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Abstract: This paper investigates the nested Monte Carlo tree search (NMCTS) for feature selection
on regression tasks. NMCTS starts out with an empty subset and uses search results of lower
nesting level simulation. Level 0 is based on random moves until the path reaches the leaf node.
In order to accomplish feature selection on the regression task, the Gamma test is introduced to
play the role of the reward function at the end of the simulation. The concept Vratio of the Gamma
test is also combined with the original UCT-tuned1 and the design of stopping conditions in the
selection and simulation phases. The proposed GNMCTS method was tested on seven numeric
datasets and compared with six other feature selection methods. It shows better performance than the
vanilla MCTS framework and maintains the relevant information in the original feature space. The
experimental results demonstrate that GNMCTS is a robust and effective tool for feature selection. It
can accomplish the task well in a reasonable computation budget.

Keywords: feature selection; regression; nested monte carlo tree search (NMCTS); filter; gamma
test; GNMCTS

1. Introduction

Feature selection is a commonly used procedure in data pre-processing. It is further
categorized into the filter, wrapper and embedded methods. The filter method generates
an optimal feature subset according to a certain evaluation function; it is independent of
a succeeded classifier or regressor. Therefore, it can obtain the final result faster. On the
contrary, the wrapper method evaluates feature subset according to classifier or regressor
result. Thus, it can achieve better performance on the classifier or regressor, but it takes
a longer time for the whole process. The embedded method integrates feature selection
and model training together. It utilizes learned hypotheses to accomplish feature selection
during model-optimized training. In order to achieve a more flexible model combination,
the filter method is a good choice.

The Monte Carlo Tree Search (MCTS) method has achieved many states of art perfor-
mances in the game domain, such as Go [1,2], LOA, Bubble Breaker, SameGame, etc. [3].
These games can be viewed as a large-scale Markov decision process. From this perspective,
it can also deal with online planning, route scheduling and combinatorial optimization
problems. The success of AlphaGo has had a profound influence on artificial intelligence
(AI) approaches. Many reinforcement learning methods were adapted in feature selection
problems and achieved satisfactory results. Typically, MCTS for feature selection has devel-
oped many fine frameworks [4–6]. It can be categorized into the filter or wrapper method
depending on the specific framework design. On the one hand, the classifier or regressor
results can be directly returned as a reward. On the other hand, evaluation value calculated
from certain criteria such as information gain, Fisher’s score, etc., can be used as a reward
during iteration. The process can then be considered as a filter method. To be specific, the
tree search combines selective strategy and simulation strategy called rollout to obtain the
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optimal solution. It has a trade-off of exploration versus exploitation, which is also well
known as the e–e dilemma. The UCT technique is the most popular way to control the
growth of the search tree. The UCB-tuned1 was proposed soon after; this technique adapted
well in single-player games, so in this paper, its basic form was also used for feature subset
selection. Typically, this paper mainly focused on the regression task. Gamma test was
introduced to play the role of the evaluation function. Since MCTS is based on selective
sampling and simulation, the result is backpropagated until the episode ends; node values
are only updated until then. Speed of convergence and efficient calculation becomes a key.
The Gamma test [7–10] is a non-parametric tool to measure the non-linear relationship
between inputs and outputs. It has time complexity O(Mlog M), where M is the number of
data points. One run of the Gamma test for thousands of data points usually takes a few
seconds. Therefore, the Gamma test can fit this task well. Usually, MCTS takes random
moves or follows a simple heuristic strategy during simulation. Nested MCTS (NMCTS)
has a stronger performance compared to regular MCTS [11]. NMCTS has beaten MCTS in
the deterministic Markov decision process domains such as SameGame, Clickomania. It is
natural to expect NMCTS could achieve better performance in feature selection compared
to MCTS. NMCTS of higher nesting level uses best search result of lower nesting level
as simulation result. A level 1 search corresponds to regular MCTS. Based on the MCTS
feature selection method, we proposed the Gamma test nested MCTS method for feature
selection in this paper. The main contributions of the study are listed as below:

• The novel method GNMCTS is proposed to solve feature selection on regression tasks,
which is less explored in recent researches;

• GNMCTS uses the Gamma test as a reward function, which is easy to implement and
takes only a few seconds on a dataset with tens or hundreds of feature dimensions;

• GNMCTS searches the feature space more efficiently through nesting; the two hyper-
parameters, nesting level and iteration numbers, are flexible to tune, which can be set
to different values on different nesting levels;

• GNMCTS is tested on seven real-world datasets, and the results are compared with
the other six feature selection methods based on reinforcement learning. The result
shows the superiority of GNMCTS.

The paper is organized as follows: Section 2 briefly reviews the related work. In
Section 3, the background methodology on the basic MCTS framework of feature selection
is briefly introduced. Section 4 focuses on the GNMCTS method. Given the background of
MCTS application in the feature selection domain in Section 4.1, NMCTS was extended to
solve the problem in Section 4.2. A revised reward function based on the Gamma test is
introduced in Section 4.3. Section 5 mainly compared GNMCTS with other feature selection
methods on UCI and WEKA datasets. Conclusions and future work are stated in Section 6.

2. Related Work

Feature selection is widely used during data pre-processing. It aims to reduce the data
dimensions without losing valuable information and accelerate the succeeded tasks while
retaining high accuracy.

The wrapper methods are dependent on the specific classification or regression al-
gorithms. The result of the classifier or regressor acts as an evaluation standard for the
candidate feature subsets. Huang [12] proposed a method called FCSVM-RFE for gene
detection, where representative genes are ranked by SVM-RFE after gene clustering. Ma-
sood [13] proposed to use an incremental search strategy combined with an extreme
learning machine classifier. The research of these wrapper methods focused on alleviating
time complexity. However, the inherent property of an expensive computation budget
is not easy to conquer. Filter methods employ certain measurements such as informa-
tion gain [14] to evaluate subsets. The main focus lay on improving accuracy, but most
researchers pay attention to classification tasks that are not appropriate for regression.
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Hybrid methods take advantage of both categories. These methods have independent
metrics and specific learning algorithms to measure the subsets.

From the perspective of searching strategy, feature selection methods can be catego-
rized into exhaustive, heuristic, meta-search. Exhaustive search is basically impossible
to implement on real-world datasets. This leaves the researchers two directions [15] to
explore search space: guiding the search process under specific heuristics or using greedy
hill-climbing methods. The latter is often simple to implement, such as sequential for-
ward or backward selection (SFS, SBS), the best first search. These methods follow a
monotonic behavior of feature selection. The popular heuristics include genetic algorithm
(GA), ant colony optimization (ACO) and particle swarm optimization (PSO). Nguyen [16]
presented a comprehensive survey on the state-of-the-art works applying swarm intelli-
gence to achieve feature selection in classification, with a focus on the representation and
search mechanisms. Sharma [17] conducted a systematic review methodology for synthesis
and analysis of one hundred and seventy-six articles. The parameters related to these
nature-inspired methods are complex to control and needed to be tuned with great effort.
While feature selection based on reinforcement learning method was recently developed
with the success of AlphaGo. Fan W. [18] proposed an Interactive Reinforced Feature
Selection (IRFS) framework that guides agents by not just self-exploration experience but
also diverse external skilled trainers to accelerate learning for feature exploration. The
hyper-parameters in these methods are relatively easy to control, and fewer parameters
require to be tuned.

The stopping criteria have a direct influence on the size of the candidate feature
subset. It indicates when the search procedure should be stopped. The commonly used
criteria include (1) pre-defined number of iterations, (2) pre-defined number of features,
(3) difference or improvements between successive iteration steps and (4) judgment by
specific evaluation functions. The above criteria do not couple with different methods
flexible enough. Automatic stopping criteria should be customized depending on the
specific learning algorithms.

In summary, to overcome the problems stated above, the proposed method in this
paper focused on the design of the filter feature selection method for the regression task.
In order to evaluate the candidate subsets, the Gamma test was used, and NMCTS in
game theory was introduced with the merits of easily controllable hyperparameters. The
automatic stopping criteria were designed considering the structure characteristic of the
search tree and the property of the Gamma test.

3. Background Methodology
3.1. Basic Procedure of Monte Carlo Tree Search (MCTS) for Feature Selection

Feature selection can be regarded as a sequential decision problem. It has many
common points with a single-player game that has no opponent. To be specific, the action
space and state space are finite and discrete. Given a set of features FAll = {X1, X2, . . . , XM},
MCTS algorithm will finally return the best action set as the best feature subset Fbest. A
brief introduction of MCTS for the feature selection problem is represented in Figure 1. The
algorithm can be summarized into the following four basic steps, which are:

(1) Selection: Let Nroot define the root node where the feature subset is empty (i.e.,
Froot_sub ∈ ∅), starting from Nroot, use some tree policy to gradually descend in-
side the tree until the path reaches a non-terminal state leaf node Ni. Choosing
an action corresponds to adding a selected feature to the candidate feature subset
Fsub = Fsub ∪ {Ni}, Fsub is also used as the state of Ni;

(2) Expansion: Expand Ni until it has no more legal actions that correspond to the case
where the remaining feature set is empty (i.e., FAll\Fsub = ∅) or pre-conditioned
number of expanded children is reached. Then, add expanded children node Nj to
Ni. Initialize Nj with new node state as Fsub = Fsub ∪

{
Nj
}

, record its parent Ni. The
features already appeared in Fsub will no longer be in the legal actions;
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(3) Simulation: This procedure is also called a rollout or a playout. In general, starting
from the leaf node Ni, the successive nodes are chosen step by step by some simulation
policy until it reaches a terminal state or pre-conditioned computation budget;

(4) Backpropagation: The simulation result is backpropagated through the nodes during
the selection phase on the path, and their statistics are updated. The statistics include
the visit number of nodes and their values.
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The tree search strategy includes two policies. The two policies involved in the
selection phase and simulation phase, respectively, are:

(1) Tree policy: It is a strategy to select features. Furthermore, it can be split into two
aspects. One is selected during the tree build-up period, and another is the final selection
of picking up the best feature sequence Fbest. The former has many variations [19]; the most
popular version proposed by Auer et al. is called UCB1, represented by Equation (2), the
policy indicates to execute an action with promising potentials which can maximize value
in Equation(2),

µj =
Q(s, a)
n(s, a)

(1)

UCB1 = µj +

√
Ce· ln n

nj
(2)

where µj defines average gain of the selected feature, s is the current state which represents
Fsub in the feature selection problem, a represents the currently selected action that corre-
sponds to adding a new feature to the current subset. Q(s, a) is an instant reward after
adding the new feature to the current subset. n(s, a) defines the number of visits of the
current node ni, nj defines the number of visits of its children nodes. With the increasing
visited number of uncertainty nodes, the asymmetrical growing search tree gradually
prefer those nodes that gain a higher exploitation score µj. The confidence interval shrinks
with repeated visits.

To a large degree, how much exploration part accounts for evaluation result relies on
the exploration constant Ce. Aiming at the choice of this parameter, Oleksandr I. Marchenko
proposed the MCTS-TSC (tree shape control) method, which used the original depth–width
criteria [20]. For the feature selection problem, there is no fixed shape such as depth
dominant or width dominant for the search tree. It is implicit in constraining the growing
direction of the tree. Considering the complexity of the algorithm and computation budget,
Ce chosen by trails is a better and easier idea, for those who do not care about the cost may
combine the newest technique on pruning.
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For the final feature subset decision, the target is to achieve the highest classification
accuracy or minimum regression error, so the tree should choose nodes with the best score
record that have been seen so far rather than the average score.

Default policy: It is a strategy to implement a rollout. There are two ways to perform
this: either by a uniform random selection policy or by some simple heuristic based on
prior domain knowledge. The enhancements on the rollout policy can be found in Cameron
B. Browne [21].

The pseudocode for MCTS is listed in Algorithm 1 as follows:

Algorithm 1 MCTS(time_limit,iteration_limit,explorationRate)
//explorationRate defines the degree of exploration

root = treeNode(initialState, None)
While (time<time_limit & count<iteration_limit) do

randomPolicy(state):
while not state.isTerminal():

try:
action = random.choice(state.getPossibleActions())

except IndexError:
raise Exception("Non-terminal state has no possible actions: " + str(state))

state = state.takeAction(action)
return state.getReward()

def selectNode(self, node):
while not node.isTerminal:

if node.isFullyExpanded:
node = self.getBestChild(node, self.explorationConstant)

else:
return self.expand(node)

return node
def expand(self, node):

actions = node.state.getPossibleActions(node)
for action in actions:

newNode = treeNode(node.state.takeAction(action), node)
node.children[action] = newNode
if len(actions) == len(node.children):

node.isFullyExpanded = True
return newNode

def backpropogate(self, node, reward):
while node is not None:

node.numVisits += 1
node.totalReward += reward
node = node. Parent

3.2. Gamma Test

The Gamma test is a non-linear modeling and analysis tool to test the relationship
between input and output variables on the numerical dataset. It fits the job of feature
subset selection fast enough; the time complexity of the Gamma test is O(MlogM), where
M is the number of input samples. One single run of the Gamma test takes roughly
only a few seconds on a dataset that consists of thousands of instances with hundred
features. The Gamma test has already been applied in many industrial and natural resource
problems [22–25]. In the section, a brief introduction of the calculation steps and theory
are organized.

The relationship between input Xi and output yi can be represented by a smooth
function in the following form:

yi = f (Xi) + r (3)

where f (X) is the assumed regression model, r is a noise that cannot be explained by f (X).
When there is no noise, r is zero.
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Define XN[i,k] as a list of k nearest neighbors of the ith point Xi in the input space
{X1, X2, X3, . . . , XM } found by KD tree. p is defined as the number of the nearest neighbors
used to calculate statistic Γ. Based on many researches and experiments [26], it is shown
that p = 10 can obtain better results in a reasonable time.

Define yN[i,k] as the list of the target value corresponding to the nearest neighbor
sequence XN[i,k]. It should be noticed that they are not the list of kth nearest neighbors to
the ith point yi. Calculate the Euclidean distance between the nearest neighbors and the
query point in the input and output space,

δM(k) =
1
M

M

∑
i=1

∣∣∣XN[i,k] − Xi

∣∣∣2 (4)

γM(k) =
1

2M

M

∑
i=1

∣∣∣yN[i,k] − yi

∣∣∣2 (5)

By Equation (3), and the continuity of unknown function f (X), the probability of
γM(k)→ var(γ) as δM(k)→ 0 . However, it is impossible for δM(k) to reach zero infinitely.
Therefore, the limit value γM(k) that infinitely approximates var(γ) cannot be directly
calculated. Finally, by Equation (5),

γM(k)→ var(γ) as δM(k)→ 0 (6)

the Gamma test assumes that the relationship between the k-neighbor pairs δM(k), γM(k)
are approximately linear, and the slope is a constant A,

γM(k) = AδM(k) + var(γ) + o(δM(k)), as δM(k)→ 0 (7)

Based on the above assumptions, the least-squares linear fit is performed on {(δM(k),
γMt(k)), 1 < k ≤ p}. Equation (7) can be written as

γM(k) = AδM(k) + Γ (8)

The intercept Γ is the estimated noise variance. The evidence of linear progression
can be found in the research by Evans [9]. In some cases, Γ value is negative. The first
reason is that number of samples is too small, such as under a hundred points, there are
no sufficient data points to obtain an accurate outcome. Another reason is the regression
model is so smooth that data points can be fully explained. When Γ ≤ 0, it is replaced by
|Γ|. Similarly, the case that Γ > var(y) may occur. When this case is true, some pre-process
on data, such as abnormal point detection, should be performed. Since the Gamma test
can only examine the non-linear relationship between inputs and output, linear regression
should also be considered.

4. GNMCTS for Feature Selection
4.1. Nested Monte Carlo Tree Search Subsection

The nested Monte Carlo tree search (NMCTS) was proposed by Hendrik Baier [11]; it
was an enhancement work on Nested Monte Carlo Search (NMCS) [21]. The method was
tested on many single-player games such as Solitare, SameGame, Bubble Breaker, etc. [27–30].
It was compared with basic NMCS on different nest levels. NMCTS outperformed regular
MCTS on those single-player games, and it can also deal with large Markov decision
processes. Therefore, it should adopt the feature selection problem well. NMCTS is
different from MCTS in the simulation phase. Selection, expansion and backpropagation
phases still remained the same as described in Section 3.1. The NMCTS combined MCTS
on a lower base level, leaving itself called recursively on higher nest levels. The techniques
of MCTS, such as UCB-tuned1, can also be used in NMCTS. While MCTS uses random
feature selection beginning with a given state until reaching a terminal state during rollout,
NMCTS uses a heuristic that for every feature selection starting from the given state, and
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level n search calls level n− 1 search result. Then, select the feature with the highest score
from level n− 1 search. As illustrated in Figure 2, curve lines represent for level 0 search.
It is a normal random simulation. Then, level 1 search calls the result of level 0 search and
selects the action with the best score. Level 2 search calls level 1 search and selects the
feature with the best score.
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The best feature sequence is recorded every iteration and compared in case the perfor-
mance is not improved by adding the new feature. After the computation budget runs out,
the best score and sequence are returned. The pseudocode of NMCTS is shown below in
Algorithm 2.

Algorithm 2 NMCTS (startNode, Seq, max_iter, level)
//Seq defines best Fsub the tree has found so far

best_reward = inf.
best_seq = ()
Current_node = startNode
For iteration number in the called level:

While Current_node is not terminal and not fully expanded:
Current_node = selection(Current_node)
Seq = Current_node.feature_subset
If level=1:

While Current_node is not terminal:
Reward, Seq = Random_rollout(Current_node)

Else:
Reward, Seq = NMCTS(Current_Node, Seq, max_iter, level-1)

Back_propogation(Current_Node, reward)
If Reward < best_reward:

best_reward = reward
best_seq = Seq

4.2. Gamma Test as Evaluation Function for Regression Task

Next, a simple example was illustrated to show that the Gamma test could be used in
feature selection.

The butterfly dataset [31,32] consists of two relevant features, three redundant features
and three irrelevant features, which correspond to X1, X2, J3, J4, J5, I6, I7 and I8. In this
trial, we generated 10,000 data points with eight features above. Figure 3 illustrates a 3d
projection of relevant feature values X1 and X2 on the Y-axis. In Figure 4, an irrelevant
feature I6 was added, which was considered as noise. The exhaustive search must traverse
28−1 combinations. As it took only a few seconds, we computed the gamma value for
all the possible combinations, and the minimum gamma value should indicate the best
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relevant feature combination. The combination of the first two features obtained the
minimum gamma value of 0.00043 among all cases, which is close to zero, as shown in
Figure 5. This validated Gamma test estimated the best feature subset correctly.
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4.3. Gamma Test Modified Node Selection Policy

In two-player games, the reward is often denoted with {−1,0,1}, representing loss,
draw or win. The reward interval of a node falls within [−1,1]. The value of Γ has a large
range of variations in different feature subsets. According to Maarten P.D. Schadd [3],
there are two solutions; one is scaling the reward back into the interval [−1,1], and the
other solution is adding a constant to calculate the reward that would fit the application
domain. In the feature selection problem, although the exact maximum Γ value is not
known, according to Equation (7), it can be evaluated by the real variance of the target
data var(y). For feature selection, a modified UCT version is used. The target is to
maximize Equation (9),

µj + Ce·
√

ln n
nj

+

√√√√ΣΓ2 − nj ∗ µ2
j + D

nj
(9)

The left two terms of Equations (9) are the same in Equation (2), the third term contains
the sum of squared rollout reward ΣΓ2 represents a possible deviation of the child node, it
is corrected by the expected results nj ∗ µ2

j . Ce and D are constants discussed above aiming
at exploring rarely visited nodes. In our experiment, D is set with the value of var(y).
Finally, the best feature subset can be found by best policy π∗, which minimizes the Γ value;
this can be written in the form of Equation (10).

π∗ =
argmin
π

Γ (10)

An indicator variable defined:

Vratio =
Γ

var(y)
(11)

Vratio provides a scale-invariant measure; normally, the value is in the range [0, 1]. If
the Vratio value is close to zero, then it means the input variable has a strong non-linear
relationship with the target. If the Vratio value is close to one, then the prediction target
can hardly be explained by input variables; the performance of the regressor is more likely
to be a random walk.

To be noted, the filter feature selection method has to generate a subset with a certain
number of features. Moreover, the final number of selected features has a direct influence on
the result and succeeding computation cost. Romaric [5] proposed to add a stopping feature
in the default policy. A stopping feature is chosen with probability rand(0, 1) > 1− qd,
where d is the depth of the current node in the simulation and q is a constant, where q < 1.
With the growth of the tree, d becomes larger, the probability of the stopping feature being
selected also becomes bigger. In this paper, the Vratio is considered to replace q, and the
modified stopping condition becomes:

rand(0, 1) > (1−Vratio)
d (12)

The intuition for the inequality is to achieve a satisfactory regression result with a
small number of features. Since Vratio can show the goodness of fitting by the current
feature subset, the smaller Vratio is, the smaller the probability of selecting the stopping
feature. Then, the tree can further explore the potential path. Otherwise, the larger Vratio
is, the sooner the simulation phase ends. The deeper the search tree grows, the bigger
probability for the stopping feature to be selected. Another stopping condition takes
consideration of the original feature set size of F. For a high dimension feature set, the



Entropy 2021, 23, 1331 10 of 17

timing for stopping should be delayed in case feature space is not explored enough. The
stopping feature will work if any case in Equation (12) or Equation (13) happens.

rand(0, 1) <
node.depth

size(F)
(13)

5. Experimental Results

This section demonstrates the performance of the NMCTS gamma algorithm on
selecting the best feature combination, and the experiments were conducted on seven
benchmark datasets. All the experiments were implemented in Python with environment
48 Intel(R) Xeon(R) Silver 4214 CPU 2.20 GHz and 125 GB of RAM.

5.1. Datasets

Seven datasets were used for comparison and performance validation. Datasets were
taken from two publicly available repositories [33,34], UCI and WEKA. Specific information
is shown in Table 1. The feature dimensions and the number of instances varied to gain
diversity in characteristics. Both the features and labels are numeric. If datasets contained
some ID information, then that column was deleted. The range of labels was listed in the
fifth column of Table 1. The Parkinsons_Updrs dataset is composed of a range of biomedical
voice measurements from 42 people with early-stage Parkinson’s disease. There are two
prediction targets, motor Updrs and total Updrs. To be convenient for comparison, we
only considered the total Updrs as a target in the experiments. However, one can calculate
the scores, respectively, using the proposed algorithm on multi-output datasets. The
Puma32h dataset was synthetically generated from a realistic simulation of the dynamics
of a Unimation Puma 560 robot arm. The task is to predict the angular acceleration of one
of the robot arm’s links. The Bank32nh was synthetically generated from a simulation
of how bank customers choose their banks. Tasks are based on predicting the fraction of
bank customers who leave the bank because of full queues. Ailerons addresses a control
problem, namely flying an F16 aircraft. The attributes describe the status of the airplane,
while the goal is to predict the control action on the ailerons of the aircraft. Pol describes a
telecommunication problem in a commercial application. Triazines predicts the activity
from the descriptive, structural attributes. Residential building includes construction
cost, sale prices, project variables, and economic variables corresponding to real estate
single-family residential apartments in Tehran, Iran, and the goal is to predict sale prices.

Table 1. Benchmark datasets.

No. Dataset Instances Features Label Range

1 Parkinsons_Updrs 5875 19 [5.0377,39.511]
2 Puma32h 4123 33 [−0.0847,0.0898]
3 Bank32nh 8192 33 [0,0.8197]
4 Ailerons 13,750 41 [−0.0036,0]
5 Pol 15,000 49 [0,100]
6 Triazines 186 61 [0.1,0.9]
7 Residential building 372 109 [50,6800]

5.2. Experimental Settings

We conducted five-fold cross-validation for all the comparison experiments. The
iteration number limit was set to 1000. The corresponding dimension reduction effect and
computation time were compared on six datasets of different sizes. The experiment was
repeated 20 times then took average values as results. For comparison purposes, the best
feature subsets of each feature selection method in Table 2 were tested on the same gradient
boosting regressor from the scikit-learn module. Specific parameters of this regressor were:
The number of estimators was set to 25, max depth was 4, min samples split was 2, the
learning rate was 0.2, the loss was the least square. Before inputting the algorithm, standard



Entropy 2021, 23, 1331 11 of 17

normalization was performed for all the datasets. Features with 0 variances that show no
contribution to the prediction model were deleted at first.

Table 2. Experimental methods.

Method Description

PSO Particle Swarm Optimization based method [35]
QBSO Q-learning based Bee Swarm optimization method [36,37]

MCTS RreliefF Improved relief feature selection algorithm based on MCTS [38]
MCTS RAVE Feature selection as a One-Player Game [39]

FSTD Feature selections using Temporal Difference [40]
GRNN General Regression Neural Network [41]

5.3. Comparison Methods and Metrics

We compared the NMCTS gamma algorithm with six state-of-the-art feature selection
methods for the regression task listed in Table 2. We mainly focused on feature selection
methods using reinforcement algorithms which included temporal difference learning,
Q-learning and enhanced MCTS methods.

A brief introduction of parameter settings related to methods in Table 2 are listed below:

• The objective function of particle swarm optimization (PSO) consists of customized
evaluation function results and the feature number reduction ratio. For comparison
purposes, the evaluation function’s part in it was substituted by the Gamma test;

• QBSO integrated the Bee Swarm Optimization algorithm with Q learning for solving
feature selection tasks. The original algorithm was designed for classification. In the
regression case, the fitness of BSO was substituted from the accuracy of the KNN
classifier to the mean square error of the KNN regressor. The reward function of Q
Learning only differed in minor sign modification from its original paper;

• For MCTS_RreliefF, as the ReliefF algorithm was used to implement classification on
multiclass outputs feature selection problem, we changed it into RreliefF algorithm;
the other framework in the paper remained the same, including most parameter
settings in [38];

• For MCTS with global rave and local rave (MCTS_RAVE), the reward function of
MCTS was originally AUC. It was also substituted by the Gamma test;

• For the Temporal Difference learning method, the reward function was also changed
into the Gamma test. Learning rate alpha was 0.5, epsilon in the ε-greedy strategy
was 0.5. Epsilon decay rate and alpha decay rate were set to 0.995, and the discount
parameter was 0.3, parameter b in heuristic was 0.6, stop condition parameter was 3;

• GRNN used the Radical basis function as the kernel. The kernel bandwidth was
decided by Silverman’s rule of thumb. Type of the gradient search solver was chosen
L-BFGS-B;

• GNMCTS used level 2 nesting search. The iteration number of nesting was set to
10 for level 2 and 100 for level 1. The UCT exploration constant Ce was 0.3. The
expansion width of each node was 10. The rest parameters were the same with the
MCTS_RAVE method.

The final results were evaluated on seven metrics, including the mean squared error
(MSE), mean absolute error (MAE), R-square (R2), explained variance score (EV), dimension
reduction (DR) effect, confidence interval and computation time. The expressions of these
measurements are as follows:

MSE =
1
m ∑m

i=1(yi − ŷi)
2 (14)

MAE =
1
m ∑m

i=1|yi − ŷi| (15)
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R2 = 1− ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi −

_
yi

)2
(16)

EV = 1− ∑m
i=1(yi − ŷi)

2 − 1
m ∑m

i=1|yi − ŷi|

∑m
i=1(yi −

_
yi

)2
(17)

P(Lm < ŷi i < Um) = γ (18)

The smaller MSE and MAE are, the more accurate predictions are. On the contrary,
the larger R2 and EV are, the more powerful of model predictions are. When the value is
close to 1, it indicates the model can perfectly predict all data correctly. When the value is
close to 0, it indicates the model performance essentially acts as a baseline model. When
the value drops below 0, it indicates the model is worse than the baseline model. This
could be the reason why there is no linear or non-linear relationship between inputs and
outputs. The difference between R2 and EV lies in the mean value of the residual, i.e.,
whether 1

m ∑m
i=1|yi − ŷi| is 0 or not. In Equation (18), γ is a number between 0 and 1, and it

was set 0.95 in this paper. Lm, Um are lower and upper confidence bound of variable yi.
The dimension reduction ability is represented by Equation (19). The numerator and

denominator are the number of selected features and total feature subset, respectively.

DR = 1− #selected features
total features

(19)

5.4. Results and Comparisons

According to the aforementioned parameter settings, experiments were conducted as
previously described.

As shown in Table 3a,b, GNMCTS obtained minimum MSE and MAE on Bank32nh
and Parkinson’s datasets. On the rest dataset, the results were very close to the best results
obtained by GRNN and PSO. GRNN obtained the four best records on triazines, Puma32h,
Pol, ailerons and residential building. This could explain why the GRNN method was
the wrapper feature selection method. It adjusted neural weights of the hidden layer
according to the MSE of regression. Therefore, it has inherent lower MSE and MAE than
filter methods, but it cannot deal with a high dimension dataset when the feature number
and instance number are large. Additionally, it took a much longer computation time
compared with other methods. GRNN failed when calculating the triazines dataset. These
were the main problems with GRNN. PSO obtained the smallest MAE and MSE on the
triazines dataset but did not perform well in other datasets. GNMCTS was robust and easy
to implement. The GNMCTS method obtained better results than MCTS_Rrelieff, PSO,
QBSO, MCTS_rave and TD_learning within the same time control. Specifically, GNMCTS
outperformed MCTS as expected on four datasets and achieved similar results on Puma32h,
Pol and Residential building datasets. This would improve if more iterations were allowed
on level 1 or 2 nest level. As the iteration limit was 1000 for both GNMCTS and MCTS,
this limited iteration number of GNMCTS on level 1 multiplied by that of level 2 must
equal 1000. This would weaken exploration ability on lower-level search space. With the
increase in iterations, GNMCTS would finally outperform MCTS. The results of GNMCTS
compared with the original dataset without feature selection had slightly improved or
maintained the same.
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Table 3. GNMCTS results compared with other methods on seven datasets.

(a) MSE:

MCTS_
RreliefF

GRNN_
isotropic PSO QBSO MCTS_rave TD_

learning GNMCTS Original

triazines 0.2283 – 0.0172 0.2246 0.0183 0.0235 0.0182 0.0169
puma32h 6.60 × 10−5 6.50 × 10−5 6.90 × 10−5 9.07 × 10−4 6.60 × 10−5 9.22 × 10−4 6.70 × 10−5 6.90 × 10−5

pol 1330.2471 83.5928 1613.6182 1233.6613 99.4774 722.0634 96.1439 84.5149
bank32nh 0.0108 0.0074 0.0072 0.0133 0.0071 0.0151 0.0071 0.0071
ailerons 7.79 × 10−8 2.81 × 10−8 4.99 × 10−8 9.68 × 10−8 6.80 × 10−5 7.63 × 10−8 3.73 × 10−8 2.78 × 10−8

residential 94,879.2274 51,048.8556 1,107,680 1,098,121 51,887.8991 238,679.153 54,071.2573 54,071.2573
parkisons 18.2702 13.7788 64.3326 64.3017 14.2117 55.4174 13.6362 13.6377

(b) MAE:

Gradient
Boost

MCTS_
Rrelieff

GRNN_
isotropic PSO QBSO MCTS _rave TD_

learning GNMCTS Original

triazines 0.1122 – 0.0928 0.1013 0.0951 0.0123 0.0984 0.0906
puma32h 0.0065 0.0064 0.0066 0.0234 0.0065 0.0235 0.0065 0.0066

pol 29.2173 5.3454 34.6598 27.6021 5.9007 18.0749 5.7809 5.4873
bank32nh 0.0732 0.0564 0.0557 0.0828 0.0556 0.0906 0.0552 0.0554
ailerons 1.99 × 10−4 1.22 × 10−4 1.69 × 10−4 2.40 × 10−4 6.59 × 10−3 2.11 × 10−4 1.44 × 10−4 1.21 × 10−4

residetial 153.4199 109.2683 723.8313 718.452 98.3058 321.5966 117.245 104.9476
parkisons 3.3436 2.8993 6.7796 6.8061 3.0077 6.1205 2.9299 2.9301

(c) R2:

Gradient
Boost

MCTS_
Rrelieff

GRNN_
isotropic PSO QBSO MCTS_rave TD_

learning GNMCTS Original

triazines 0.0692 – 0.3046 0.0481 0.2249 0.0399 0.2479 0.3012
puma32h 0.9261 0.9267 0.9229 −0.0187 0.9256 −0.0353 0.925 0.9227

pol 0.2358 0.9519 0.073 0.2913 0.9428 0.5853 0.9449 0.9514
bank32nh 0.2699 0.4962 0.5136 0.103 0.513 −0.0156 0.5111 0.519
ailerons 0.5309 0.8309 0.6997 0.4171 0.9237 0.5411 0.7755 0.833

residetial 0.9343 0.964 0.2285 0.2354 0.9631 0.8338 0.962 0.9574
parkisons 0.7234 0.7912 0.0259 0.0264 0.7846 0.1608 0.7934 0.7934

(d) EV:

Gradient
Boost

MCTS_
Rrelieff

GRNN_
isotropic PSO QBSO MCTS_rave TD_

learning GNMCTS Original

triazines 0.075 – 0.3192 0.0831 0.2346 0.0507 0.2646 0.3189
puma32h 0.9262 0.9268 0.923 −0.0165 0.9257 −0.0334 0.925 0.9227

pol 0.236 0.952 0.0732 0.2914 0.9428 0.5854 0.9447 0.9514
bank32nh 0.2701 0.4962 0.5137 0.1043 0.514 −0.0148 0.5111 0.5191
ailerons 0.5312 0.831 0.7001 0.4175 0.9238 0.5415 0.7756 0.833

residential 0.9358 0.9648 0.2346 0.2419 0.9638 0.8362 0.9625 0.9581
parkinsons 0.7237 0.7914 0.0266 0.027 0.7848 0.1611 0.7936 0.7936

(e) Confidence bound

Gradient Boost GNMCTS Original

triazines [0.6295,0.6691] [0.6209,0.6968]
puma32h [−0.0010,0.0028] [−0.0010,0.0028]

pol [27.5489,30.3289] [27.5455,30.3560]
bank32nh [0.0794,0.0875] [0.0795,0.0876]
ailerons [−8.8193 × 10−4,−8.6153 × 10−4] [−8.8513 × 10−4,−8.5827 × 10−4]

residential [1114.2649,1660.1809] [1114.0922,1649.7011]
parkinsons [20.9721,21.6521] [20.9665,21.6493]

In Table 3c,d, GNMCTS obtained satisfactory results. Compared with the original
dataset without feature selection, it slightly improved on three datasets and held the line
on triazines, Pol, Bank32nh, Ailerons. R2 and EV of QBSO and TD learning methods on
Puma32h were negative, and the TD learning method also obtained a negative value on
Bank32h. These results indicated the models were worse than the baseline model. The
baseline model took advantage of mean prediction values, so it was like a conserved guess
about the prediction result. This could be due to that the two methods had chosen irrelevant
features. GNMCTS, GRNN and MCTS rave methods especially outperform other methods
on the Pol dataset. In Table 3e, 95% confidence intervals of the mean value of prediction on
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seven datasets are presented. As shown in the table, the confidence interval slightly shrunk
or remained the same after feature selection compared to the original full feature set. The
interval between low and high confidence bound is within a reasonable value.

In order to demonstrate the ability of dimension reduction, the number of selected
features in Table 3 was compared with the original dataset. The DR result of GNM-
CTS is shown in Figure 6. GNMCTS could effectively reduce the feature dimension on
most datasets. The Parkinson updrs original dataset only contains 19 columns, so GN-
MCTS did not need too many iterations to find the optimal solution, but for comparison
purpose, we set the iteration number to 1000 which enforce GNMCTS return a relative
redundant solution.
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The computation times for each method were recorded, as shown in Figure 7. As
GRNN failed to predict triazines, the results of this dataset were not shown. With the same
iteration number, we can see QBSO was the most time-consuming method. The second
most time-consuming method was MCTS_Rrelieff, followed by PSO. The cost of the TD
learning method was closed to MCTS RAVE and GNMCTS but was less time-consuming
than GRNN.
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We also performed the Friedman test on MAE in Table 3b. The Friedman test was
used further to compare the generalization of learning methods on different datasets. The
p-value was 1.8834 × 10−7, which was close to 0 and far smaller than 0.05. This means the
performances of methods apparently differed from one another.

6. Conclusions

The Monte Carlo Tree Search (MCTS) is a method for searching optimal decisions in a
given deterministic environment. It generates an asymmetrical growing tree because of
the searching strategy. It combines selectivity and randomness in the search process. The
merit of this kind of method is strong learning power without any domain knowledge.
This characteristic makes the reinforcement learning method a perfect inspiring player
and teacher. It can show some unique ways of solving problems where other methods
failed. The proposed method GNMCTS inherits the merits of MCTS and can obtain a better
robust result by nesting. Through experimental analysis, GNMCTS obtained satisfactory
results compared to other feature methods. It can effectively reduce the feature dimension
with a reasonable computation budget. GNMCTS can fit feature selection for regression
tasks for data with various dimensions. The Gamma test could indicate how many data
points it takes to converge, called the M-test; this could accelerate MCTS greatly. Future
work may focus on the revised UCT formulation combined with this M-test and develop
an algorithm-based parallelization of NMCTS.
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