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Abstract: In most of the realistic measurement device-independent quantum key distribution (MDI-
QKD) systems, efficient, real-time feedback controls are required to maintain system stability when
facing disturbance from either external environment or imperfect internal components. Tradition-
ally, people either use a “scanning-and-transmitting” program or insert an extra device to make a
phase reference frame calibration for a stable high-visibility interference, resulting in higher system
complexity and lower transmission efficiency. In this work, we build a machine learning-assisted
MDI-QKD system, where a machine learning model—the long short-term memory (LSTM) network—
is for the first time to apply onto the MDI-QKD system for reference frame calibrations. In this
machine learning-assisted MDI-QKD system, one can predict out the phase drift between the two
users in advance, and actively perform real-time phase compensations, dramatically increasing the
key transmission efficiency. Furthermore, we carry out corresponding experimental demonstration
over 100 km and 250 km commercial standard single-mode fibers, verifying the effectiveness of the
approach.

Keywords: measurement-device-independent quantum key distribution; reference frame calibration;
machine learning; transmission efficiency; biased basis choice

1. Introduction

Based on the laws of quantum physics [1], quantum key distribution (QKD) can in
principle provide unconditional security between two legitimate users (Alice and Bob) [2].
However, due to the loopholes of imperfect devices, the security of practical QKD systems
are vulnerable to various attacks by an evil eavesdropper (Eve) [3–5]. In order to resist
the attacks, plenty of methods have been proposed, such as the decoy-state method [6,7],
the measurement device-independent QKD (MDI-QKD) [8]. Combined with the decoy-
state method, MDI-QKD can resist the loopholes from detector side-channel attacks and
multi-photon components in sources, and thus has attracted extensive attention [9–15].

Meanwhile, how to implement the reference frame calibration is a significant challenge.
Because of the phase fluctuation, the reference frame needs to be calibrated in a timely
manner. Previously, an original approach is using scanning-and-transmitting program
to calibrate the phase drift. Bob scans his phase modulation voltage while Alice fixes
her phase voltage to ascertain the zero-phase voltage of the minimum count. Two users
process feedback control according to the fitted zero-phase voltage. Consuming extra
calibration time, the scheme keeps the stability of the QKD system at the cost of the
so-called duty cycle [16], which refers to the ratio of the transmission time to the total
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time. Another widely used scheme is inserting a phase stabilization laser (PSL) which
has the same wavelength as the signal laser’s between the interferometers of two users
with an additional fiber link, which increases the system complexity. In the network [17],
the PSL and an extra interferometer are employed in the relay to calibrate the reference
frame between each two users, increasing the system complexity. Recently, data-driven
machine learning based on complex data analysis methods for quantum control have been
proposed [18–20]. In order to overcome those shortcomings, we adopt long short-term
memory network (LSTM) [21,22] onto the MDI-QKD system and predict out the phase
drift between two users in advance. Immediately, real-time phase compensations can be
realized, drastically increasing the key transmission efficiency [23].

This paper is arranged as follows. In Section 2, we introduce the details about our
machine learning model, and in Section 3 we tell how to run it on the MDI-QKD system
with biased base choice. In Section 4, experimental data are analyzed and discussed. Finally,
summaries and outlooks are given in Section 5.

2. Methods

The inevitable change of arm length difference in interferometers of Alice and Bob
leads to the phase drift, which introduces further errors in X basis. Adopting machine
learning technique to efficiently predict the phase drift instead of using the time-consuming
scanning-and-transmitting program continually. We conduct supervised learning here to
enable the LSTM network to extract phase drift information. A mass of data points should
be collected for training the network before prediction, which is performed in advance.
The whole data consists of the features and label of various time moments [24], including
the operating temperature, the humidity, the intensity of a laser, the partially disclosed
quantum bit error rate (QBER) of XX basis-pair, and five time-series displacement voltages,
which can be obtained by running the MDI-QKD system with the traditional scanning-and-
transmitting program. Moreover, the label is zero-phase voltage of the next moment. The
data structure is illustrated in Figure 1. A newly added data feature, i.e., partially disclosed
QBER of XX basis, can provide the LSTM network valuable running status, which directly
increase prediction accuracy compared to the former data features [23]. The training data
conclude 25 batches, and each batch consists of 5400 data points. The testing data conclude
3 batches and each batch has the same number of data points as the training data. Apart
from that, we randomly extract one batch from training data and one batch from test data
for cross validation check.

Figure 1. Data structure of t moment. T, temperature; H, humidity; P, intensity of laser; Q, QBER of
XX basis-pair; U, voltage.

Here, we design a two-layer LSTM network, which is illustrated in Figure 2, and utilize
a mean squared error (MSE) cost function. This two-layer LSTM structure can extract
temporal information from both coarse and fine granularity, which will help improve
prediction accuracy, and detailed comparisons of different models are given in Appendix A.
The number of hidden neurons in the first layer is 14 and the number of hidden neurons
in the second layer is 9, which is obtained by prune. An unified Max-min normalization
has been adopted for all data before input into the network. After the normalization, a
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two-layer feedforward network with 9 neurons and 5 neurons is placed before the LSTM as
an encoder for feature extraction and data denoising. The output of the second LSTM layer
is input into a fully-connected layer, which decodes the output into the zero-phase voltage
of the next moment and applies it to Bob’s phase modulator (PM). We use Adam as the
optimization algorithm for 350 epochs, which takes approximately 40 min on our PC (CPU:
Intel Core i7 9700@ 3.6 GHz; GPU: NVIDIA GeForce RTX 2080; RAM: DDR4 8 GBytes). The
initial learning rate is 0.025, and it drops 70% every 100 epochs. Batch training is adopted.
The final MSEs of training set, testing set, and validation set are 0.0533, 0.1131, and 0.881
respectively.

Figure 2. Diagram of the two-layer LSTM network.

Additionally, an updating process is added periodically for the long-term reliability of
network forecasting, in which the scanning program will be operated after predicting for a
certain time to eliminate the cumulative error in the prediction period [23]. As a result, the
duty ratio of the present MDI-QKD system has been increased from 85.7% (transmitting:
30 s, scanning: 5 s) to 96.9% (transmitting: 540 s, mismatch events: 2 s, updating: 15 s).

3. Experiment

MDI-QKD achieves a better balance between security and practicality, while it gener-
ates lower secret key rate than BB84 protocol, especially considering the finite data size
effect. For the sake of improving the performance, different approaches and strategies have
been proposed and experimentally verified [14,25–28]. Here, we investigate the implemen-
tation of LSTM model based on a simple three-intensity decoy-state MDI-QKD scheme
with biased basis choice [15], in which the decoy pulses are only prepared in X basis.

In the biased three-intensity decoy-state MDI-QKD protocol, first, Alice and Bob
randomly prepare phase-randomized weak coherent state (WCS) pulses into three different
intensities (u,v,o) with certain probabilities, each corresponds to the intensity of the signal
state, the decoy state, and the vacuum state respectively. The signal pulses are prepared
either in Z or X basis. Different from standard three-intensity decoy-state schemes [25], the
decoy pulses are prepared only in X basis. Then, Charlie performs Bell-state measurements
on the pulse pairs from both Alice and Bob and announces the results of the effective events.
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Finally, Alice and Bob exchange the basis-choice information and carry out parameter
estimation and postprocessing processes. Finally, the lower bound of key rate can be
calculated as follows [14,15,25]:

R > pµA pZ|µA
pµB pZ|µB

{
aµ

1 bµ
1 YZ,L

11 [1− H2(e
X,U
11 )]− SZZ

µµ f H2(EZZ
µµ )

}
(1)

where SZZ
µµ and EZZ

µµ each represents the average counting rate and the average QBER in

Z basis; YZ,L
11 and eX,U

11 each denotes the yield and the phase-flip error-rate of the single-
photon-pair pulses in Z basis, in which the superscript L and U each represents the lower
bound and upper bound, respectively; f is the inefficiency of the error correction and we
reasonably assume f = 1.16; and H2(x) is the binary Shannon information function, defined
as H2(x) = −xlog2(x)− (1− x)log2(1− x).

The MDI-QKD experiment setup is demonstrated in Figure 3. We apply the time-bin
phase encoding scheme, and utilize intensity modulators (IMs) and Faraday–Michelson
interferometers (FMIs) [29] as the key apparatus for source encoding. The two legitimate
users, Alice and Bob, which are symmetrical to an unreliable relay Charlie, each owns a
narrow linewidth continuous-wave laser whose frequencies are locked to the molecular
absorption line with a center wavelength of 1550.0 nm. The light sources, which generate
continuous wave, are precisely chopped into pulse trains with a 3 ns temporal width and a
repetition rate of 50 MHz by two IMs: the former is used for decoy-state modulation and
the latter for extinction ratio improvement.

Figure 3. Schematic setup of MDI-QKD system. Laser, continuous-wave laser; IM, intensity mod-
ulator; PM, phase modulator; FM, Faraday mirror; ATT, attenuator; EPC, electronic polarization
controller; BS: beam splitter; SNSPD, super-conducting nanowire single-photon detector.

Next, Alice and Bob send their signal laser pulses to Charlie for a partial Bell state
measurement with two super-conducting nanowire single-photon detectors (SNSPDs).
The detectors operate at 2.2 K, providing a 80% detection efficiency at the dark count rate
of 10 counts per second. The efficiency could still maintain 60% with the loss of devices
at Charlie’s side, including an electric polarization controller (EPC), a polarization beam
splitter (PBS), a beam splitter (BS), and detectors. The count results from two SNSPDs are
recorded by a time-to-digital converter with 4 ns gate.

In order to realize the stable Hong–Ou–Mandel (HOM) interference, the indistin-
guishability of the signal pulses in spectrum, timing, and polarization must be guaranteed.
Any difference in these dimensions will bring errors in the X basis. In our experiment, we
utilize two narrow line width continuous-wave lasers with high accuracy in the frequency
domain. Additionally, we apply an optical delay (OD) in Alice’s station to adjust the
arriving time. For the polarization mode, we insert a polarization stabilization system,
composed of an EPC, a PBS and a SNSPD before the interference. By monitoring the
reflection counts from the PBSs with two SNSPDs, the EPCs could compensate for the
polarization drifts every 30 min.

We run the machine learning-assisted MDI-QKD system in the laboratory with spooled
fibers (0.18 dB/km) over 100 and 250 km, respectively. A total of 1012 pulses are sent
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from each user at different distances. We make the finite-key analysis and set the failure
probability as 10−7 [15]. With the decoy-state method, we apply the collective constraints
and joint parameters estimation techniques to estimate YZ,L

11 and eX,U
11 [15].

4. Discussion

The theoretical simulations and experimental results are shown in Figure 4. With our
current LSTM model-based method, we gain a good and similar result which agrees well
with the theoretical predictions, due to the stability of the system and the updating and
feedback data. With the data given in Table 1, Table 2, and some other experimental results,
we can evaluate the phase error rates and the final secure key rates. At 100 km and 250 km,
we obtain the key rates of 4.24× 10−5 and 2.41× 10−9 per pulse, individually. We also run
the system with traditional scanning-and-transmitting method at the same environment
for comparison. Note that we can get the similar level of key rate per pulse by using
our present machine learning-assisted MDI-QKD system compared with using traditional
scanning-and-transmitting mode. However, the duty cycle of our present method has been
increased by more than 10 percent, giving a significant improved transmission efficiency.
On the other hand, in order to verify the long time stability, we run the MDI-QKD system
at the transmission distance of 100 km over 48 h and record corresponding QBER, using
either machine learning-assisted mode or traditional scanning-and-transmitting mode, see
Figure 5. Obviously, these two methods exhibit similar level of QBER and stability. In short,
the new method not only improves systematic transmission efficiency, but also avoids
potential vulnerabilities as no additional hardware is introduced. Furthermore, the duty
cycle and stability time can be further improved by program optimization to match the
requirements of various systems.
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Figure 4. Theoretical and experimental results of the key rate’s dependence on the transmission
distance. system parameters are as follows: dark counting rate per pulse and overall efficiency of
detection side are 4× 10−8 and 60%; misalignment errors in Z and X bases are 0.15% and 1.5%,
respectively.

Table 1. Optimized parameters of sources with 100 km and 250 km fibers.

Parameters µ v ω Pµ Pv PX|µ

100 km 0.6353 0.0476 0.3171 0.885 0.110 0.002
250 km 0.4492 0.0691 0.4817 0.495 0.436 0.027
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Table 2. Crucial values in the key rate formula: estimated single photon yield (YZ,L
11 ) and phase error rate (eX,U

11 ); measured
values of QBER (EZZ

µµ , EXX
µµ ) and gain (QZZ

µµ , QXX
µµ ) when Alice and Bob both prepare the signal state in Z basis, X basis.

Distance YZ,L
11 eX,U

11 QZZ
µµ EZZ

µµ QXX
µµ EXX

µµ

100 km 0.0015 0.1539 4.57× 10−4 0.002 9.16× 10−4 0.257
250 km 3.0182× 10−6 0.3118 5.597× 10−7 0.00236 1.085× 10−6 0.267
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Figure 5. Comparisons between applying traditional scanning-and-transmitting program and using
current LSTM-model-based QKD systems on QBER at the transmission distance of 100 km.

5. Conclusions

In conclusion, we developed a machine learning-assisted system, where the LSTM
network is for the first time to implemented onto the MDI-QKD system for reference-frame
calibrations. Furthermore, we carry out experimental demonstrations over 100 km and
250 km transmission distances by running the present MDI-QKD system. Experimental
results show that our present machine learning-assisted mode can dramatically improve
the transmission efficiency of MDI-QKD systems compared with using the traditional
scanning-and-transmitting approach. Meanwhile, our present system can keep quite
good stability over long time running. In addition, the biased basis choice idea has been
employed to reduce the redundancy of decoy pulses in Z basis, and thus diminish the
influence of the finite-data-size effect. Therefore, our present work can provide valuable
references for the implementation of large-scale quantum communication [30,31] in the
near future.
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Appendix A

Here, we give comparisons among the predictions of different models, including
autoregressive moving average model (ARMA), feed-forward neural network, one-layer
LSTM network, and two-layer LSTM network. Taking a time series of 5400 testing data
points for instance, the prediction results and their root mean square errors (RMSE) are
illustrated in Figure A1. The feed-forward neural network is not a good choice for dealing
with time series, and the result shows more of its fixed input–output mapping. Yet, the
ARMA gives a more fitting prediction than it of feed-forward neural network. On the other
hand, the two-layer LSTM network can give a better prediction compared to one-layer
LSTM network especially on fine granularity.
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Figure A1. Comparisons of prediction results from (a) ARMA, (b) feed-forward neural network (one
hidden layer with 50 neurons), (c) one-layer LSTM network, and (d) two-layer LSTM network.
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