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Abstract: Reconciliation is an essential procedure for continuous-variable quantum key distribution
(CV-QKD). As the most commonly used reconciliation protocol in short-distance CV-QKD, the
slice error correction (SEC) allows a system to distill more than 1 bit from each pulse. However,
the quantization efficiency is greatly affected by the noisy channel with a low signal-to-noise ratio
(SNR), which usually limits the secure distance to about 30 km. In this paper, an improved SEC
protocol, named Rotated-SEC (RSEC), is proposed through performing a random orthogonal rotation
on the raw data before quantization, and deducing a new estimator for the quantized sequences.
Moreover, the RSEC protocol is implemented with polar codes. The experimental results show that
the proposed protocol can reach up to a quantization efficiency of about 99%, and maintain at around
96% even at the relatively low SNRs (0.5, 1), which theoretically extends the secure distance to about
45 km. When implemented with the polar codes with a block length of 16 Mb, the RSEC achieved
a reconciliation efficiency of above 95%, which outperforms all previous SEC schemes. In terms of
finite-size effects, we achieved a secret key rate of 7.83× 10−3 bits/pulse at a distance of 33.93 km
(the corresponding SNR value is 1). These results indicate that the proposed protocol significantly
improves the performance of SEC and is a competitive reconciliation scheme for the CV-QKD system.

Keywords: continuous-variable quantum key distribution; reconciliation; slice error correction; polar
codes; finite-size effect

1. Introduction

Quantum key distribution (QKD), which enables two remote legitimate parties (i.e.,
Alice and Bob) to share unconditional secret keys against a potential eavesdropper, is a
major practical quantum cryptography technology in quantum information [1]. There are
mainly two categories of QKD protocols, namely discrete-variable (DV) protocols [2–6]
and continuous-variable (CV) protocols [7–11], which, respectively, encode information on
discrete variables (such as the polarization or the phase of single photons) and continuous
variables (such as the quadratures of coherent states).

The DV-QKD needs a high-cost single-photon detector requiring cryogenic tempera-
tures to measure the received quantum state, which presents a challenge for its widespread
implementation. Compared to the DV-QKD, the CV-QKD takes the advantage of using a
standard and cost-effective detector that is routinely deployed in standard telecom com-
ponents working at room temperature. The security proof of CV-QKD against general
attacks has been provided [12–15]. Many experiments of CV-QKD have been successfully
implemented, especially the integrated silicon photonic chip for CV-QKD that offers new
possibilities for low-cost and portable quantum communication [16].

A CV-QKD system mainly includes two consecutive phases [7–9]: the quantum key
establishment phase and the classical post-processing phase, which are illustrated in
Figure 1. In the first phase, Alice prepares a coherent state using two Gaussian variables
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and sends it to Bob through the quantum channel. Then, Bob randomly chooses one of the
two variables to measure his received coherent state and informs Alice of his choice. Owing
to the physical noises or the existence of Eve [17] in a quantum channel, the raw data of the
legitimate parties obtained from the first phase are weakly correlated and weakly secure
continuous variables.
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Figure 1. Schematic diagram of the CV-QKD system.

To extract identical secret keys from their raw data, Alice and Bob subsequently
perform a phase called post-processing, including four main stages: sifting, parameter
estimation [18–20], reconciliation [21–25], and privacy amplification [26–28]. Reconciliation
is a crucial stage for CV-QKD, which allows the legitimate parties to distill the corrected
keys from their raw data via an authentic classical channel. Its performance affects the
secret key rate and the secure distance of the practical CV-QKD system [29–32].

Up to now, various reconciliation schemes have been proposed for reconciling the
raw data of CV-QKD. Originally, C. Silberhorn et al. proposed sign reconciliation that
first quantifies the raw data to bit string by using the sign and then corrects the error
bits [21]; however, its low reconciliation efficiency limits its application. Subsequently,
V. Assche et al. proposed SEC, which chooses a set of quantization functions to convert
a continuous variable into binary-value slices and then executes error correction on the
quantized slices [22,23].

Soon after, many researchers apply code-modulated techniques, including multilevel
coding (MLC) and multistage decoding (MSD) in SEC with Low Density Parity Check
(LDPC) codes to improve the reconciliation performance at high SNRs [33,34]. The SEC
scheme allows one to extract more than one bit of key from per pulse, especially at the
high SNRs; however, its quantization performance is poor at the low SNR of long-distance
CV-QKD, which limits its secure distance to about 30 km. Afterward multidimensional
reconciliation was proposed by Anthony Leverrier et al. [24], which extends the secure
distance from 30 km to above 50 km. Since the code rate of multidimensional reconciliation
is limited to 1 bit per pulse, its related research is mainly focused on improving the
reconciliation efficiency with LDPC codes, and especially with Multi-edge type LDPC
(MET-LDPC) codes at low SNRs [35–41].

In summary, the existing research on reconciliation is mainly based on SEC and
multidimensional reconciliation. These two schemes have their own advantages and
disadvantages. Multidimensional reconciliation has a better quantization scenario than
SEC reconciliation, and thus it can still achieve a high-efficiency reconciliation for a long-
distance CV-QKD system with a noisy channel. However, its code rate is limited to 1 bit
per pulse, which makes it more suitable for a long-distance CV-QKD system. Compared
with multidimensional reconciliation, the SEC has advantages in extracting more than 1 bit
of secret key per channel use.
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Limited by its quantization performance, the SEC protocol is more suitable for the
short-distance CV-QKD system. As is known, the secret key rate of a QKD system will
decrease rapidly with the increase of distance [29]. Due to the technology immaturity of the
physical device, the key generation rate of the long-distance CV-QKD system is generally
low [32,42], which obviously cannot satisfy the communication demand.

Therefore, to establish QKD networks [43–46] with the short-distance QKD system
is a practical scheme to provide relatively high-speed keys for secure communication at
present [47]. In addition, the LDPC code is usually chosen to pursue a high reconciliation
efficiency, but its matrix design is extremely difficult. By contrast, another common family
of codes, polar codes, is relatively easier to construct and their recursive structure delivers
excellent performance in practice.

In this research, our work focus on the improvement of the SEC protocol and the
reconciliation of the data with polar codes. The main contributions of this paper are
as follows: (i) We improve the SEC protocol by first performing a random orthogonal
rotation on the raw data before slice quantization and then provide a novel estimator for
the quantized slices. Compared with the SEC protocol, the improved protocol, named
RSEC, has a higher quantization efficiency, which then increases the secret key rate and
reconciliation efficiency. (ii) In order to accomplish the reconciliation of the correlated
continuous variable in CV-QKD, we implement the RSEC protocol by combining the polar
codes, achieving a high-efficiency reconciliation.

The rest of this paper is organized as follows: In Section 2, the RSEC protocol is
proposed to improve the SEC protocol. In Section 3, the implementation of the RSEC
protocol with polar codes is described. In Section 4, the experimental results and analysis
of RSEC are given. Finally, our conclusions are drawn in Section 5.

2. Rotated Slice Error Correction (RSEC) Protocol

In this section, we briefly review the SEC reconciliation and then put forward RSEC
to improve the current SEC. After the quantum key establishment phase of the Gaussian-
modulated coherent state CV-QKD protocol, Alice and Bob share weakly correlated
continuous-variable raw data due to the noises during the quantum transmission. The
noises can safely be assumed to be Gaussian since they correspond to the case of the
optimal attack for Eve [12].

The correlated raw data are obtained by randomly measuring either the the amplitude
and phase quadratures for each coherent state. Moreover, the information encoded on the
two quadratures follow the same Gaussian distribution. For the convenience of description,
let X = (x1, x2, · · · ) and Y = (y1, y2, · · · ) correspond to the correlated Gaussian random
variables of Alice and Bob, respectively. Then, the correlated raw data can be modeled
as Y = X + Z with xi ∼ N(0, δ2), zi ∼ N(0, σ2), where Z = (z1, z2, · · · ), δ2 and σ2 denote
Alice’s modulation variance and the noise variance, respectively.

In the direct reconciliation scenario, Alice’s sequence is used as the target to correct
Bob’s sequence. On the contrary, the reverse reconciliation scenario uses Bob’s sequence as
the target to correct Alice’s sequence. Generally, the latter scenario can obtain a higher secret
key rate [35,38]. Without loss of generality, we only consider the reverse reconciliation in
this research.

2.1. Review of Slice Error Correction

In information reconciliation, Alice and Bob first perform an operation called quan-
tization to convert the correlated values into binary sequences and then choose an error
correction scheme to correct the binary sequence over an authenticated classical channel.
SEC is a generic reconciliation protocol [22]. Its underlying idea is to convert Alice’s and
Bob’s values into bit strings with the slice function (i.e., quantization function) and then ap-
ply an error correction scheme as a primitive, taking advantage of all available information
to minimize the number of exchanged reconciliation messages.
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This works in two steps: First, Bob chooses a quantization function S(x) : R→ {0, 1}m

to map his raw data to m-slices binary digits, and informs Alice of the first t slices (usually t
= 2 or 3), S(x) is a vector of slices S(x) = (S1(x), · · · ,Sm(x)); then, Bob sequentially deals
with the remaining slice k (t + 1 ≤ k ≤ m) by sending a syndrome of Sk(x) to Alice so that
Alice can recover Sk(x) with a high probability.

The quantization function is to divide the set of real numbers R into 2m intervals and
then to assign different binary values to each of these intervals. There are two different
schemes to construct the quantization function. The first construction scheme is to divide
R with 2m − 1 equidistant points. The second construction scheme freely chooses 2m − 1
points to divide R, which performs better but has a much higher computational complexity.
The previous work indicated that the second scheme does not improve as much as the
quantization efficiency compared with the first scheme [33]. Therefore, we use the first
scheme to construct the quantization function in this research.

In addition, previous studies have shown that the best bit assignment method is to
assign the least significant bit of the binary representation of a− 1 (0 ≤ a− 1 ≤ 2m − 1)
to the first slice S1(x) when τa−1 ≤ x < τa [22]. The variables τj divide the real numbers
R into 2m intervals, where 1 ≤ j ≤ 2m − 1, τ0 = −∞, τ2m = +∞. Then, each bit of a− 1 is
subsequently assigned to the remaining slices. More specifically,

Si(x) =
{

0 , if τ2in ≤ x < τ2in+2i−1

1 , otherwise
, (1)

where 1 ≤ i ≤ m and n is a nonnegative integer.

2.2. Improvement of Slice Error Correction

In the decoding process of SEC, the slice sequences are corrected in sequence; hence,
the estimation of the current slice recursively depends on all previous slices. For this reason,
the performance of SEC can be improved by reducing the bit error rate (BER) ei of the
previously decoded slices, ei denotes the probability that Alice makes a wrong estimate of
Bob’s slice value Si(x). According to the characteristics of quantization function S(x), it is
not hard to find that the last slice Sm(x) corresponds exactly to the sign of input variable
x. Therefore, the quantization scheme of the last slice is similar to the multidimensional
reconciliation, which uses the sign of the rotated data as the target sequence.

As is known, multidimensional reconciliation typically performs better than the SEC
reconciliation in estimating the quantized values, especially at a low SNR [24]. For each
slice, although having obtained the first few slices, Alice still needs to infer Bob’s slice value
in a certain number of intervals. Taking the case of m = 4 slices as an example, if Alice has
the first two slices (S1(x),S2(x)) = (0, 1), she needs to estimate Bob’s slice S3(x) among
four intervals, i.e., (τ2, τ3), (τ6, τ7), (τ10, τ11), (τ14, τ15) to satisfy (S1(x),S2(x)) = (0, 1).
However, multidimensional reconciliation calculates the probabilities of Bob’s quantized
value with the joint density function directly, which leads to more accurate estimations.

Consequently, to reduce the BER of the slice, we could execute a random orthogonal
rotation on the raw data before the slice quantization and then infer the last slice Sm(x)
according to multidimensional reconciliation. After decoding the m-th slice, Alice corrects
the remaining slices in order. Assuming that Alice and Bob agree on the quantization
function S(x) and the dimension d of the orthogonal matrix, the procedure of our improved
protocol for reverse reconciliation is shown in Figure 2. The detailed process is described
as follows:
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Figure 2. Procedure of the RSEC protocol for the continuous variables of the CV-QKD system.

Step 1: Alice and Bob divide their raw data into d-dimensional vectors as X = {xi}d,
Y = {yi}d. Bob randomly generates a bit string B = {bi}d and chooses a point U = {µi}d

on the unit sphere Od−1 adjacent to the point UB = { (−1)bi√
d
}d. Then, he calculates an

orthogonal matrix M satisfying MT = U for rotating Y to Y′ = MY, and informs Alice of
the matrix M, where T = {ti}d, ti =

yi
‖Y‖ .

Step 2: After receiving Bob’s orthogonal matrix M, Alice performs the same rotation
on X and has the rotated data X′ = MX.

Step 3: Bob quantizes his rotated data Y′ into m-slice bit vectors with the quantization
function S(x), such as Equation (1), and sends the quantized slice values of the 1 ∼ (l − 1)
slices Q1, · · · , Ql−1 to Alice, where Qi = Si(Y′).

Step 4: Alice constructs a bit string Q̂m of the m-th slice Qm from her rotated data X′

using the slice estimator Ŝ as Equation (11) in Section 2.3. Subsequently, Bob uses a chosen
error correction codes to generate a syndrome Sm so that Alice aligns her bit string Q̂m on
the sequence Qm.

Step 5: For each subsequent slice k, l ≤ k < m, Alice constructs a new string by apply-
ing the slice estimator Ŝ to X′, and taking into account the disclosed slices Q1, · · · , Ql−1
and the previously corrected bit strings Ql , · · · , Qk−1, Qm. Again, Alice aligns her bit
string to Bob’s sequence Qk using their chosen error correction codes and corresponding
syndrome Sk.

2.3. Slice Estimator of RSEC

In the decoding stage of the RSEC reconciliation, we need to use the side information
to estimate Bob’s quantized slices first. Let us now detail the expressions we proposed.
According to the decoding process, we first estimate the last slice m of Bob. As is known,

Y′ − X′ = MY−MX
= MZ.

(2)

where M = (mij)d×d is the rotation matrix, and Z = {zi}d follows the Gaussian distribution,
zi ∼ N(0, σ2).
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As Gaussian variables have linear translation invariance—i.e., the linear combination
of the independent Gaussian variables is still a Gaussian random variable—then z′i = y′i− x′i
follows the following Gaussian distribution

z′i ∼ N(0, ∑d
j=1 m2

ijσ
2). (3)

It is known that ∑d
j=1 m2

ij = 1, (i = 1, 2, · · · , d) since M is an orthogonal matrix. Therefore,
the random variable Z′ = Y′ − X′ has the same probability distribution as Z, i.e.,

Y′ − X′ ∼ N(0, σ2)d, (4)

where Z′ = {z′i}d. Similarly, Bob’s rotated data Y′ = MY follows the distribution
Y′ ∼ N(0, δ2 + σ2)d, and X′ = MX follows the distribution X′ ∼ N(0, δ2)d. In addi-
tion, according to the characteristics of the quantization function S(x), the bit string
Qm = (Q1

m, Q2
m, · · · ) corresponds to the sign of the rotated data Y′, i.e., if y′i ≥ 0, Qi

m = 1,

else, Qi
m = 0, i = 1, 2, · · · . Here, we use Qj

k to denote the k-th slice of y′j. Hence, we obtain

the conditional probability of Qi
m as follows

Pm(Qi
m|x′i) =

K√
2πσ2

e
−(J (Qi

m)|y′i |−x′i)
2

2σ2 , (5)

where J (x) = (−1)x+1, K is the normalization factor Pm(Qi
m = 0|xi)+ Pm(Qi

m = 1|xi) = 1.
By integrating the conditional probability into a parameter, we find the soft information
called the log likelihood ratio (LLR), which is a very useful parameter for estimation,
as follows

ln
Pm(Qi

m = 0|x′i)
Pm(Qi

m = 1|x′i)
= −

2x′i |y′i|
σ2 . (6)

Given the transformation characteristics of the orthogonal rotation process, it is not
difficult to deduce y′i = µi||Y||. If estimating Qm with Equation (6), Alice needs Bob to
send his norm information ||Y||, which will lead to heavy communication traffic and
storage resource requirements. Fortunately, we proposed a method that calculates the LLR
without using the norm information of an encoder in our previous work [40]. Therefore,
our protocol uses this improved method to calculate the LLR of Qm as follows

LLR(Qi
m) = Snr||X|| ln

1− v(x′i)
1 + v(x′i)

, (7)

where Snr is the SNR of the quantum channel, and v(x′i) =
x′i
||X|| .

For the remaining slices k (l ≤ k < m), we derive their LLR with the corrected slices
and the received l − 1 slices as prior information. According to the previous analysis, we
find the joint density function of the rotated data X′ and Y′ as Equation (8). Hence, the
random variables X′ and Y′ follow the joint density function,

fX′Y′(x, y) =
1

2πδσ
e−x2/2δ2

e−(y−x)2
/

2σ2
. (8)

According to Equation (8) and the characteristics of the quantization function
Equation (1), we derive that the conditional probability of Qi

k is expressed as

Pk(Qi
k = b|x′i , Qi

1,··· ,k−1,m) = ∑
τ

∫ τa

τa−1

fX′Y′(x′i , y)dy, (9)
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where τ represents those quantization intervals satisfying S1,··· ,k−1(y) = B, Sk(y) = b,
i.e., τ = {(τa−1, τa)|∀y ∈ (τa−1, τa),S1,··· ,k−1,m(y) = B,Sk(y) = b}, b = 0 or 1, B =
(Qi

1,··· ,k−1, Qi
m) denotes the disclosed and corrected slices.

Accordingly, we find the initial LLR of Qi
k as Equation (10) to preliminarily estimate

the rotated results of the k-th slice,

LLR(Qi
k) = ln


∑
τ0

∫ τa
τa−1

e−x′2i
/

2δ2
e−(y−x′i)

2
/

2σ2
dy

∑
τ1

∫ τa′
τa′−1

e−x′2i
/

2δ2 e−(y−x′i)
2
/

2σ2
dy

, l ≤ k < m, (10)

where τ0 represents the quantization intervals that satisfy S1,··· ,k−1,m(y) = B,Sk(y) = 0,
and τ1 satisfies S1,··· ,k−1,m(y) = B,Sk(y) = 1, respectively.

Based on the derived LLRs of each slice, the estimator Ŝ of our RSEC reconciliation is
constructed as follows

Ŝ(Qi
j) =

{
0 , if LLR(Qi

j) > 0
1 , otherwise

. (11)

Then, Alice can use Equation (11) to construct an initial estimation Q̂i
j = Ŝ(Qi

j) for Bob’s

slice value Qi
j.

2.4. Error Probability of Slice Estimator

In order to evaluate the accuracy of the proposed slice estimator, we theoretically
analyze and compare the error probability of the SEC protocol and the RSEC protocol.
The error probability of the slice estimator denotes the theoretical probability that Alice’s
slice estimator yields a result different from Bob’s slice. For the SEC protocol, the error
probability in slice i (l ≤ i ≤ m) can be expressed as

ew
i = P

[
Si(Y) 6= Ŝw

i (X)
]

= ∑
Db1 ···bi−1

(
P[Si(Y) = 0] · P[Ŝw

i (X) = 1|S1···i−1(Y)]+

P[Si(Y) = 1] · P[Ŝw
i (X) = 0|S1···i−1(Y)]

)
,

(12)

where b1 · · · bi−1 ∈ GF(2)i−1 and Db1···bi−1
= {t|S1···i−1(t) = b1 · · · bi−1}, the superscript w

characterize the variables of the SEC protocol. As the random variables X and Y follow
the Gaussian distribution symmetrical about the coordinate axis, it is easy to obtain that
P[Si(Y) = 0] · P[Ŝw

i (X,S1···i−1(Y)) = 1] = P[Si(Y) = 1] · P[Ŝw
i (X,S1···i−1(Y)) = 0], and

then ew
i can be further written as

ew
i = 2 ∑

Db1 ···bi−1

P[Si(Y) = 0] · P[Ŝw
i (X) = 1|S1···i−1(Y)], (13)

each of these terms can be expanded as

P[Si(Y) = 0] =
∫
Ab1 ···bi−10

1√
2π(δ2 + σ2)

e
−y2

2(δ2+σ2) dy,

P[Ŝw
i (X) = 1|S1···i−1(Y)] =

∫
Bb1 ···bi−1

1√
2πδ2

e
−x2

2δ2 dx,

where Bb1···bi−1
= {x|

∫
Ab1 ···bi−11

fXY(x, y)dy >
∫
Ab1 ···bi−10

fXY(x, y)dy} denotes the set in

which Ŝw
i (x) = 1 has a higher probability than Ŝw

i (x) = 0, and fXY(x, y) = 1
2πδσ e−

x2

2δ2−
(y−x)2

2σ2 ,
Ab1···bi−1a = {y|S1···i−1(y) = b1 · · · bi−1 ∧ Si(y) = a}.
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In the RSEC protocol, the quantized values in slice m are estimated and decoded first.
According to the characteristics of the quantization function S , Bob’s last slice Qm = 0
when y < 0 and Qm = 1 otherwise. On the other side, Alice constructs an estimation of
Bob’s quantized value Qm with Equations (7) and (11). The result in the last slice yielded
by our estimator Ŝ(x) corresponds to the sign of x: Q̂m = 0 when x < 0 and Q̂m = 1
otherwise. Therefore, the error probability of the RSEC protocol in the last slice m can be
expressed as

ep
m = P

[
Sm(Y′) 6= Ŝm(X′)

]
= P(Y′ > 0) · P(X′ < 0|Y′ > 0) + P(Y′ < 0) · P(X′ > 0|Y′ < 0),

(14)

the superscript p characterize the variables of the RSEC protocol. By applying the proba-
bility distribution of X′ and Y′ as analyzed in the previous section, we have P(Y′ > 0) =
P(Y′ < 0) = 1

2 , and the ep
m can be further calculated as follows

ep
m = 1

2

∫ 0
−∞

1√
2πδ

e−x2/2δ2
dx
∫ +∞

0
1√
2πσ

e−(y−x)2
/

2δ2
dy+

1
2

∫ +∞
0

1√
2πδ

e−x2/2δ2
dx
∫ 0
−∞

1√
2πσ

e−(y−x)2
/

2δ2
dy

=
∫ +∞

0

∫ 0
−∞ fX′Y′(x, y)dxdy,

(15)

where fX′Y′(x, y) is given in Equation (8), and the second equation in Equation (15) is
transformed by using the symmetry of the probability distribution of X′ and Y′.

Similar to the SEC protocol, the quantized values of the RSEC protocol in other
slice k (l ≤ k ≤ m− 1) are estimated by using the disclosed slices and the successfully
decoded slices. Thus, the error probability of these slices can be calculated according to
Equation (13), where the last slice Sm(Y) is taken as additional information.

The error probabilities of the subsequent slices—which recursively depend on that of
all the previous slices—are not simple to calculate [22]. Here, we compare the estimation
accuracy of RSEC protocol with the SEC protocol only by the error probability in the first
decoded slice (i.e., the l-th slice in SEC, the m-th slice in RSEC). Using the Equations (13)
and the (15), we find the error probability in slice l = 3 of the SEC protocol and the error
probability in slice m = 5 of RSEC protocol as shown in Figure 3, where the first two slices
are disclosed and the quantization adopts the five-slices function.

ep
5 corresponding to the blue curve is always smaller than ew

3 corresponding to the
black curve, i.e., the estimator of RSEC in the first decoded slice always has a lower error
probability than that of SEC. If the m-th slice in the SEC protocol is estimated first, its error
probability ew

5{1,2} corresponding to the red curve, of which the expression can be given by
Equation (16), also always performs worse than that of the RSEC protocol.

ew
5{1,2} = 2 ∑

Db1b2

P[S5(Y) = 0] · P[Ŝw
5 (X) = 1|S1,2(Y)]. (16)

From the above analysis, it is indicated that the proposed estimator of RSEC protocol
has much higher estimation accuracy in the quantization phase than the original estimator
of the SEC protocol. Note that the error probability represents the theoretical case of the
bit error rate, and the bit error rate of each slice needs to be estimated separately in the
practical reconciliation.
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Figure 3. Comparison of the error probability between the RSEC and the SEC protocol at differ-
ent SNRs.

2.5. Reconciliation Efficiency

Let us now discuss the reconciliation efficiency of the proposed protocol, which is an
important indicator for evaluating the performance of the reconciliation procedure. As
is known, the random orthogonal rotation operation on raw data does not expose any
information of the rotated results [24]. According to the definition of efficiency in the slice
reconciliation [33], the reconciliation efficiency β of the RSEC protocol can be expressed as

β =

H(S(Y′))−m +
m
∑

i=1
Ri

I(X, Y)
, (17)

where I(X; Y) = 1
2 log2(1 + Snr) is the classical capacity of the quantum channel for

Gaussian variables, m denotes the number of slices of quantization function, and Ri
represents the code rate of the error correction scheme of the i-th slice. H(S(Y′)) is the
entropy of the slice sequences S(Y′), which can be calculated as follows

H(S(Y′)) = −∑
a

Pa log2 Pa, (18)

with

Pa =
1
2

(
er f

(
τa√

2(δ2 + σ2)

)
− er f

(
τa−1√

2(δ2 + σ2)

))
, (19)

where τa denotes the point dividing the real numbers R, 1 ≤ a ≤ 2m, and τ0 = −∞,
τ2m = +∞. δ2 and σ2 represent Alice’s modulation variance and the noise variance,
respectively.

Generally, the code rate of the first l − 1 slices are equal to 0 since they are disclosed
via the authentic classical channel.

3. Implementation of RSEC with Polar Codes

After quantizing the continuous variables into strings of bits with slice functions, the
legitimate parties are needed to further apply a classical error correction code to complete
the reconciliation of the correlated raw data. In this section, we will implement the RSEC
protocol with polar codes to distill the correct keys from the correlating raw data.
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3.1. Review of Polar Codes

The polar code is an error correction code that has been strictly proven to achieve
the Shannon capacity [48]. The recursive structure of its encoding and decoding gives
them good practical performance. This is relatively easier to construct than another com-
monly used code, i.e., LDPC code. Therefore, we chose polar codes to implement the
RSEC protocol in this research. The RSEC can also be implemented with other error
correction codes. Now, we briefly review the encoding and decoding of polar codes in
traditional communication.

3.1.1. Encoding

The central idea of polar codes is to convert the N individual copies of the channel
W into two different types of channels, i.e., error-free channel and completely noisy chan-
nel, through an operation called channel polarization—channel combining and channel
splitting. The information sender chooses the positions corresponding to the error-free
channel to place her message bits (called information bits), and usually sets the remaining
positions corresponding to the completely noisy channel as 0 (called frozen bits). The
information bits and frozen bits together form a sequence uN

1 of N bits. We use the notation
un

1 = (u1, · · · , un) to denote a row vector of n bits. The sender encodes the sequence uN
1 to

a codeword xN
1 by

xN
1 = uN

1 G, (20)

where G is the generator matrix and defined as G = F⊗ log2 N B, F⊗n means to perform the

Kronecker product n times on the matrix F ∆
=

[
1 0
1 1

]
, and B is a permutation matrix for

executing the bit-reversal operation [48]. Obtaining the codeword xN
1 , the sender transmits

it to the information receiver for decoding.

3.1.2. Decoding

After the codeword xN
1 is transmitted through the channel, the receiver obtains a

sequence yN
1 , which is a noise version of xN

1 . Then, he uses successive cancellation (SC)
or successive cancellation list (SCL) decoding algorithms to correct the error bits among
yN

1 with the given frozen bits. We here describe the receiver’s decoding process with a SC
decoding algorithm [48]:

1. Initialize the received information yN
1 with channel transition probability W(y|x) as

L(j)
1 (yj) =

W(yj|0)
W(yj|1)

, j = 1, 2, · · · , N. (21)

2. Calculate the likelihood ratio (LR) of uj with the decoding results ûj−1
1 = (û1, û2,

· · · , ûj−1) of the previous j− 1 bits as follows

L(j)
N

(
yj, ûj−1

1

)
=

W(j)
N (yN

1 , ûj−1
1 |uj = 0)

W(j)
N (yN

1 , ûj−1
1 |uj = 1)

, (22)

where
W(j)

N

(
yN

1 , uj−1
1 |uj

)
∆
=

1
2N−1 ∑

uN
j+1∈{0,1}N−j

WN

(
yN

1 |uN
1

)
, (23)

and

WN

(
yN

1 |uN
1

)
= WN

(
yN

1 |xN
1 = uN

1 G
)
=

N

∏
i=1

W(yi|xi). (24)



Entropy 2021, 23, 1317 11 of 20

3. Generate the decision ûj of uj as

ûj =


uj , if j ∈ A
0 , if j /∈ A and L(j)

N

(
yN

1 , ûj−1
1

)
≥ 1

1 , if j /∈ A and L(j)
N

(
yN

1 , ûj−1
1

)
< 1

, (25)

where A is the position set of the frozen bits.

After getting the j-th bit by step (iii), the process returns to step (ii) to decode the
(j + 1)-th bit.

3.2. Implementation Process

The reconciliation mode of CV-QKD is different from traditional communication. In
traditional communication, the codeword is mixed with noises during the reconciliation.
However, in a CV-QKD system, the two parties have already shared inconsistent data
before the post-processing phase, in other words, the noise in the codeword appeared
before the reconciliation. Therefore, in order to correct the slice sequences of RSEC, it is
necessary to establish a virtual channel for Alice and Bob to deal with the noise.

The encoding of polar codes is reversible: Encoding an input sequence x twice, one
can recover this sequence, i.e., xGG = x. This property can be used to establish a virtual
channel as: Bob encodes a slice sequence x to another sequence u = xG, and then sends
the bits uA corresponding to the frozen indices to Alice. Since uG = (xG)G = x, the slice
sequence x can be regarded as a polar codeword, Alice’s initial estimation Ŝ(x) of Bob’s
slice value can be viewed as the received codeword, and uA corresponds to the frozen bits
shared by the two parties. Therefore, a virtual channel can be established by using the
above method.

Before launching the reconciliation with polar codes, Alice and Bob determine the
code rate R′i of each slice according to the SNR and share the corresponding frozen index
set Ai. The frozen index set can be selected by a construction algorithm with consideration
to R′i. Then, the logic structure of the RSEC reconciliation with polar codes is shown in
Figure 4, in which the detailed implementation process is described as follows:
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Figure 4. Logic structure of the RSEC reconciliation with polar codes. The LR calculation modules

provide the initial LR L(j)
1,i (q̂j), and the frozen bit index memory stores the frozen bit UAi and frozen

index set Ai.

Step 1: Alice and Bob convert their correlated data X, Y to another continuous-variable
sequence noted as X′, Y′ with random orthogonal rotation according to RSEC. Bob then
quantizes Y′ into m slice sequences Q1, Q2, · · · , Qm with the slice function and sends the
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first l− 1 slices Q1, Q2, · · · , Ql−1 to Alice. Afterward, they begin to reconcile the remaining
slice sequences with polar codes in the order of m, l, l + 1, · · · , m− 1 slice.

Step 2: Alice uses the proposed estimator in Equation (11) to construct a bit string Q̂i
corresponding to Bob’s slice sequence Qi. Meanwhile, Bob encodes his slice sequence to
U = QiG, and sends the bits UAi at the frozen positions to Alice.

Step 3: Alice calculates the initial LR L(j)
1,i (q̂j) as Equation (26), j = 1, 2, · · · , N, and

then makes a decision Û on U after getting the final LR L(j)
N,i(q̂

N
1 , ûj−1

1 ) in Equation (27).
Afterward, she can recover Bob’s sequence Qi with a high probability by executing an
encoding operation on Û.

L(j)
1,i (q̂j) =

W(q̂j|0)
W(q̂j|1)

, j = 1, 2, · · · , N, (26)

where L(j)
1,i (q̂j) is the initial LR corresponding to the j-th bit of U, q̂j is the j-th bit of Q̂i,

U = (u1, · · · , uN), Û = (û1, · · · , ûN), the channel transition probability can be calculated
as: if y = x, W(y|x) = 1− ei, if y 6= x, W(y|x) = ei. The bit error rate ei can be estimated
in the stage of parameter estimation by executing the quantization operation on the extra
raw data.

L(j)
N,i(q̂

N
1 , ûj−1

1 ) =
W(j)

N (q̂N
1 , ûj−1

1 |0)

W(j)
N (x′N1 , ûj−1

1 |1)
. (27)

Moreover, Equation (27) can evolve in a recursive manner as
if j is odd, i.e., j = 2k− 1, then

L(2k−1)
N,i (q̂N

1 , û2k−2
1 ) = f

(
L(k)

N/2,i

(
q̂N/2

1 , û2k−2
1,o ⊕ û2k−2

1,e

)
, L(k)

N/2,i

(
q̂N

N/2+1, û2k−2
1,e

))
, (28)

if j is even, i.e., j = 2k, then

L(2k)
N,i (û

N
1 , û2k−1

1 ) = g
(

L(j)
N/2,i

(
q̂N/2

1 , û2k−2
1,o ⊕ û2k−2

1,e

)
, L(k)

N/2,i

(
q̂N

N/2+1, û2k−2
1,e

)
, û2k−1

)
, (29)

where f (a, b) = a·b+1
a+b , g(a, b, s) = a1−2s · b, we use xb

a,o to denote the odd terms of xb
a, and

xb
a,e denotes the even terms of xb

a.
Alice can also use LLR as the soft information of polar codes for decoding. In this case,

the initial LLR is calculated according to Equations (7) and (10).
In order to ensure that the equation ÛG = Qi holds with a high probability, Alice and

Bob need to perform a cyclic redundancy check (CRC) to verify the decoding result Û. If Û
fails to pass CRC check, Alice and Bob give up on this slice Qi. Even if the decoding result
passes the CRC check, undetected error bits may still exist. However, this situation rarely
occurs and can be overlooked.

As the CRC values will leak the information about Qi, it is necessary to discard them.
Therefore, the code rate Ri of each slice is calculated as follows

Ri = R′i −
ncrc

N
, (30)

where ncrc is the length of the CRC values.

4. Experiment Results and Analysis

To evaluate the performance of the RSEC protocol, we performed a series of experi-
ments to compare their performances, including the quantization efficiency, reconciliation
efficiency, and the secret key rate.
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4.1. Quantization Efficiency of RSEC

The principle of quantization is to minimize the information loss so that I(X′;S(Y′))
can be made arbitrarily close to the initially shared information I(X; Y). After quantization,
the mutual information I(X′;S(Y′)) shared by Alice and Bob can be expressed as

I(X′;S(Y′)) = H(S(Y′))−
[

H(Sm(Y′)|X′) + ∑m−1
i=1 H(Si(Y′)|X′,S1...i−1,m(Y′))

]
, (31)

where S(Y′) = (S1(Y′), · · · ,Sm(Y′)) are the slice values of Bob.
As the conditional entropy of Equation (31) recursively depends on all previously

estimated results, calculating I(X′;S(Y′)) is not a simple task. For this reason, it is common
practice to replace the conditional entropy with H(ei) equivalently [22]. Then, the goal of
quantization is simply to minimize each ei, of which H(ei) is an increasing function for
0 ≤ ei < 0.5, ei is the BER of i-th slice. Therefore, the quantization efficiency βs can be
measured with Equation (32) equivalently [22],

βs =
H(S(Y′))− He

I(X; Y)
, (32)

with He = ∑m
i=1 H(ei), H(ei) = −eilog2(ei)− (1− ei)log2(1− ei).

Figure 5 shows the quantization efficiency curves of SEC and RSEC at different SNR
when m = 4 and m = 5. As can be seen from the figure, the quantization efficiency of
SEC drops sharply for SNR < 3, which confirms that SEC reconciliation usually performs
poorly at low SNRs. By contrast, RSEC can still maintain a high quantization efficiency
βs > 96% for almost all SNRs < 3, and even achieves above 99% quantization efficiency
in the range of SNR ∈ (1, 3) when adopting the five-slice scheme. The primary reason for
the better performance of the proposed RSEC over the SEC protocol is attributed to our
new estimator.
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Figure 5. The quantization efficiency of the RSEC and the SEC protocol with four and five slices at
different SNR. The upper two curves denote the values of the RSEC protocol; the lower two curves
correspond to the values of the SEC protocol.

With the orthogonal rotation, our estimator can estimate Bob’s slice sequences more
accurately, especially for the slice that is decoded first, and thus the error rate ei decreases
accordingly. Moreover, the result in Figure 5 also confirms the following basic facts.
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For a fixed SNR, the higher the number of slices, the lower the information loss caused
by quantization.

4.2. Reconciliation Efficiency of RSEC with Polar Codes

It appears that the polarization speed of polar codes is highly dependent on the
channel [49]. Compared with the Binary Input Additive White Gaussian Noise Channel
(BIAWGNC), constructing polar code for a Binary Symmetric Channel (BSC) is relatively
uncomplicated and more common. Moreover, a BSC can be established between the two
parties if Alice makes an initial estimation of Bob’s slice sequences using LLR values.
Accordingly, in our experiments, we construct the polar codes on a BSC and calculate the
initial LR as Equation (26) for decoding the slice sequences.

Figure 6 compares the reconciliation efficiencies of the RSEC and the SEC protocol
with polar codes when m = 5. The 32-bit CRC is adopted for polar codes to check the
decoding results, i.e., ncrc = 32, and the eight-dimensional orthogonal matrix is used in
rotation. For a fixed SNR value and different block length, 1000 blocks of raw data are
generated to measure the reconciliation performance. The experimental results are obtained
with frame error rate (FER) ≤ 0.1, but a null BER in the blocks decoded successfully.
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Figure 6. The reconciliation efficiency of the RSEC and SEC protocol with polar codes at different
SNRs when the number of slices m = 5. The upper three curves show the values of the RSEC protocol;
the lower three curves correspond to the values of the SEC protocol. For the RSEC and SEC protocols,
their three curves from bottom to top represent the reconciliation efficiencies obtained with N = 220,
222, 224, respectively.

Combining Figures 5 and 6, it is not difficult to find that the curvilinear trend of the
quantization efficiency is essentially consistent with that of the reconciliation efficiency;
this is because the reconciliation scheme with good quantization performance usually
performs better in reconciliation. Hence, the reconciliation efficiency of the proposed
protocol is higher than the SEC protocol over the entire range in Figure 6 due to its higher
quantization efficiency.

As shown in Figure 6, both the reconciliation efficiencies of RSEC and SEC increase
with the increasing block length of polar codes since the decoding performance of polar
codes will become better with the increase of its block size. The proposed RSEC protocol
has an efficiency above 90% over almost the entire range SNR ≥ 1 for the block lengths
starting from 224, and even exceeds 95% at SNR > 3, which allows the system to distill
more than 1 bit corrected key per raw data.
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RSEC has a high quantization efficiency in the SNR range (1,3), whereas its reconcilia-
tion efficiency is not so perfect. The reason is that the relatively low SNR leads to a high
BER > 10% in some noisy slices, and the decoding performance of polar codes decreases
at high BER [50]. In fact, the high quantization efficiency of RSEC allows the system to
achieve a higher reconciliation efficiency by using a high-performance code.

In addition, we compare the reconciliation efficiency values with the representative
works on SEC in Table 1. As shown in the table, the proposed protocol improves almost all
previously published reconciliation efficiencies in terms of the SEC protocol in the high
SNR regime, which is the main focus of the SEC reconciliation. In fact, the reconciliation
efficiency values of [33] listed in the table are obtained under an optimistic situation of
adopting the optimal number of slices and specially designed high-performance codes.
Nevertheless, our reconciliation scheme still has a competitive advantage over [33] on
the whole.

Table 1. Comparison of the reconciliation efficiencies between RSEC and some representative
reconciliation works.

SNR Reconciliation Efficiency β

Ref. [33] a Ref. [23] b Ref. [29] c This Work

3 94.1% 79% 88.7% 94.85%
5.12 94.4% − − 95.53%
7 − 84% − 95.60%
14.57 95.8% − − 95.02%

a The slice number and error correction codes adopted in [33] are not reported in detail; b It implements the
four-slice and five-slice SEC with the LDPC for blocks of 2× 105; c It implements the four-slice SEC with the
LDPC and Bose–Chaudhuri–Hocquenghem (BCH) for blocks of 2× 105 in a 25 km all-fiber CV-QKD system.

Many achievements have also been made in multidimensional reconciliation, for
example, [38] implements eight-dimensional reconciliation with β = 99% and FER = 0.883
using QC MET-LDPC code at SNR= 0.0283, and [39] achieves β = 93.40%, 95.84%, 96.99%
and FER ≤ 0.375 with eight-dimensional reconciliation based on the MET-LDPC code
at SNRs of = 0.160, 0.075, 0.029, respectively. However, unlike the SEC protocol, the
multidimensional reconciliation protocol is more suitable for the low SNRs rather than the
high SNR regime. The existing works on multidimensional reconciliation are aimed at the
extremely low SNRs and rarely provide the experimental results in the high SNR regime.
Therefore, we mainly give a comparison with the representative results of the SEC protocol.

4.3. Secret Key Rate of RSEC

Assuming a collective Gaussian attack and accounting for the finite-size effects, the
secret key rate of a CV-QKD system with reverse reconciliation can be expressed as [29]:

K f inite =
Ndata
Ntotal

[βIAB − χBE − ∆(Ndata)], (33)

where Ntotal is the total number of symbols sent from Alice to Bob, Ndata is the number
of raw data used for key distillation, β is the reconciliation efficiency, IAB denotes the
mutual information between Alice and Bob, χBE denotes the Holevo bound on the infor-
mation that Eve can obtain, and ∆(Ndata) is the finite-size offset factor. IAB and χBE are
related to the physical parameters, including the transmittance T, the total noise χtotal ,
and Alice’s modulation variance VA. The transmittance T of the quantum channel is de-
fined as T = 10−αL/10, where α is the single-mode fiber transmission loss and L is the
transmission distance.

The total noise χtotal consists of the channel added noise and the noise generated
by Bob’s detector, and be given by χtotal = χline +

χhom
T , where χline = ( 1

T − 1) + ξ and
χhom = 1+Vel

η − 1, ξ is the excess channel noise, Vel denotes the added electronic noise of
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Bob’s detector, and η represents the detector efficiency. The detailed calculation about IAB,
χBE, and ∆(Ndata) can be found in Appendix A.

In our simulation, the experimental physical parameters reported in previously pub-
lished work [29] were used to characterize the CV-QKD system and quantum channel.
Optimizing the modulation variance VA for each transmission distance can maximize the
SNR of a quantum channel. The modulation variance VA in our work is adjusted according
to [38]. We chose Ntotal = 2Ndata and the security parameter of 10−10 for ∆(Ndata) [18].

Figure 7 presents the finite secret key rates K f inite over the transmission distances
with N f inite = 240 bits. The five-pointed stars and triangle points compare the secret
key rates achieved with polar codes of block lengths N = 224 bits, where the CV-QKD
system using RSEC always provides higher secret key rates than that using SEC at the
same transmission distance. Using RSEC reconciliation, we achieve a secret key rate of
7.83× 10−3 bits/pulse at a distance of 33.93 km, while the CV-QKD system using SEC
cannot provide any secret key.
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Figure 7. Finite secret key rate with Ntotal = 240 vs. distance. The five-pointed stars correspond to
the secret key rates using five-slice RSEC with polar codes of N = 224; the triangle points correspond
to the values using five-slice SEC with polar codes of N = 224; the blue dotted line and purple
dotted line represent the asymptotic theoretical secret key rates using five-slice RSEC and SEC with
a perfect error correction scheme (i.e., βi = 1), respectively. Other parameters are as follows [29]:
α = 0.2dB/km, ξ = 0.005, Vel = 0.041, η = 0.606.

In particular, assuming perfect error correction in the decoding of each slice, the RSEC
protocol has more obvious advantages than the SEC protocol in the asymptotic secret key
rate as the two dotted lines in Figure 7. A perfect error correction scheme allows each
slice to achieve its Shannon capacity, i.e., the efficiency βi of error correction in each slice
is assumed as 1. With the increase of the transmission distance, the secret key rate of CV-
QKD decreases. This is because the SNR becomes lower with the increase of transmission
distance, which leads to the reduction of the quantification efficiency. Notably, when the
transmission distance increases to about 30 km, the CV-QKD system using the SEC protocol
can hardly generate any secret key. However, the RSEC protocol can theoretically extend
the secure distance of the CV-QKD system to about 45 km.
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There exists an upper bound called the Pirandola–Laurenza–Ottaviani–Banchi (PLOB)
bound for the secret-key capacity of a lossy channel. The PLOB bound Klim is determined
by the transmittance T of channel and is given by [51]

Klim = −log2(1− T). (34)

The black solid line in Figure 7 is the PLOB bound, which sets the fundamental rate limit
for point-to-point QKD in the presence of loss. It is almost non-achievable for current
protocols in the practical systems. Assuming the infinite-size keys and ideal conditions
(such as unit detector efficiencies, zero dark count rates, zero intrinsic error, unit error
correction efficiency, and zero excess noise), the maximum rate of the CV-QKD protocol
(the red solid line) scales as T/ln4, which is 1/2 of the PLOB bound [51].

If taking the finite-size effect and the non-ideal factors of physical devices into account,
the secret key rate of the practical CV-QKD systems will be much lower. As shown in
Figure 7, considering the non-ideal condition, the finite secret key rate of the CV-QKD
system using RSEC can achieve 3.28× 10−2 ∼ 1.652× 10−1 bits/pulse at 10 ∼ 27 km,
which is about 0.115 of the PLOB bound. However, the system using SEC has a lower rate,
which is just about 0.064 of the PLOB bound, at 7.1× 10−3 ∼ 9.22× 10−2 bits/pulse.

The previous experimental results indicate that the proposed RSEC protocol is clearly
advantageous. It significantly improves the quantization and reconciliation efficiency
of SEC, which enables the CV-QKD system to achieve a higher secret key rate and a
longer secure transmission distance. Overall, our work provides a better candidate for the
application of the CV-QKD system.

5. Conclusions

In this research, we analyzed the strategy of the SEC protocol and proposed modifica-
tions to improve its anti-noise ability by performing a random orthogonal rotation on the
correlated raw data and deducing a slice estimator. The experimental comparisons of the
original SEC protocol and the proposed RSEC protocol show that the modifications can
reduce the information loss of the quantization and release the performance limitation of
SEC at the relatively low SNR.

Accordingly, both the secret key rate and the range of CV-QKD are increased. In
order to accomplish the reconciliation of the raw data in CV-QKD, we implemented the
RSEC protocol by combing with the polar codes. The reconciliation efficiency of RSEC
protocol achieved above 95% when the input scale adopted 16 Mb. Both theoretical and
experimental analysis showed that this is a more suitable reconciliation scheme for a
practical CV-QKD system.
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Appendix A

The mutual information between Alice and Bob IAB can be calculated by using Shan-
non’s channel capacity [29],

IAB =
1
2

log2(1 + Snr) =
1
2

log2(
V + χtotal
1 + χtotal

), (A1)

where V = VA + 1, VA represents Alice’s modulation variance, and χtotal = χline + χhom/T
represents the total noise between Alice and Bob as previously defined.

The Holevo bound on information available to Eve is given by

χBE = G
(

λ1 − 1
2

)
+ G

(
λ2 − 1

2

)
− G

(
λ3 − 1

2

)
− G

(
λ4 − 1

2

)
, (A2)

where G(x) = (x + 1)log2(x + 1)− xlog2(x), and the symplectic eigenvalues λ1,2,3,4 are
given by

λ2
1,2 =

1
2
(A±

√
A2 − 4B), λ2

3,4 =
1
2
(C±

√
C2 − 4D), (A3)

with
A = V2(1− 2T) + 2T + T2(V + χline)

2, B = T2(Vχline + 1)2, (A4)

C =
V
√

B + T(V + χline) + Aχhom
T(V + χtotal)

, D =
V
√

B + Bχhom
T(V + χtotal)

. (A5)

When Ndata > 104, the finite-size offset factor ∆(Ndata) can be approximated as
follows[18],

∆(Ndata) ≈ 7

√
log2(2/ε)

Ndata
, (A6)

where ε is the security parameter.
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