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Abstract: Here we present a study on the use of non-additive entropy to improve the performance
of convolutional neural networks for texture description. More precisely, we introduce the use of a
local transform that associates each pixel with a measure of local entropy and use such alternative
representation as the input to a pretrained convolutional network that performs feature extraction.
We compare the performance of our approach in texture recognition over well-established benchmark
databases and on a practical task of identifying Brazilian plant species based on the scanned image
of the leaf surface. In both cases, our method achieved interesting performance, outperforming
several methods from the state-of-the-art in texture analysis. Among the interesting results we
have an accuracy of 84.4% in the classification of KTH-TIPS-2b database and 77.7% in FMD. In
the identification of plant species we also achieve a promising accuracy of 88.5%. Considering the
challenges posed by these tasks and results of other approaches in the literature, our method managed
to demonstrate the potential of computing deep learning features over an entropy representation.

Keywords: texture recognition; convolutional neural networks; non-additive entropy; image descriptors

1. Introduction

Texture is a fundamental feature of complex digital images and texture recognition
plays an important role in areas like medicine [1], material sciences [2], remote sensing [3],
and many others [4].

Despite the success of learning-based approaches, especially, convolutional neural
networks (CNN), texture recognition still poses some challenge, mainly when the im-
ages are collected under uncontrolled conditions. In this context, the addition of some
extra information to guide the CNN algorithm has significant potential to improve the
overall performance.

In parallel, an information that is known for a long time to be quite relevant in texture
analysis is that provided by local patterns. Methods like that presented in the seminal study
of Haralick [5] and the local binary patterns [6] are representative examples of how local-
based analysis is effective, even using relatively simple strategies for that representation.
More recently, in [7] we see that an interesting measure to identify local patterns is entropy.
More exactly, the authors show that the non-additive Tsallis entropy is a good candidate
to express several attributes of a local neighborhood, such as regularity, multifractality
and complexity. All these features can collaborate for a more robust and rich statistical
description of the image.

There are essentially two motivations for the use of non-additive entropy in texture
analysis. The first one is that entropy is a complexity measure, which in textures is known
to be related with physical properties (roughness, for example) that play important role in
characterizing materials. Furthermore, non-additive entropy has connections with another
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successful complexity representation in texture images, which is the multifractal theory.
A practical consequence of this is that such definition of entropy provides a framework
for multiscale analysis without losing locality information. This substantially enriches
the description of local complex patterns arising in the image and additionally providing
multiscale information, which is also an important element in texture analysis models.

Based on this context, here we propose a hybrid approach that combines the local
description power of non-additive entropy with the feature extraction capabilities of pre-
trained CNNs. More precisely, we develop two independent parallel pipelines. The first
one uses the original image as input. For the second, we employ an alternative represen-
tation where each pixel is replaced by the non-additive entropy computed over a local
neighborhood centered at that pixel. Both pipelines involve the subsequent application of
a CNN over the input data. Such CNN is pretrained over the ImageNet and there is no fine
tuning in our algorithm, in this way substantially reducing any computational overhead.
Finally we take the features at the penultimate layer of the CNN at both pipelines and
combine them by concatenation. These features compose our final texture descriptors.

Our approach is validated on texture classification, over classical benchmark databases
(KTH-TIPS-2b [8], FMD [9], UIUC [10], and UMD [11]). An application to a specific task of
plant species identification based on images of the leaf surface [12] is also accomplished.
The attained results are also compared with other texture recognition methods and several
state-of-the-art approaches are outperformed by the proposed descriptors. In general, such
results suggest the potential of the alternative representation of texture images based on
non-additive entropy, leveraging the performance of the already well-established deep
learning frameworks.

2. Related Works

Studies like those carried out by Haralick in the 1970’s [5] and Pietikannen et al. in the
2000’s [6] consistently demonstrated the importance of local patterns for texture recognition.
More specifically and more recently, the particular role of non-additive entropy as a local
texture descriptor has been investigated in [7].

Inspired by the success in general tasks in computer vision in the recent years, we
have also seen the rapid increase in the number of works investigating deep learning
approaches to texture analysis. To mention a few examples, we have Deep Convolutional
Activation Feature (DeCAF) [13], Deep Texture Encoding Network (DeepTEN) [14], Deep
Filter Banks [15], Locally-Transfered Fisher Vectors (LFV) [16], Deep Texture Manifold
(DEP) [17], Multiple-Attribute-Perceived (MAP) [18], and many others.

The idea of entropy has been introduced to convolutional neural networks for different
purposes. For instance, in [19] the authors use information entropy for semantic-aware
feature pooling. In [20], an entropy measure is employed for the quantization of different
deep learning models, including CNNs. Combinations of CNNs with entropy at a high level
have also been explored, for example, for malware classification [21], fault diagnosis [22],
detection of epileptic seizure [23], and others.

Finally, non-additive entropies, like the Tsallis definition employed here has been
used in image recognition for a long time, with examples of applications in facial recogni-
tion [24], analysis of magnetic resonance images in medicine [25], texture recognition [7,26],
and so on.

3. Background
3.1. Convolutional Neural Networks

Convolutional neural networks (CNN) are artificial neural networks especially de-
signed to process multidimensional data, such as images and videos [27]. Their most
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important element is the convolution operator, acting over a digital image I with a kernel K
resulting in a map whose value at each position (x, y) is given by

conv(I, K)(x,y) =
nH

∑
i=1

nW

∑
j=1

nC

∑
k=1

I(x + i− 1, y + j− 1, k)K(i, j, k), (1)

where nH and nW are, respectively, the image height and width and nC is the number of
convolution channels.

A typical CNN also includes other operations, such as the application of a non-linear
activation function and an operation called pooling, which reduces the size of the map in
the previous layer. A fully connected network is also frequently used on top of a set of
convolutional layers, working as classifiers, whereas convolutional layers act as feature
extractors. More details can be easily found in the literature [27].

The real values in the convolution kernel constitute the learnable parameters θ, which
are optimized by backpropagation. Given a set of m training samples, each one corresponding
to a pair input/target (xi, yi), we define an objective function by

J(θ) =
1
m

m

∑
i=1
L(ŷi, yi), (2)

where L is a function named loss, which measures the error of the network, and ŷi is the
output of the network, which explicitly depends on θ. Such parameters are obtained by
gradient descent, an iterative numerical method where θ values are initialized at random
and, in each step (epoch) t, they are updated according with

θ(t) = θ(t− 1)− η
∂J

∂θ(t− 1)
, (3)

where η is the learning rate.

3.2. Non-Additive Tsallis Entropy

Like several other definitions of the so-called generalized entropy, e.g., Boltzman,
Shannon, Renyi, and others, Tsallis non-additive entropy [28] is also an adequate measure
to quantify disorder or randomness of a system. More specifically, in the context of data
analysis, these entropies are well known to be a powerful quantifier for the amount of
information. However, Tsallis entropy was especially designed also for the purpose of
identifying long-range interactions and complex dynamics.

Formally, it is defined for a probability distribution p by

Sq(p) =
k

q− 1

(
1−∑

i
pi

)
, (4)

where q and k are pre-defined parameters. In the limit q→ 1 we recover the classical definition
of Boltzman-Gibbs-Shannon, the so-called BGS entropy:

lim
q→1

Sq(p) = −k ∑
i

pi log pi. (5)

4. Proposed Method

Despite the success of CNNs in texture representation, we still have some room for
improvements, especially in the analysis of textures observed “in the wild”, i.e., under
uncontrolled conditions. In this context, tasks involving texture recognition can bene-
fit from alternative viewpoints of the same image. An example of such viewpoint that
showed promising performance is the non-additive entropy of the original texture, as em-
ployed in [7]. At the same time, there is no doubt that CNNs are capable of providing
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powerful representation for these images, especially when coupled with some transfer
learning mechanism.

Based on this, here we propose a hybrid representation for texture images that com-
bines the local power of non-additive entropies for local description with the flexibility of a
CNN acting as a feature extractor. More precisely, our method starts by computing Tsallis
entropy within the neighborhood of each pixel. Formally, to each pixel at coordinates (x, y)
we associate a (square) window Wr

(x,y):

Wr
(x,y) = {(i, j) : (x− r) ≤ i ≤ (x + r), (y− r) ≤ i ≤ (y + r)}. (6)

Over this region we define the histogram

h(x,y)(k) =
khb

∑
j=(k−1)hb

δ(Wr
(x,y), j), (7)

where hb is the size of the histogram bin and δ(a, b) is the Kronecker delta function:
δ(a, b) = 1 if a = b and 0, otherwise. The entropy is computed over such histogram. Notice
that here we can disregard any constant in (4) as it would affect the entire image and would
not add any descriptive element. In this sense, we simply redefine (4) as

S′q
(x,y) =

kmax

∑
k=0

h(k)q. (8)

Finally, a transformed image Iq is obtained by replacing each pixel value I(x, y) by S′q
(x,y).

Iq is an alternative representation of I and may provide an interesting viewpoint over
the original texture. Nevertheless, to be more effective in extracting useful features from
that representation we apply Iq as the input to a pre-trained CNN and collect descriptors
at the penultimate layer (just before the softmax classification layer). Similar procedure
can also be applied over the original image I and both descriptors can be combined to
provide the final descriptors, which will be actually used for recognition tasks. Based
on the success previously reported in texture analysis tasks [15], here we use the VGG19
(VGG-VD) architecture for the feature extractor. The diagram in Figure 1 illustrates the
main steps and intermediate representations resulting from the proposed methodology.
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Figure 1. Proposed method. On top we have the pipeline for the original image, whereas at the
bottom we have the processing of the image over the entropy representation. The features are
collected at the penultimate layer of the CNNs and concatenated to compose the final descriptors.
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An interesting point here is the role of the parameter q. In Figure 2 we have an
illustration of how q affects entropy values when the original distribution is perturbed by
some amount of noise. S0 is the entropy of the original distribution (randomly defined)
and Sn is the entropy of a perturbed version of that distribution. More exactly, Sn is
the entropy of the original distribution added with random values in the range [0, 0.1n]
and renormalized. So, a higher n value reflects a higher perturbation. The plot exhibits
the difference Sn− S0 for n = 1, 2, 3, 4, 5. It can be observed that we have an optimum
value of q (around 0.2) that more sharply highlights the differences between pure and
perturbed distribution. But smaller or larger values are expected to decrease this difference.
In terms of image analysis and machine learning, such vanishing corresponds to some
regularization introduced over the image descriptors. Such parameter is frequently used to
control overfitting in the training process and can also be employed in the present study
for that purpose. It is also important to notice that the optimum point for the q value is
highly dependent on the distribution being processed.

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

8

Figure 2. Influence of parameter q in changing the entropy value for perturbed distributions.
The point q ≈ 0.2 maximizes the difference between the perturbed distribution Sn and the original
one S0.

The introduction of non-additive entropy to texture representation allows for a more
precise analysis of local pixel patterns especially concerning multifractality. Indeed, mea-
sures like Tsallis entropy are known to be an adequate tool to describe multifractal in
momentum spaces of physical systems [29]. At the same time, textures, especially those
originated from natural structures (e.g., medical images), are also strongly characterized
by the presence of multifractal patterns [29]. Together with the power of CNNs, we have
a model capable of detecting even the most subtle patterns that otherwise could not be
identified when looking only at the original image.

5. Validation Setup

We evaluate the performance of the proposed method over four well-established
benchmark databases, to know, KTH-TIPS-2b [8], FMD [9], UIUC [10], and UMD [11].

KTH-TIPS-2b is a database of color textures with 4752 images divided into 11 bal-
anced classes (432 samples per class). Each class is further evenly divided into 4 samples.
And each sample corresponds to particular settings of acquisition, in terms of scale, pose
and illumination. Each image has resolution 200× 200. Here we adopt the training/testing
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split in [30], i.e., three samples for training and the remaining one for testing. This amounts
to a total of 4 possible combinations and at the end we take the average accuracy.

FMD (Flickr Material Database) is a collection of color textures acquired under uncon-
trolled conditions, with a total of 1000 images equally divided into 10 classes. The resolution
of the images is 512× 384. The training/testing split follows the most typical protocol
for texture classification, where one half of the images is randomly selected for training
and the other half for testing. Such procedure is repeated 10 times and we compute the
average accuracy.

UIUC (University of Illinois Urbana-Champaign) database comprises a set of 1000 gray
texture images evenly divided into 25 classes. Each image has size 640× 480. They are
collected under uncontrolled conditions and are subject to variations in viewpoint, scale
and illumination settings. The training/testing split is similar to that used in FMD.

UMD (University of Maryland) is a collection of grayscale textures which shares
some similarities with UIUC, like the number of samples and classes and the acquisition
conditions. The most remarkable difference is the higher resolution, which in UMD is
1280× 960. We use the same training/testing split employed in UIUC and FMD.

In addition, we tested our proposal in the 1200Tex, which is a database of images
corresponding to scanned photographies of the leaf surface of Brazilian plant images.
The objective is to identify the respective species. The set contains 20 classes (species)
with 20 samples (plant exemplars) per class. The surface image of each sample is a color
texture that is partitioned into 3 non-overlapping windows with resolution 128× 128.
The acquisition process takes place under controlled conditions of illumination, scale and
viewpoint. The training/testing split is the same one adopted for UMD, UIUC and FMD.

As for the classifier, we use Linear Discriminant Analysis (LDA) [27]. This is mainly
motivated both by the fact that it does not involve any critical hyperparameter tuning and
by its effectiveness in previous application to texture recognition. To reduce dimensionality
and, as a consequence, the computational burden, we employ principal component analysis
before the input to the classifier. The number of principal components is determined by
5-fold cross-validation over the training set. We set a maximum possible of 200 components.

6. Results and Discussion

In this section, we present results on the application of the proposed method to texture
classification over the benchmark databases and on the application to plant species identification.

The accuracies in the benchmark datasets for different values of q are presented in
Figure 3. The original color image was used for the color textures (KTH-TIPS-2b, FMD,
and 1200Tex) in the pure CNN pipeline and the grayscale version in the entropy input. In
practice, and to provide reliability to the choice of the optimum value of q, a validation
set separated from the training images can be employed, following the usual protocol in
machine learning. One possibility for that is to employ a K-fold split, where the training
images are randomly divided into K subsets (e.g., K = 5), each one with roughly the
same number of images. We selected one subset for validation and the remainder K− 1
subsets for training. At the end we computed the average accuracy for different values
of q and took that value yielding the best performance. Figure 3 is an example of such
analysis. The highest accuracy attained by the proposed descriptors are, respectively,
84.5% for KTH-TIPS-2b with q = 2.0, 77.7% for FMD with q = 1.5, 98.5% for UIUC with
q = 1.25, and 98.8% for UMD with q = 1.0. We observe two basic distinct behaviors: while
extreme values of q (around 0.5 and 2.0) was better suited for KTH-TIPS-2b, an intermediate
value around 1.5 was the preferred choice for the other benchmark databases. As well
illustrated in Figure 2, q essentially controls the regularization of the original descriptors.
In this context, the results for KTH-TIPS-2b attests that those textures are highly affected
by regularization. This is an expected consequence considering the high inter-sample
variability, which requires the classifier to identify subtle patterns. Regularization is not
effective in this scenario.
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Figure 3. Accuracy on the benchmark databases for different values of q. Except for KTH-TIPS-2b, all the other databases
present compatible behavior, with the best performance achieved at intermediate values of q.

The confusion matrices of the four benchmark databases analyzed are shown in
Figure 4. Looking at the performance of the proposed descriptors on different classes
allows for interesting observations. First, as supposed from the high accuracy in Figure 3,
there is no relevant confusion on UIUC and UMD. On the other hand, the scenario is
substantially more challenging in KTH-TIPS-2b and FMD. In the first one we have visible
problems with classes 5, 8 and 11. Those correspond, respectively, to images of the materials
cotton, linen and wool. These are different types of fabrics and certainly share several
common pixel patterns, which make even the visual distinction challenging. FMD, on its
turn, presents more homogeneous distribution of errors, even though we still notice some
prevalence on classes 3, 5 and 10 (glass, metal and wood). In this case the probable cause is
the high variability of color and shape present in those samples.

Table 1 lists the accuracy of a collection of methods for texture analysis in the litera-
ture compared with the proposed approach. In general, our descriptors were capable of
outperforming several state-of-the-art approaches in all the compared databases. This is a
particularly interesting achievement if we consider that our strategy is relatively simple. It
also confirms the importance of complexity to represent textures even in the deep learning
framework. Actually, even though the role of such features is well studied in classical
texture analysis, modern learning-based approaches usually rely on the idea that all useful
information should be automatically discovered by the CNN. Our studies demonstrate
that this is not always the best solution and the alternative representation provided by
measures like entropies can still be useful for a more holistic representation.



Entropy 2021, 23, 1259 8 of 13
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Figure 4. Confusion matrices on the benchmark databases. As expected from results in Figure 3, UIUC and UMD present
no significant error, while the errors in KTH-TIPS-2b and FMD correspond to samples from similar materials or with high
intra-class variability.

Table 1. Accuracies for different databases: KTH-TIPS-2b, FMD, UIUC, and UMD according to
several published works. Our proposed method outperforms a number of modern approaches in
texture recognition, including learning-based models.

Method KTH2b FMD UIUC UMD

VZ-MR8 [31] 46.3 22.1 92.9 -
VZ-Joint [32] 53.3 23.8 78.4 -
BSIF [33] 54.3 - 73.4 96.1
CLBP [34] 57.3 43.6 95.7 98.6
ScatNet (NNC) [35] 63.7 - 88.6 93.4
DeCAF [36] 70.7 60.7 94.2 96.4
SIFT + BoVW [36] 58.4 49.5 96.1 98.1
FC-CNN VGGM [15] 71.0 70.3 94.5 97.2
FC-CNN AlexNet [15] 71.5 64.8 91.1 95.9
FC-CNN VGGVD [15] 75.4 77.4 97.0 97.7
RAMBP [37] 68.9 46.8 94.8 98.6
H2OEP [38] 64.2 - - -
SWOBP [39] 66.4 - - -
SLGP [40] 53.6 - - -
LBPC [41] 50.7 - - -
LETRIST [42] 65.3 - 97.7 98.8
BRINTCPS [43] - - 92.2 93.5
MRELBPCPS [43] - - 95.2 94.2
DSTNet [44] 61.0 - 93.6 98.5
2D-LTP [45] - 49.0 - -

Proposed 84.4 77.7 98.5 98.8
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The results for the application to the problem of plant species identification are pre-
sented in separated figures and tables, given that most methods compared in the benchmark
databases do not have results published for the 1200Tex dataset. Figure 5 shows the ef-
fect of using different values of q on the plant images problem. The behavior is similar
to most benchmark cases in Figure 3 and we had an optimum value q = 1.5, yielding
an accuracy of 88.5%. Indeed, 1200Tex comprises relatively homogeneous textures and
regularization plays an important role in preventing that spurious details contaminate the
overall performance.
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Figure 5. Accuracy on the 1200Tex database for different values of q. Similar to what was observed
in Figure 3, here we also have the highest accuracy for an intermediate value of q.

Figure 6 depicts the confusion matrix for the plant problem. Here we notice some
significant errors in classes 6–10 and 18. Those samples are characterized by quite similar
patterns of leaf nervures. This is known to be an important trait in botany [46] and the
confusion in this scenario was in some sense expected.
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Figure 6. Confusion matrix on the 1200Tex database. The most relevant errors concentrate around
classes 6–10 and 18, which correspond to similar nervure patterns, a widely accepted discriminative
trait in botany.

Table 2 compares the accuracy of the proposed method in the 1200Tex database with
other ones in the literature. Again, our approach managed to achieve promising perfor-
mance, even when compared with some computationally intensive approaches like the
Fisher vectors over CNN (FV-CNN) developed by Cimpoi et al. [15]. The results also con-
firm that our expectation suggested by the benchmark results in Table 1 are also true in a
real-world task of practical importance.
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Table 2. State-of-the-art accuracies for 1200Tex. The proposed method outperforms even some complex
and computationally intensive algorithms like the deep learning FV-CNN approach.

Method Accuracy (%)

LBPV [47] 70.8
Network diffusion [48] 75.8
FC-CNN VGGM [15] 78.0
FV-CNN VGGM [15] 83.1
Gabor [12] 84.0
FC-CNN VGGVD [15] 84.2
SIFT + BoVW [36] 86.0
FV-CNN VGGVD [15] 87.1
DSTNet [44] 79.3
CATex [49] 84.7
VisGraphNet [50] 87.3

Proposed 88.5

The computational time does not depend on parameter q. If several values of q are
tested, this will linearly increase the time, but such tests are not carried out over the entire
database, but rather over only the validation set. As for the image size, the computational
time depends on the number of pixels. For the square images with dimension n× n processed
here, the order of complexity is O(n2). We should also observe that such time is not relevant
if put in perspective with the deep learning subsequent processing.

In summary, the results presented in this section suggest that the combination of the
original image with an alternative representation in the space of local non-additive entropies
has potential to significantly improve the accuracy in texture analysis. The evaluation on
datasets with quite different characteristics also suggests the flexibility and robustness of the
proposed descriptors with respect to the most diverse variations in attributes like illumination,
viewpoint, scale, and others, present in the analyzed databases.

7. Conclusions

This study proposed and investigated the performance of a texture descriptor com-
bining features extracted by a pre-trained convolutional neural network over the original
image with features extracted in similar way but over an alternative representation where
each pixel is replaced by a measure of local non-additive entropy.

The potential of our approach was verified in texture classification, both on benchmark
databases and on a practical task of identifying plant species based on the scanned image
of plant leaf surfaces. In all situations, our method demonstrated its potential as a robust
and precise descriptor, outperforming several approaches of the state-of-the-art in the area.

We can summarize saying that our findings confirm that complexity measures, like
the non-additive entropy investigated here, have the potential to take advantage of the
modern learning-based approaches in texture analysis, especially in the most challenging
scenarios, where the extra information captured in the transformed space is highly effective
in identifying and characterizing even the most subtle visual patterns.
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