Bob and D(A|{Πb}) is the quantum discord. These two quantities depend on
the measurement implemented by Bob, with the POVM {Πb}, but their sum does not [5],
i.e., they are complementary to each other. The classical correlations J(A|{Πb}) between
Alice and Bob are defined as [1,28]

J(A|{Πb}) = S(ρA)−
2

∑
i=0

pb
i S(ρi

A|b), (43)

which is the information about Alice’s system gained by Bob by means of the measurement
{Πb} [28]. The accessible information to Bob [10,15] is the maximal classical correlation
J(A|{Πb}) with respect to all possible measurements implemented by Bob, where

J(A|B) = max
{Πb}

J(A|{Πb}) = S(ρA)−min
{Πb}

2

∑
i=0

pb
i S(ρi

A|b). (44)

Then, the expression J(A|B) represents the classical mutual information maximized
with respect to the detection strategy [12]. To determine the J(A|B), without doing the
maximization in Equation (44), we use the Koashi–Winter relation [66]. This can be done
because the state of Equation (23) can be purified, using an auxiliary third quantum system
C, in the following form:

|Ψ〉ABC =
2

∑
i=1

√
ηi|i〉A ⊗ |φi〉B ⊗ |i〉C. (45)
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Therefore, the maximum classical mutual information between Alice and Bob, when Bob
implements his measurement, can be obtained from

J(A|B) = S(ρA)− E f (ρAC), (46)

where, if we denote ρ = |Ψ〉ABC〈Ψ|, then ρAC = trBρ and the entanglement of forma-
tion [67] between subsystems A and C is given by

E f (ρAC) = −λ+ log2 λ+ − λ− log2 λ−, (47)

where
λ± =

1
2
(1±

√
1− 4η1η2α2). (48)

In our case, accessible information J(A|B) is obtained when Bob implements the
strategy of ME discrimination [9,16,20,21], using a two-dimensional projective measure-
ment in the basis {|1〉, |2〉}. This means that the rate of inconclusive outcomes is zero,
Q = 0, and, thereby, the rate of inconclusive outcomes for the {|φ1〉, |φ2〉} states is also
zero, i.e., q1 = q2 = 0. However, in general, in order to implement any case of FRIO
discrimination, we must consider that q1 6= 0 and q2 6= 0, and Bob must implement the
POVM with the projections onto the states {|0〉, |1〉, |2〉}. This implies that the mutual
information J(A|{Πb}) will be lower than the optimal J(A|B), if a POVM different from
the ME measurement is implemented.

Figure 3 shows the mutual information between Alice and Bob, encoded in the joint
state ρAB of Equation (23), as a function of α for some values of Q and η1. Alice and Bob
share the maximal mutual information available from any ensemble of quantum states
when η1 = 1/2 and Q = 0, i.e., when Bob implements ME [16,20,21]. We see that Alice’s
and Bob’s system are completely classically correlated, i.e, J(A|B) = 1 for η1 = 0.5 and
when the states {|φ1〉B, |φ2〉B} are orthogonal (α = 0). If we increase the overlap α between
these states, the mutual information decreases for any value of Q and η1. Furthermore,
their systems become completely classically uncorrelated, J(A|B) = 0, when the overlap
is α = 1, for any value of Q and η1. From Figure 3, we see that the parameter η1, for a
fixed value of α and Q, considerably affects the amount of MI that are shared by Alice and
Bob. For a fixed value of α and η1, the best strategy of FRIO, from the point of view of
the MI, corresponds to the implementation of ME, which is the case of FRIO with Q = 0.
On the other hand, if we consider a fixed value of α and η1 and we increase the value of
Q, the mutual information J(A|{Πb}) decreases. In this case, the minimum of mutual
information occurs when we implement UD, i.e., when the rate of inconclusive outcomes
takes its maximum value Q = Qmax. Therefore, for any value of η1, the MI, in the scheme
of FRIO, are limited by the cases of ME (Q = 0) and UD (Q = Qmax). The maximum
difference of the mutual information in this two border cases is approximately 0.15 bit.

Figure 4 shows the mutual information between Alice and Bob as a function of success
probability for some values of Q and η1. For a fixed value of Q and η1, if we increase the
success probability Ps, the MI increase. We see from Figure 4 that, even though the Ps can
take its maximum value Ps = 1, for any value of Q and η1, the MI will be J(A|{Πb}) = 1
only if Ps = 1 and η1 = 0.5 as shown in Figure 3. The accessible information J(A|B) is
obtained when Bob implements ME (Q = 0), as previously stated. If we increase the
value of Q, and fix the value of η1 and the value of MI, the plots go to lower values of
success probabilities.

In general, Bob’s choice of which discrimination process will be implemented will
depend on the application that he wants to carry out. For instance, in our scenario, if he is
interested in implementing quantum cryptography, then he must discriminate the states
by ME. On the other hand, if he wants to do perfect quantum teleportation using a non-
maximally entangled quantum channel, with the highest possible probability, then he must
implement UD [57]. FRIO discrimination can be relevant in the case where we expect to
optimize a certain discrimination protocol in terms of more than one variable—for example,
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the success probability and the average fidelity in a scheme of quantum teleportation using
a non-maximally entangled quantum channel [57].
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Figure 3. Mutual information between Alice and Bob, J(A|{Πb}), as a function of the overlap α in the discrimination by:
ME where Q = 0 (solid green line), FRIO with Q = Q0/3 (dotted red line), FRIO with Q = 2Q0/3 (dashed-dotted blue blue
line), and UD where Q = Qmax (dashed black line) for: (a) η1 = 0.5, (b) η1 = 0.2, and (c) η1 = 0.05.
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Figure 4. Mutual information as a function of the success probability in the discrimination by: ME where Q = 0 (solid green
line), FRIO with Q = Q0/3 (dotted red line), FRIO with Q = 2Q0/3 (dashed-dotted blue line) and UD where Q = Qmax

(dashed black line) for: (a) η1 = 0.5, (b) η1 = 0.2, and (c) η1 = 0.05.

5. Quantum Discord

Quantum discord is defined as the difference between the total correlations I(ρAB)
and the classical correlations J(A|B) [28], i.e.,

D(A|B) = I(ρAB)− J(A|B). (49)

In our case, we have that I(ρAB) = S(ρB) and J(A|B) is given by Equation (46).
Therefore, quantum discord can be analytically evaluated, and this quantifies the minimum
of the quantum correlations that are consumed in the process. In an equivalent way,
the quantum discord can be written as

D(A|B) = S(ρB) + min
{Πb}

2

∑
i=0

pb
i S(ρi

A|b)− S(ρAB). (50)
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The measurement-dependent version of the quantum discord (QDD) is

D(A|{Πb}) = S(ρB) +
2

∑
i=0

pb
i S(ρi

A|b)− S(ρAB). (51)

Here, QDD quantifies the quantum correlations that are consumed in the process
of FRIO discrimination. This function depends on the POVM {Πi

b = |ψi〉〈ψi|} used to
implement the measurement. In our case, these measurement operators correspond to
the POVM necessary for implementing FRIO discrimination, that is, {Πi

b = |i〉〈i|} with
i = 0, 1, 2. Therefore, the QDD can also be analytically evaluated.

Figure 5 shows the quantum discord D(A|B) as a solid green line. It corresponds to
the case when Q = 0, or equivalently to the case when we implement ME. Figure 5 also
shows the measurement-dependent quantum discord D(A|{Πb}) as a function of Q and
α for three different values of η1. There are two particular cases in which these functions
are equal to zero, i.e., D(A|B) = D(A|{Πb}) = 0, for any value of Q and η1. This happens
when the states {|φ1〉B, |φ2〉B} are orthogonal (α = 0), or when their overlap is equal to one.
In these cases, Bob’s measurement does not change the joint state ρ′AB = ρ̂AB; therefore,
the states {|φ1〉B, |φ2〉B} behave like classical states. Moreover, quantum discord, in this
case for Q = 0, can be used as a measure of quantumness [22,23]. As we already stated in
Ref. [9], the maximum value of quantum discord, i.e., for Q = 0, occurs when α = 1/

√
2

for any value of η1. This means that the pair of quantum states {|φ1〉B, |φ2〉B} with overlap
α = 1/

√
2 will have the maximum quantumness possible.
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Figure 5. Quantum discord between Alice and Bob, D(A|{Πb}), as a function of the overlap α in the discrimination by:
ME where Q = 0 (solid green line), FRIO with Q = Q0/3 (dotted red line), FRIO with Q = 2Q0/3 (dashed-dotted blue line)
and UD where Q = Qmax (dashed black line) for: (a) η1 = 0.5, (b) η1 = 0.2 and (c) η1 = 0.05.

If we increase the value of Q, the quantum discord lost in the process, increases,
for fixed values of α and η1. Then, the maximum loss of quantum correlations happens
when Bob implements UD onto the states {|φ1〉B, |φ2〉B}. Therefore, the most (least) ef-
ficient discrimination scheme, from the point of view of quantum correlations that are
lost in ρAB and the mutual information that remain in the final state ρ′AB, is the scheme
of ME (UD). There is a compromise between the error in the state discrimination and the
loss of correlations, that is, if we want to minimize the error in the state discrimination,
the loss of correlations increases. On the other hand, for fixed values of α and Q, if we
increase the value of parameter η1, from η1 = 0 to η1 = 0.5, the loss of quantum correlations
also increases. However, at the same time, the states {|φ1〉B, |φ2〉B} carry more mutual
information, as shown in Figure 3.

6. Conclusions

We studied the success probability, the mutual information that Alice and Bob share,
and quantum discord involved in a quantum state discrimination protocol. These quanti-
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ties are useful to evaluate the performance of the detection process, and also have several
applications in quantum information theory. Our work was carried out with a quantum
bipartite state without entanglement, for the case where Bob implements FRIO discrim-
ination onto two pure non-orthogonal quantum states generated with arbitrary a priori
probabilities. In our analysis, for each one of the three aforementioned quantities, there are
three free parameters that can be modified: the overlap between the non-orthogonal states
α, the a priori probability η1, and the rate of inconclusive outcomes Q. The ME (UD)
corresponds to the case when Q = 0 (Q = Qmax). Additionally, two intermediate cases
were considered for Q = Q0/3 and Q = 2Q0/3.

In this work, known results were recovered. For instance, the implementation of
ME (Q = 0) with η1 = 0.5 allows us to obtain the maximal mutual information available
from any ensemble of quantum states and the accessible information for any value of
η1 [16,20,21]. The biggest probability of success Ps happens when ME is implemented.
Moreover, the maximum amount of mutual information is equal to J(A|B) = S(ρA) when
the states {|φ1〉, |φ2〉} are orthogonal. Quantum discord is zero when the joint state is
classical (α = 0 or α = 1), and it reaches its maximum when the overlap of the non-
orthogonal states is α = 1/

√
2 [9].

We explicitly show the behavior of success probability and we found the upper and
lower limits for mutual information and quantum discord, as a function of the parameters
α, η1 and Q in the FRIO discrimination scheme. These findings help us to understand how
these quantities change as a function of the parameters involved in the discrimination
process. For the particular case analyzed in this study, the process of minimum error
discrimination optimizes success probability, mutual information, and quantum discord,
simultaneously. On the other hand, for unambiguous discrimination, the behavior of these
quantities is quite the opposite. This implies that the discrimination without error produces
a major decrease in mutual information between Alice and Bob; therefore, a biggest cost
in terms of quantum correlations, which are quantified by quantum discord lost in the
discrimination process.

In general, FRIO discrimination provides a more general framework in which the
discrimination process can be studied, where it is possible to analyze the performance of a
discrimination protocol with a fixed rate of inconclusive outcomes. This characteristic can
be relevant in the scenario where we expect to optimize a certain discrimination protocol
in terms of more than one variable. For instance, the success probability and the average
fidelity in a scheme of quantum teleportation using a non-maximally entangled quantum
channel [57].

As a next step, we plan to perform the same analysis for n pure non-orthogonal states
considering the FRIO discrimination scheme.
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