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Abstract: Automatically selecting a set of representative views of a 3D virtual cultural relic is crucial
for constructing wisdom museums. There is no consensus regarding the definition of a good view in
computer graphics; the same is true of multiple views. View-based methods play an important role
in the field of 3D shape retrieval and classification. However, it is still difficult to select views that
not only conform to subjective human preferences but also have a good feature description. In this
study, we define two novel measures based on information entropy, named depth variation entropy
and depth distribution entropy. These measures were used to determine the amount of information
about the depth swings and different depth quantities of each view. Firstly, a canonical pose 3D
cultural relic was generated using principal component analysis. A set of depth maps obtained
by orthographic cameras was then captured on the dense vertices of a geodesic unit-sphere by
subdividing the regular unit-octahedron. Afterwards, the two measures were calculated separately
on the depth maps gained from the vertices and the results on each one-eighth sphere form a group.
The views with maximum entropy of depth variation and depth distribution were selected, and
further scattered viewpoints were selected. Finally, the threshold word histogram derived from
the vector quantization of salient local descriptors on the selected depth maps represented the 3D
cultural relic. The viewpoints obtained by the proposed method coincided with an arbitrary pose of
the 3D model. The latter eliminated the steps of manually adjusting the model’s pose and provided
acceptable display views for people. In addition, it was verified on several datasets that the proposed
method, which uses the Bag-of-Words mechanism and a deep convolution neural network, also has
good performance regarding retrieval and classification when dealing with only four views.

Keywords: information entropy; viewpoint selection; cultural relic; Bag-of-Words

1. Introduction

High-precision 3D cultural relics allow researchers and viewers to observe surface
morphology and local features from an arbitrary angle. People are often more interested
in a few views after appreciating cultural relics from different perspectives. The viewing
experience for tourists could be improved by providing several representative views for
each cultural relic. These views are also suitable for labeling cultural relics, in order to
include richer semantic information in the labels. The automatic selection of representative
views of cultural relics is a crucial stage in building a wisdom museum. Selecting the set of
best views is an NP-hard problem [1] and complex surfaces will also have an important
impact on the method. Papadimitriou explained “spatial complexity” and effectively
examined the various behaviours of complex systems [2]. The Euler characteristic is
calculated to measure the spatial complexity of the 3D spatial object. There is still a degree
of difficulty in describing most cultural relics with a higher genus. The goal is to display
each cultural relic with the minimum possible number of views. It is also important to
estimate whether the selected set of views contains peculiar features. Accurately identifying
a cultural relic relies on marking more detailed information from the different views, which
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can be used to expand the cultural relic’s knowledge base [3]. This mean that we must be
able to automatically obtain several views basically covering the surface of the 3D object
and include significant features on the high-precision 3D model of the cultural relic.

Bonaventura et al. reviewed 22 view selection methods [4], which are classified
according to the area, silhouette, depth, stability and surface curvature. They then used
Dutagaci’s method for evaluation [5]. Generally, oblique views between the frontal view
and the profile view are often preferred as representative views for 3D objects. However,
one view is not enough for understanding the whole 3D model, while some methods
also provide multi-view selection schemes [6–8]. It is still difficult to obtain a few views
with large shape differences, such as the views containing the front as well as the side of
the object.

To solve these problems, two new measures based on information entropy have been
defined. The first one is referred to as depth variation entropy. The larger the entropy, the
closer to seeing more depth swings. The second one is referred to as depth distribution
entropy. The greater the entropy, the closer to seeing more depth quantity, which is a
similar result to that of the depth distribution [9]. Based on this, we designed a framework
for multi-view selection, in which continuous views are captured by placing cameras on
the vertices of a geodesic unit-sphere to calculate the depth variation entropy and depth
distribution entropy for choosing the depth map with the maximum entropy. The multi-
view selection method is then proposed for automatically achieving four viewpoints far
away from each other. The method can ensure that the views obtained by a 3D model
in an arbitrary pose are consistent, which highly reduces the workload of manual model
alignment. Moreover, the obtained views show the cultural relics in a near panoramic view,
and therefore, we can see not only the side with a large projection area but also the front
side with a small projection area. As shown in Figure 1, the obtained views can present not
only the side of the horse, but also its front.

Figure 1. Representative view of the horse.

In addition, a quantitative method has been proposed to analyze a set of views. Among
a large number of view-based 3D model retrieval and classification algorithms, it has been
deduced that multi-view algorithms can distinguish different types of models. The large
number of views used in these methods cannot meet the needs of view selection for the
cultural relic model. However, the quantitative evaluation method is also suitable for
analyzing and evaluating the representation capacity of the 3D model views. The word bag
mechanism was adopted to build a codebook in the selected views and a threshold word
histogram was proposed to analyze whether the selection views have enough features to
represent the whole model by carrying out 3D model retrieval. Our four selection views
for retrieval also had good performance with public datasets.

In the experiment, we present the best views selected by four different algorithms
and show the results obtained by the proposed multi-view selection method. Afterwards,
our threshold word histogram was used to represent a 3D model, and the 3D model
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retrieval was carried out on the McGill Shape Benchmark (MSB) [10] and the Princeton
Shape Benchmark (PSB) [11] to analyze the feature representation capacity of the different
views. Finally, the multi-view classification method compared the recognition effects of
different numbers of views on the ModelNet40 dataset [12]. Our four views demonstrated
the general applicability of the proposed approach, in line with people’s habits of looking
at items from all around.

The rest of this research is organized as follows. In Section 2, we illustrate the related
work. In Section 3, we propose our method and analyze its superiority. In Section 4, the
experimental results on a comparison of view selection methods, 3D shape retrieval and
recognition are described. Finally, we present our conclusion in Section 5.

2. Related Work

In this section, we review related work in two different categories related to the
techniques presented in this paper. In the first part, we examine studies related to view-
point selection of a 3D object. Afterwards, we review related work in the area of object
classification and retrieval.

2.1. Selection of the Best View of 3D Objects

Plemenos and Benayada [13] studied the projected area of a model from a viewpoint
as a measure of viewpoint goodness. Vázquez et al. proposed viewpoint entropy to define
the goodness of a view [14]. The view with maximum entropy had the maximum visual
information, while most of the depth information was lost. Stoev and Strasser introduced
an approach for computing an optimal camera position to visualize terrain [15]. They used
not only the projected area but also the depth of the image to find a good view.

Page et al. proposed curvature entropy and silhouette entropy to measure the good-
ness of a view [16]. Lee et al. suggested using mesh saliency based on the local curvature
over the surface to investigate the best view [17]. Polonsky et al. analyzed a number of
the best view selection algorithms and concluded that a combination of descriptors would
amplify the respective advantages of different view descriptors [18].

Vázquez computed the stability of a viewpoint by comparing the viewpoint with
its neighbors [19]. Vieira et al. proposed a learning approach for imitating the user by
pre-selecting good views [20]. Secord et al. leveraged the results of a large user study to
obtain people’s preferred views [9]. Bonaventura et al. defined three types of viewpoint
information to quantify the information associated with each viewpoint [21]. Dugataci
et al. used the vertices of the geodesic sphere to sample 258 viewpoints on the viewing
sphere of a model [5]. The difference was measured by the geodesic distance between
the optimal viewpoint and the ground truth of 26 participants. They provided a way
to evaluate whether the best view was closer to human preferences. Bonaventura et al.
elaborated on a review of 22 measures to select good views of a polygonal 3D model [4].
For more information about the development of viewpoint selection methods, we refer the
reader to this survey.

2.2. View-Based 3D Model Retrieval and Classification

To develop a method to quantitatively evaluate the representativeness of multiple
views, we drew lessons from the technologies related to view-based 3D model retrieval and
classification. The multi-view algorithm explores the object’s information from different
visual perspectives, puts the 3D model in a sphere and observes it in the center of the sphere
from different viewpoint angles. This way of analyzing the characteristics of a 3D model
imitates the behavior of human object recognition [22]. There are many view-based 3D
model retrieval and classification methods, but we mainly introduce the methods related
to this paper.

The light field descriptor (LFD) method places the cameras on 20 vertices of a 12-
hedron. Since the silhouette projected from opposite vertices is the same, 10 images are
represented for 20 viewpoints. They finally calculate the Zernike moment and Fourier
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coefficient of the 100 images to form descriptors for a 3D model [23]. Shih et al. proposed
elevation descriptors that are robust to rotation, which are extracted from the elevation
information of six different views (front, top, right, rear, bottom and left) [24]. Chaouch
et al. first solved the normalization problem of 3D objects, and then represented the 3D
model by 20 depth images [25]. Ohbuchi et al. extracted the salient local features (SIFT)
from each range image and integrated them into a histogram using the Bag-Of-Features
(BoF) approach. They compared the performance of different view selections and finally
recommended 42 views for extracting features [26]. Daras and Axenopoulos created a
compact representation of a 3D object as a set of multiple 2D views including silhouette and
depth images. Their experiments showed that the 18-view representation of a 32-hedron
produces better retrieval results than the 6-view representation of the 8-hedron [27]. Lian
et al. described each view as a word histogram and the objects were compared by clock
matching (CM-BOF). The number of views was chosen as 66 after they investigated the
influence of the number of views on retrieval performance [28].

With the rise of deep learning, the methods of recognizing 3D model from multi
angle views have also developed greatly, and the most representative work is multi-view
convolutional neural networks (MVCNN) [29]. The authors raised a camera 30 degrees
from the ground and obtained 12 views at intervals of 30 degrees. In the conclusion, it
was proposed that different combinations of 2D views still needed to be explored. In
addition, there are many depth learning methods, most of which focus on the improvement
of network structure and the choice of views [30,31]. Basically, the viewpoints on the vertex
of a regular polyhedron are adopted. Similarly, more views have better results.

For 3D cultural heritage classification, Hristov et al. developed a software system for
classifying archaeological artefacts represented by 2D archaeological drawings [32]. Gao et
al. transformed the scale-invariant heat kernel signature descriptor into a low-dimensional
feature tensor by the Bag-of-Words mechanism to solve the problem of samples in the
dataset that lack category labels [33]. Many other classification methods have also tried to
find more representative features to achieve a more precise result [34–36]. High precision
and few samples are the characteristics of cultural relics’ data, and these are also the key
factors to be considered in practical applications.

We can see that many kinds of application based on views have two main strategies:
optimal view selection and uniform selection. A few views can represent a model in
selection methods aiming to achieve the best views. A large number of views are needed to
achieve good retrieval and classification results in general. For a high-precision and scarce
3D model of artistic relic data, we propose a multiple optimal view selection method and a
quantitative evaluation method for multi-view comparison.

3. The Proposed Method
3.1. Depth Variation Entropy and Depth Distribution Entropy

There are two obvious differences between the best views. One is the view of the
object with a large projection area (e.g., the side of the horse) and the other is the view with
a large depth distribution (e.g., the front of the horse) [4]. These views are often what we
want to display. The capture of depth maps is efficient, even for high-resolution 3D models,
and it also has rich information. We define depth variation entropy and depth distribution
entropy on the depth map to obtain two similar kinds of views.

Similar to [5], we sampled close to continuous 258 views, which were captured
by placing cameras on the vertices of a geodesic unit-sphere generated from a regular
octahedron. The cameras pointed towards the center of the bounding box of the mesh
and the orthographic depth maps were rendered with a size of 223 × 223. The mesh was
uniformly scaled according to the length of the diagonal of the bounding box to ensure
that the depth maps fit into the viewing volume (see Figure 2a). The depth map obtained
in this way is equivalent to the picture viewed from the equidistant positions around the
model; it is also closer to the human habit of observing objects.
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Discrete Shannon entropy can be used to measure information, and asymmetric
entropy can be used to reveal a more profound evolution of ecological communities and
populations [37]. Let X = {x1, x2, ..., xn} be discrete random variable and pi the probability
of xi, i = 1, ..., n. The Shannon entropy of the discrete random variable X is defined as
H(X) = −∑n

i=1 pilogpi. Based on the Shannon entropy, Vázquez et al. proposed the
definition of viewpoint entropy. They used a probability distribution of the relative area of
the projected faces over the sphere of directions centered on the viewpoint [14]. We define
two similar measures based on depth information. Each pixel of the depth map stores the
orthogonal distance of a viewpoint to the surface. The first measure uses the neighborhood
information of a central pixel using a window of fixed size (blank pixels are not included).
The dispersion D of each pixel in the depth map is the ratio of the variance to the mean in
a 3 × 3 window. Given a depth map V, the depth variation entropy is:

H(V) = −
n

∑
i=1

Di
Dt

log
Di
Dt

(1)

where n is the number of the visible depth pixels of the depth map and ∑n
i=1

Di
Dt

= 1, Di
is the dispersion of pixel i and Dt is the total dispersion value of the depth map. Given
a = {a1, . . . , am} be a set of a pixel value and its neighborhood, m is the number of the visible
depth pixels in the 3 × 3 window. The dispersion D of each pixel is Di = v(a)/ < a >,
where v(·) is the variance and <·> is the mean value. This formula uses the ratio of each pixel
depth dispersion to the total as the probability distribution to compute the entropy. This
measure is sensitive to noise, so mean filtering must be carried out first when calculating
the entropy. It should be noted that the pixels on the visible depth boundary should not be
affected by the blank pixel value during filtering.

The second measure uses the depth distribution of the depth map. The depth dis-
tribution is defined as 1−

∫
S(z)2dz in [9], where z is the depth and S is the normalized

histogram of the depth. It encourages objects with largely planar areas to take oblique
rather than head-on views, and is insensitive to noise. We calculate the depth distribution
on discrete viewpoints and define it in connection with Shannon entropy. Given a depth
map V, The visible depth value stroed in each pixel are classified into n bins to form a
depth histogram on a depth map. let each bin value of the normalized depth histogram as
a probability, the occurrence number of each bin is F = {F1, .., Fn}, the depth distribution
entropy is:

H(V) = −
n

∑
i=1

Fi
Ft

log
Fi
Ft

(2)

where n is the number of visible depth bins of the depth map and Ft is the total occurrence
number of the depth value and ∑n

i=1
Fi
Ft

= 1. Our maximum depth distribution entropy
result is similar to the result of [9] but, theoretically, the maximum entropy of our depth
map has the maximum depth fluctuation information.

The maximum depth variation entropy or depth distribution entropy is obtained when
a certain view has the same probability distribution. Because our views were captured on a
unit-sphere, which limits the position of the collected views, they may not have reached
maximum entropy. However, in the obtained views, it was found that with greater depth
variation entropy, more depth swings can be seen, and with greater variance entropy, more
different depths can be seen. Figure 2b,c shows the results obtained with this method for
the cow model. Figure 2b shows the side view of the cow and Figure 2c shows the front
view of the cow; these correspond to the classical “three-quarter view” of an object. These
two views are exactly what we want to show to museum visitors.

The views obtained by our two metrics should have less correlation. Xiaojun Zhao
et al. propose an effective method to detect nonlinear correlation [38]. Due to each
depth histogram represent the information of this view to some extent. We regard the
set F = { F1

Ft
, . . . , Fm

Ft
} as a 1-dimensional time series on a depth map to compute mutual

information. Different from the number n in Formula (1), m is the length of the minimum
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depth to the maximum depth in all views of a model. We can obtain a 258-dimensional
time series G of equal length m on a 3D mesh. The incorrectness of two time series can
be quantified by the Kullback-Leiber divergence. We use the method defined by them
to obtain the mutual information matrix of the mesh in Figure 2. The overall mutual
information mean value of 258 depth maps is 0.4587 and the mutual information between
Figure 2b,c is 0.1565. While the mutual information between the views obtained by using
our two measures is not the most irrelevant, the correlation is obviously low, verifying that
the views with large differences can be obtained by our two measures from a quantitative
point of view.

Figure 2. In the left (a), 258 cameras are placed on the vertices of the geodesic unit sphere to obtain the depth map for the
cow model. The middle (b) and right (c) are the views with maximum depth variation entropy and depth distribution
entropy, respectively.

3.2. Multi-View Selection

While the measure we defined seems to provide a good view for visitors, it cannot
always guarantee excellent results with different meshes. In the example of the strangely
shaped relic named Jishou shown in the Figure 3a, the views marked with the solid
red wireframe are the results of maximum depth variation entropy, and the solid blue
wireframe shows the results of maximum depth distribution entropy. Because one can
see the inside through the open base, the solid blue wireframe has the maximum depth
entropy. This shows that it is difficult to provide a good display for all models with only
two views. In addition, the depth maps obtained with different poses are different, which
leads to diversity in the results. In order to improve the overall stability, we propose
a method with scattered viewpoints for selecting the best views. This method ensures
that the results obtained with arbitrary poses are consistent, which eliminates the step of
manually adjusting the attitude of a mesh. At the same time, the four views obtained can
basically display most of the visual information of the 3D object.

We first normalized the objects by principal component analysis (PCA) [39]. Since
pose alignment processing by PCA cannot ensure that the object has the same orientation
as the principal axes, Daras and Axenopoulos chose the rotated object with the minimum
bounded volume after both PCA and visual contact area (VCA) analysis [27]. Moreover,
Lian et al. combined PCA and the rectilinearity to obtain better normalization results [28].
However, we only need the models with arbitrary poses to be orthogonal to each other
after being converted. As long as the collected viewpoint can be rotated by 90 degrees and
remain unchanged, the captured depth map is still consistent. While there will be rotation
in the obtained depth map, it will have no effect because the method is rotation-invariant
in this study.
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Figure 3. The whole pipeline of Representative View Selection of Jishou. Initial selected views from each group are shown
in (a). The viewpoints in the order of marks 1, 2, 3 and 4 in (b) were obtained according to the scattered viewpoint selection
rules. The final four selected views are shown in (c).

After pose normalization, we divided the unit-sphere into three planes formed by
the x–y–z coordinate axes into eight parts to make a group with 45 viewpoints. There
are duplicate viewpoints on the great circle between each adjacent group. This grouping
ensures that the viewpoints belonging to each part are consistent after 90-degree rotation
of the object. It is possible that the best view of each group will repeat. In extreme cases,
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the best view is in the middle of the hemisphere, which contains four groups. That also
means that the number of best views with our two measures is 4–16.

We reduced the number of best views further. Four scattered viewpoints that are far
away from each other were selected in order to obtain a macro-view of the whole. Given
the best view sets v1 of depth variation entropy and v2 of depth distribution entropy, the
following basic steps of the procedure are performed:

Step 1. Remove the duplicate views in the acquired view; there will be at least four views
after this step.

Step 2. Calculate the direction vector from the spherical center point to each viewpoint
position and find the two viewpoint positions belonging to v1 with the largest
included angle between their direction vectors.

Step 3. In v2, calculate the triangle area composed of each viewpoint position and the
two determined viewpoints’ positions. The vertex that maximizes the area of the
triangle is the third choice.

Step 4. Find the fourth viewpoint position in v2 with the largest angle for the third selected
viewpoint position.

Figure 3a shows the 12 best views of Jishou. The blue dotted box indicates the selected
view, in which the duplicate views have been removed. Figure 3b is a sketch map for
assisting in understanding the selection rules of decentralized views. Marks 1, 2, 3 and 4
in the figure represent the order of the selection rules. The third view was selected by the
maximum triangle area, which inspired by the definition of a solid angle [40]. The solid
angle is computed by projecting an object onto the unit-sphere and measuring the area of
its projection. The area of the triangle is obviously proportional to the area projected onto
the sphere. The more viewpoints tend to be scattered, the larger the area of the triangle.
The area of the regular triangle on the great circle of the sphere is the largest, and the
distribution of the three vertices is also the most dispersed. Figure 3c shows the four
views in the final selection. While the shape of Jishou is peculiar, we can still obtain a
comprehensive understanding of the model without bad results.

3.3. Threshold Word Histogram Method for Representative Analysis

In addition to find the view conforming to human aesthetics, it is also important
to quantitatively analyze whether the multi-view features are enough to represent the
3D model. In view-based 3D model recognition and retrieval tasks, researchers have
focused on how to improve the feature extraction capacity and obtain as many of the
peculiar features of a model as possible to achieve good results. Our purpose was to
analyze whether a small number of representative views could represent the model. Based
on previous methods, we propose a threshold word histogram construction method for
analyzing the representative capacity of different multi-views.

The deep learning method has strong feature extraction capacity and can directly
input different views in the same neural network to compare the classification results (see
the experiment in Section 4.2). However, we generally need a large number of samples
to provide a priori knowledge. In the small samples of 3D cultural relics, the view-based
feature extraction method is more suitable for analyzing and comparing different views.
Ohbachi et al. extracted SIFT [41] features from multiple views and took the center of a K-
means cluster as a visual codebook for quantizing the local features into a visual word [26].
Lian et al. regularize the model first and then proposed a clock matching mechanism to
ensure that it compared with corresponding view, so as to improve the accuracy [28]. Since
the calculating time of the K-means clustering was significant, they randomly sampled
local feature vectors to create the codebook in their method. Both of these studies verified
that the more views, the better the retrieval accuracy, but, considering the amount of
calculation, 42 and 66 views were recommended, respectively, in [26,28]. To analyze the
representative capacity of a few views, we propose the threshold word histogram method.
Unlike previous methods, the codebook C is generated from the selected views. The
threshold method removes the influence of the features which are not close to C.
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The biggest difficulty of model retrieval is that the best view of the classification model
is not necessarily the view from the same perspective. To solve this problem, the features
extracted from the selected view were used as a codebook, and then the visual vocabulary
was created by setting the threshold to find the features similar to the codebook from the
uniform view. The SIFT descriptor is calculated, using the VLFeat matlab source code
developed by Vedaldi and Fulkerson [42]. As shown in Figure 4, we extracted the local
features from 66 uniform depth maps by using the SIFT algorithm. A codebook with Nw
visual words was generated via sampling from the selected views but not clustering. Each
model contributed only eight feature vectors from the target database to form a codebook,
then each feature was assigned to a visual word with a threshold. The threshold was set as
the mean value of the Euclidean distance between the top, front and left views and their
adjacent views for each model of the target dataset. After the visual words were created,
the frequencies of visual words were accumulated into a histogram with Nw bins. Each
histogram shows the Nw-dimensional feature vectors for the 3D model.

Figure 4. Generation of the threshold word histogram.

The distance between a pair of feature vectors was computed by using the histogram
intersection distance presented in [28]. Let us assume that model k is described by the word
histogram Wk = {Wk(j)|j = 1, 2, ..., Nw}, then, given two word histograms W1 and W2, the
maximum dissimilarity histogram intersection distance Dmaxhis is defined as follows:

Dmaxhis = 1−
∑Nw

j=1 min(W1(j), W2(j))

max(∑Nw
j=1 W1(j), ∑Nw

j=1 W2(j))
(3)

The distance Dmaxhis measures the similarity between different models. The thresh-
old word histogram provides a method for analyzing the representativeness of selected
views by evaluating retrieval quality in public datasets.

4. Experiment Results and Analysis

To fairly evaluate our approach, we implemented the method described above and
tested it on several public datasets. The experiments described in Sections 4.1, 4.2.1 and
4.2.2 were performed on a desktop PC with a 2.30 GHz Intel Core i5-8300 and 8 GB of RAM.
The experiments in Section 4.2.3 were performed on a desktop PC with a 6× 2.50 GHz Intel
Xeon E5-2678 and NVIDIA GeForce RTX 2080 Ti. We implemented the complete algorithm
in Matlab 2018. We verified the advantages of our approach for view selection with three
different 3D models. The 3D shape retrieval results were analyzed via our method, which
used grouping word histograms, on the McGill Shape Benchmark (MSB), which consists
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of 255 objects classified into 10 categories [10] and the test set of the Princeton Shape
Benchmark (PSB) containing 907 models are classified into 92 categories [11]. Finally,
we compared the classification accuracy for selecting different views in the ModelNet40
database [12] versus MVCNN [29].

4.1. Generally Applicability of Multi-View Selection

In the first experiment, we present the best views selected from the 258 views described
in Section 3.1 by four different algorithms for the Hu relic (256,000 triangles) and the Goat
relic (800,000 triangles), then show the results of our multi-view selection method.

As shown in Figure 5a, in the views obtained by the projected area method, one can
see a larger area in the first column [13], which conforms to the preferences of visitors
regarding the goat but shows the back of the Hu. The depth distribution method [9] in the
second column produces a four-quarters view of the goat, but the results for the Hu are not
popular because people prefer to see the front of an object.

Figure 5. Comparison of optimal view methods and scattered view selection results.
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Our depth variation entropy method in the third column provides a similar view to
the projected area method for the Hu and the goat. Slightly oblique views were obtained
but the backs of the objects were still shown. Our depth distribution entropy method in the
fourth column was similar to the depth distribution method, which produced a slightly
worse view for the Hu because the inclination of the base had more specific gravity. Note
that it is difficult to achieve good results for all models with one method.

Figure 5b shows the results of our multi-view selection algorithm. We used four
scattered views to represent a 3D model. Near ideal results were obtained for the two
models, which show not only the side but also the front. While there is not one ideal view
of the Hu from bottom to top, observations from this view also complement the cognition of
the whole object. The views marked by the red box in the figure are the results of maximum
depth distribution entropy. No matter whether the maximum entropy view is selected
or not, we achieve the views that are similar to looking around an object. This verifies
the effectiveness of the method for producing good results, demonstrating the generally
applicability of our approach.

4.2. Evaluation of Small Number Views to Represent a 3D Model

In this experiment, we first compared our method with several other unsupervised
3D model retrieval algorithms and then used the selection of different views to analyze the
3D model representation ability of different views.

4.2.1. Evaluation of the Threshold Word Histogram Method

Nearest neighbor (1-NN), first-tier (1-Tier), second-tier (2-Tier) and discounted cumu-
lative gain (DCG) were used to compare our method with the approaches of CM-BOF [28],
LFD [23], radialized spherical extent function(REXT) [43], spherical harmonic descrip-
tor(SHD) [43], gaussian euclidean distance transform(GEDT) [44], viewpoint information
I2 [21] and D2 shape distribution (D2) [45] on the PSB test set with base classification. The
benchmark data for comparison come from [11,28]. As shown in Table 1, the CM-BOF of
66 views was the best at all levels. The data of our word histogram in for views was the
closest to the LFD of thousands of contours, which was better than the results for REXT,
SHD, GEDT, I2 and D2. It can be seen that the effect of the algorithm was basically the
same on the two datasets. The algorithm that obtained better results needed more views,
and we only used four views to obtain close results to the LFD. The values of 1-NN, 1-Tier
and 2-Tier were very close, but the DCG decreased. This indicates that the first few results
were returned accurately during retrieval with fewer views, but there was more confusion
when all are recalled. In the same class, data with large shape changes were difficult to
classify correctly when there were few views. In order to analyze the applicability of a
small number of views, we made further experiments.

Table 1. Comparing 7 shape descriptors on the PSB test set with base classification.

CM-BOF LFD Ours REXT SHD GEDT I2 D2

1-NN (%) 73.1 65.7 65.3 60.2 55.6 60.3 39.4 31.1
1-Tier (%) 47.0 38.0 36.0 32.7 30.9 31.3 20.8 15.8
2-Tier (%) 59.8 48.7 46.9 43.2 41.1 40.7 27.9 23.5
DCG (%) 72.0 64.3 56.0 60.1 58.4 23.7 45.3 43.4

4.2.2. Applicability of a Small Number of Views

We use different numbers of views (1, 4, 6 and 18) and used the word histogram to
analyze the McGill dataset. The selection of one view was obtained by using the maximum
projected area, and four views were selected by our method. The 6 views were front, back,
up, down, left and right, and the 18 views were obtained by placing the camera at the 18
vertices of the 32-hedron subdivided once from the regular octahedron. The PR graph is
used to intuitively analyze the retrieval with different view choices. Figure 6a shows the
PR graph on the M dataset which has 255 models with 10 classes; the horizontal axis is the
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recall rate and the vertical axis is the accuracy. The recall rate is the correct proportion of
the retrieved model, and accuracy is the correct proportion of the retrieved model as the
recall rate increases. The higher the numerical value that can be maintained, the better the
partition. It can be seen that the more views, the better the effect.

1 
 

 
Figure 6. Precision-recall curves of four different views.

We found that the two classes with the worst effects on this dataset were the snakes
and the octopuses. To further analyze under what kind of data can be better expressed
using our four views, we removed these two categories and carried out further experiments.
Figure 6b shows the test results for 203 models with eight classes. In this case, the PR
diagrams for 4 and 6 views were very close. It is clear that having four views can achieve
the same effect as 6 views to distinguish various models in this eight-class dataset. Table 2
illustrates this more clearly. Our four selected views exceed 6 views on 1-Tier, 2-Tier and
DCG. We suggest that the reason for the confusion in the snakes class was the depth changes
were relatively uniform lead to the SIFT characteristics showed relatively few uniqueness.
The second reason is that the shapes of the different categories of models are very similar
and it was still difficult to distinguish them with fewer views (like octopuses and spiders).
The experiments showed that having more views must provide more information, but
using our four views had also better representation ability when a distinct model category
shape itself is obvious.

Table 2. Comparison of different data sets under four view selections.

McGill (10 Class) McGill (8 Class)

Number of views 1 4 6 18 1 4 6 18
1-Tier (%) 68.9 70.7 71.8 73.0 74.1 78.6 78.6 80.5
2-Tier (%) 83.2 83.8 84.2 84.7 88.7 91.5 91.4 92.3
DCG (%) 83.4 83.9 84.3 84.7 85.8 87.1 87.0 87.5

4.2.3. Classification Using a Small Number of Views Based on Deep Learning

The deep learning method for model classification has weak interpretability but
strong ability to extract features. To analyze the representation ability of the four views
selected in this paper, different views were used for comparing the classification accuracy
on ModelNet40 dataset. MVCNN recommends using 12 views to represent a 3D model,
which also indicates that the selection of views remains to be explored. In order to test
the recognition ability of a small number of views, we used our four views, eight views
extracted from eight uniform viewpoints with an angle of 30 degrees and an interval
of 45 degrees on the geodesic sphere and twelve views extracted from eight uniform
viewpoints with an angle of 30 degrees and an interval of 30 degrees on the geodesic
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sphere. Vgg11 was selected in MVCNN, and other the super-parameters were consistent.
The test results are shown in Table 3. It can be seen that the conclusion was similar to that
in Experiment 2: the more views, the better the effect, and the classification accuracy of
four views was close to that of more 8 views. While it is difficult for a small number of
views to surpass the results of larger number of views, the close classification accuracy also
shows that our selection of four views also has sufficient features. The characteristics of the
cultural relic model are more distinctive, and our four views are enough to express it from
the perspective of the features it contains.

Table 3. Comparison of classification accuracy on different views using MVCNN.

Number of Views 4 8 12

Classification (Overall accuracy) 85.1% 86.3% 92.5%
Classification (Mean accuracy) 81.7% 83.1% 88.9%

5. Conclusions

In this study, we propose an efficient method for selecting representative views of
3D models of cultural relics, and propose a method for 3D model retrieval with a small
number of views to analyze the representative capability of 3D models. Our study makes
the following three main contributions: The first is that it proposes two new measures for
selecting the view with the most abundant information on the depth map according to
according to the characteristics of information entropy. One measure is to obtain the depth
map with the most visual information, and the other is to obtain more depth distribution
information. The second can be used to build a block dense viewpoint extraction model
and propose a scattered viewpoint selection algorithm. This algorithm can improve the
universality of view selection, make up for the problem that the optimal view may not
obtain the view of interest, and is more in line with the habit of human observations of 3D
objects. Third, a threshold word histogram method for 3D model retrieval with a small
number of views is proposed. It reasonably analyzed the representative ability of a small
number of views of 3D models, and verified the analysis results of the representative ability
of a small number of views via the deep learning method.

The proposed method could efficiently produce a small number of optimal views of
high-precision 3D models of cultural relics, which were not affected by the model pose and
eliminated the steps of manually aligning the 3D model. The threshold word histogram
method can be used to analyze the representative ability of a small number of views of
the 3D model. We believe the approach described in this study will be noteworthy for
researchers who are attempting to select and analyze representative views of a 3D model.
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